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RAMIFICATION AND UNINTEGRATED VALUE
DISTRIBUTION

J. R. QUINE

For a holomorphic map / from the complex plane into the Riemann
sphere, the ramification term nx(f,r) is studied. A geometric version of
ramification is defined in terms of the intersection points of f(z)X
f(z + h) with the diagonal Δ for a suitable vector field h. Estimates of a
counting function for this intersection number are given in terms of the
mean covering number.

1. Introduction. Let S be the Riemann sphere normalized with
radius \/2y[ϊr and area 1. Suppose that /: C -> 5 is a non-constant
holomorphic mapping (meromorphic function). Let B{r) denote the ball
\z\ < r in the complex plane. Let nλ(r) and Nλ(r) be the unintegrated and
integrated counting functions for ramification as in the value distribution
theories of Ahlfors and Nevanlinna ([1], [6]). Let L(r) = L(/, r) denote
the length of f(dB(r)) and A(r) = A(f, r) the area of f(B(r)) counting
multiplicity (also called the mean covering number).

If / is rational, the total ramification is 2 A — 2 where A is the area or
degree. In general, as a consequence of Nevanlinna's second main theo-
rem, we know that there is a set E of finite logarithmic measure such that

(1) N^r) < 2T(r) + o(T(r))

as r -> oo in JE, where T is the Nevanlinna characteristic. (A derivation of
this estimate directly from the Gauss-Bonnet theorem is given in Griffiths
[3].) In the unintegrated theory of Ahlfors [1], the term nx(r) disappears
from the second main theorem (Nevanlinna [6], p. 350). Although the
ramification at the points av...,aq is still counted, an inequality analo-
gous to (1) cannot be proven. Terms of the form o{A(r)) in Ahlfors
theory are given in the form cL(r) where c is a constant. In the class of
functions dealt with in this theory, ramification can be added topologi-
cally to any given / | β ( r ) while L(r) changes very little. One can imagine
adding "loops" of arbitrarily small length to f(dB(r)). This does suggest,
however, that ramification "near" 3J5(r)) should not be counted. In the
theory of Rickman and the treatment of the Ahlfors theory by Pesonen
[7], none of the ramification term is included. (This seems to be an
advantage in dealing with higher dimensions.)
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The purpose of this paper is to investigate a modified ramification
term in the unintegrated theory and obtain some estimates of the type (1).
To do so we abandon the classical notion of ramification and go to a more
geometric version. Consider a map of the form (/(z),/(z + h)) from C
into S X S where h = h(z) is some suitably chosen vector (difference)
field on C. We will consider h only of the form c or cz9 where c is a
complex constant. Let fh(z) = /(z + h). A point z0 where (/ X fh)(z0) is
in the diagonal Δ of S X S is a geometric version of a ramification point.
As h -> 0, in fact, these points approach the ramification points of /. The
advantage of the geometric version is that we can think of the chordal
distance from / to /Λ, [/, /J, as being a measure of "proximity" to Δ. To
use the chordal distance, choose h as above and choose a > 0. Consider
the subset of C determined by the inequality [/(z),/(z + h)] < a. This
will be a region of C bounded by the piecewise smooth curve [/(z),
/(z 4- h)] = a. Let P(r, h,a) be the union of the components of this set
which intersect dB(r). These are analogous to the peninsulas in the
Ahlfors theory of the counting function for regions in the plane. Let
nλ{r, h,a) count the number of intersections of fxfh with Δ for z
in B(r) Γ\ P(r,h,a). This counts the intersection "far" from dB(r).
Our main estimate is:

THEOREM 1. Suppose/ X fh does not intersect Δ on dB(r), then

As an easy corollary, we get

COROLLARY 1. Let h(z) = (eiβ - \)z for β real such that the hypothe-
sis of Theorem 1 is satisfied, then for fixed a > 0 there is a set E of finite
logarithmic measure such that

ni(r,h,a)<2A(r) + o(A(r))

as r —> oo in E.

The proof is based on an estimate of the form |σ| < 2 dsf where σ is a
1-form on S x S - A such that do represents the Poincare dual of Δ,
and ds' is the naturally defined metric o n S x S (Lemma 1).

2. Definitions. Let w be the usual coordinate system for the finite
part of S, with 1/w used as a local coordinate near oo. The metric on S is
given by

(2) ds =
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and the associated area form is

/ dw A dw
(0 =

2 ω ( i + H 2 ) 2 '

We consider S X S as a complex 2 manifold with the product,
(w1} w2), of the usual coordinate system on 5, plus (l/vt^, w2), (w1? l/w2),
(l/wv l/w2) as coordinate patches covering S x S . All computations will
be done in the first one. Let rf=H9 and d ± = ί(3 — 3) be the usual
differential operators. Recall that d ^ commutes with a holomorphic map.
The main rule for computing with these is that d1 reφ = dimφ for φ
analytic. The chordal distance is defined on S by

(4)
|w2|

which can be thought of as a function from S X S into the reals.
We consider the pullback (pseudo) metric f*(ds) on C, which we will

call ds for simplicity. This metric gives a coordinate-free way of ex-
pressing the ramification. If / has ramification number k at z0, then
ds/\dz\ = \z — zo\

kφ(z) where φ(z0) Φ 0, and φ is smooth at z0. Hence

(5)

(See Cowen and Griffiths [2].) If / X fh(z0) e Δ is an isolated intersection
point, define

(6) lim -7Γ- I d1 log[/, fh] = intersection number of / X fh

This is in accord with the usual definition from intersection theory
(Guillamin and Pollak [5]). If f(z0) is finite, then this is also the order of
the zero of wx(z) — w2(z) at z0.

