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REALIZING TRANSFER MAPS FOR
RAMIFIED COVERINGS

RALPH L. COHEN

In this paper we study transfer maps for a general class of ramified
covering spaces. This class includes finite covering spaces, as well as
more general orbit maps Y/H -* Y/G, where H is a subgroup of a
finite group G, and where Y is any G-space. This class also includes
classical branched coverings of manifolds. The goal of this paper is to
identify and to analyze the obstructions to realizing such a homology
transfer homomorphism by a stable map between spaces.

The class of ramified coverings that we study was defined by L.
Smith. By the use of symmetric product spaces, Smith gave an elegant,
combinatorial description of a transfer homomorphism

for any d-ΐold ramified covering π: X -> X. In particular this homomor-
phism has the usual property that the composition

is multiplication by d.

In the case of a regular covering map, or equivalently the orbit map of
a free group action X/H -> X/G9 it is well known that there exists a
stable map (i.e. a map of suspension spectra)

T: Σ°°X/G -> Σ°°X/H

that realizes TΓ*: H*(X/G) -> H*(X/H). These maps were discovered
independently by Roush [8] and by Kahn and Priddy [4], and they have
had several important applications in stable homotopy theory. In particu-
lar this was one of the main tools used in Kahn and Priddy's proof of
their famous theorem that any stable map λ: RP00 -> S° that is nonzero
on the first stable homotopy group, ?Γi(_), in fact induces a split surjection
in 2-local homotopy groups in positive dimensions [4].

This naturally leads us to the following question. When does there
exist stable realizations T: Σ°°X -> Σ°°X of the transfer homomorphism of
more general ramified covers TΓ: X -> XI In his thesis [5], R. Kubelka
showed that in general the induced transfer in mod/? cohomology, T*:
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H*(X;Z/p) -> H*(X;Z/p) does not commute with the action of the
Steenrod algebra, so such realizations do not in general exist.

In ths note we address the following local version of this question. If
n is an integer let X[l/n] denote the localizations of X obtained by
inverting all primes dividing n. So in particular H*(X[l/n]9 Z) =
H*(X;Z) <S> Z[\/n). In this paper we use Smith's homology transfer to
give easy proofs of the following results, the first of which is a well known
folk theorem.

THEOREM 1. Let Y be an arbitrary G-space where G is a finite group of
order n. Let π: Y -> Y/G be the orbit map. Then there exists a stable map
of local spectra

that realizes the local transfer homomorphism

; Z) ® z [ ± ] -> H+(Y; Z)

THEOREM 2. Let π: X -> X be any d-fold ramified cover in the sense of
Smith [9]. Then there exists a stable map

that realizes T* ® 1: H+(X; Z) 0 Z[l/d\] -> ^ ( Z ; Z) ® Z[l/έ/!].

We will also observe that Theorem 2 is the best possible result in the
most general setting. In particular we will exhibit an explicit 3-fold
ramified cover π: X -> X with the property that if p is either 2 or 3 the
induced cohomology transfer τ*r H*(X;Z/p) -> H*(X:Z/p) does not
commute with the action of the Steenrod algebra. Thus both the primes 2
and 3 must be inverted before the transfer homomorphism can be realized
by a stable map. We will also see that this phenomenon is general. That is,
for every d there exists a d-fold ramified cover π: Xd -> Xd that has the
property that for every prime p < d the induced cohomology transfer T*:
H*(X\ Z/p) -» H*(X; Z/p) does not respect the action of the Steenrod
algebra.

The organization of this paper is as follows. In §1 we recall the
Kahn-Priddy stable transfer map for free group actions, Smith's definition
of general ramified coverings, and then describe the obstruction to obtain-
ing stable transfer maps in the general setting. In §2 we prove Theorems 1
and 2 by showing that this obstruction vanishes after inverting the
requisite set of primes.
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The author is grateful to G. Brumfiel for originally suggesting this
problem to him and for several helpful conversations. He is also grateful
to L. Smith for helpful correspondence. The author points out that Smith
was aware of Theorem 2 and has an alternate proof.

1. The obstruction of realizing the transfer homomorphism. We

begin by recalling the Kahn-Priddy stable transfer maps for free group
actions [4].

Let X be a space of the homotopy type of a C. W. complex and
suppose it is acted upon freely on the right by a finite group G. Let
H < G be a subgroup of index n, and consider the n-ΐold covering

p: X/H -> X/G

given by the obvious projection of orbit spaces. By the left action of G on
the set of left cosets G/H we get a representation

where Σn is the symmetric group on ^-letters.
Let EG and EΣn denote contractible spaces that are acted upon

freely on the left by G and Σn respectively. The representation induces an
equivariant map p*: EG -> EΣn. Kahn and Priddy define a map

Φ: XXGEG-> X/Hn XΣEΣn

by the formula Φ(x, w) = (xgl9...,xgn; p*(w)), where {gl9..., gn) e G
represent the n left cosets in G/H and xgi denotes the orbit of xgt in
X/H. G acts on the left of x by gx = xg~\ and Σn acts on the left of
X/Hn by permuting coordinates.

Now recall from [3] that for any space Y there are Dyer-Lashof maps
an: Yn XΣEΣn -> ί2ooΣooy. Letting Y be X/H, define a stable map T:
Σ°°(X XG EG) -> Σ°°X/H to be the adjoint of the composition (which,
by abuse of notation, we also call T)

T = an o Φ: X XG EG -> X/Hn XΣn EΣn -> Q^°°(X/H).

Now since the action of G on X is free, the projection map X XG EG
-> JSΓ/G is a homotopy equivalence, so T can be viewed as a stable map

Γ: Σ°°X/G -* Σ°°X/H.

In [4] Kahn and Priddy showed that Γ*: H*(X/G) -> H*(X/H) is the
usual transfer homomoφhism for covers as defined, for example in [10].

As we shall see, if π: X -> X is a general ramified cover, the
obstruction to obtaining a stable transfer map T: Σ°°X -> Σ°°X is mea-
sured by the inability in general to describe X in the form X XG EG. In
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order to make this precise, we now recall Smith's definition of a ramified

covering and its corresponding transfer homomorphism [9].

Roughly speaking, a ramified covering is a surjective, finite to one

map π: X —• X together with a notion of multiplicity, so that if at each

point x G X one writes down the unordered list of preimages {π~\x)}

according to their multiplicity, then this list varies continuously with

x G l . Here is how Smith makes this idea precise.

For every positive integer d G Z + , let S P J ( 7 ) be the J-fold symmet-

ric product SP ί/(Y) = Yd/Σd, where again Σd acts on Yd by permuting

coordinates.

DEFINITION 1.1 [9]. A surjective, finite to