Let nx(r,h) denote the total number of isolated intersection points,
counting multiplicity, of / X fh with Δ in B(r). Clearly limA _ 0 [/, fh]/\h\
= ds/\dz\, hence by (5) and (6) limΛ_+onx(r, h) = nλ{r) — number of
zeros of h in B(r). This last quantity is 0 or 1 by the way h was chosen.
In this sense, the ramification points of / are limit points of the intersec-
tion points of / X fh with Δ.

Since / X fh is holomorphic, the integrand in (6) is
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or the pullback of the 1-form d^ log[w1?w2] defined on S X S - Δ. We
have

(7) d± log[w1?w2] = d± log\wλ - w2

wJ 2

= dx Io8|w1 - w2\- '
l +

|w2|

l + |w2r

Now taking the differential of (7) and using the fact that

get

(8) dd
(1 + IwJ2)2 (1 + K|2)

dwλ A dwλ . dw2 Λ dw2

Ki2)2 '(1 + κ ι 2 ) 2

ι + ω2)

on S X S — Δ, where ωx is the pullback of ω by projection on the first
coordinate and similarly for ω2.

We remark that as h -> 0, (8) becomes ddL \o%ds = -2ω on 5. This
expresses the fact that the Gaussian curvature of S is 2. Equations (7) and
(8) together show ω1 4- co2 is Poincare dual to Δ in S X S, or that
dd± log[w1?w2] as a distribution equal to Δ — ωλ — ω2 (see Griffiths and
Harris [4] for the relevant cohomology theory).

3. A preliminary estimate. The key to the proof is an estimate of
\d x log[wl9 w2]I on S X S in terms of the metric

( 9) (ίb'f
(

The basic idea is exemplified by the differential dx log|z| = im(dz/z) in
the plane minus the origin. Clearly no global estimate of the form
IJ-1 log|z|| < C\dz\ is possible, but since {d1- log|z|| < \dz\/\z\ we have
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\d^ log|z| | < \dz\/r0 in \z\ > r0. The following lemma enables us to
estimate d x log[wv w2] away from Δ:

LEMMA 1. On S X S - Δ,

(10) [wι,w2]\d±log[w1,w2]\<2ds\

Proof. By (7),

(11) d± l o g K , w 2 ] = im ^2 _ J 2 - ^Wl ™\2 - Λ

 W] t

W2

t

|w | 2 ) ( l + w1w2)(-^?w1) + ( l + |>v1|
2)(l + ϊ v ^ ) dw2

= lm^σ! - σ2)

where

(1 + wxv

Wi - wi ( l 4- l^ l 2 )

and σ2 is defined similarly with wλ and vv2 switched.
Now we have

\wι

4- \w I2

I 21

where the last inequality follows from the Cauchy-Schwarz inequality.
Similarly, we have

(13) KMM£ 1

Now by (11), (12), and (13) we get

This completes the proof of the lemma.

4. Proof of Theorem 1. We now proceed with the proof of Theo-
rem 1. Let D(r,h,a) = B(r)nP(r,h,a). We have dD = d'D + d"D
where d'D = dB n P and 3"2> = B n ΘP. On 3"I>, [/,/J = α, and the
region [/, /A] < α lies to the right. Thus the directional derivative
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in the direction of vectors pointing to the right is non-positive. Hence
d x log[/, fh] < 0 along ΘZ>" and

(14) / </Mog[/,Λ]<0.

By (6), (7), (8) and Stokes' theorem,

(15) Λ l ( r , A , α ) = / ( / X / J ^ + ί (/X/J*ω2

ω + ^ - / </Mog[/,/A]
Z7Γ y 9

Using Lemma (1), (14) and [/, fh] > a on 9'Z>, get

(16)

[

Jd"D

f/8,o(/xΛ)*ώ'

, MΛI2

(i + I/I2)2 (i + IΛI2)2

1/2

2 \df\ , 2

fπ 1 + I/I 2 « -Vz> v ^ 1 + IΛ

*±f l , 2 r J
& l + i/i2 « ΛB ^ l + IΛI

Now (15) and (16) combined give Theorem 1.
To prove the Corollary, note that fh(z) = f(zeiβ) so that in this case

A(fh9 r) = A(f, r) and L(/Λ, r) = L(f, r). The estimate on L{r) is ob-
tained in the usual manner (Nevanlinna [6], p. 350).

5. Conclusion. The above gives, at least in principle, a way to
derive bounds on a term n^r.h.a) related to ramification and dependent
on two parameters h and α. In Corollary 1 since the right-hand-side of the
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inequality is independent of A, we can choose h = hr such that [f,fh]/\h\
-> ds/\dz\ in B(r) as r -» oo. If a = α r and otr/\hr\ -> 0 as r -» oo then
w^r, Λr, α r) -> /^(r) as r -> oo, however α r must remain bounded below
to get the uniform estimate on the remainder term.

The purpose of the paper was to establish two facts: first that by
looking at maps from C X C to S X S, the corresponding counting
function nx can be treated in a way analogous to the counting function for
domains in the Ahlfors theory; secondly, that it is possible to obtain
bounds of the form cL on the remainder term in the unintegrated theory
by proving an inequality of the form \d ̂  log[w1? w2]\ < dsf on S X S. The
hope is that such an approach will establish a basis for proving the
Ahlfors defect relation in a way that can be extended to higher dimensions
and for which a treatment of the nx term is possible.
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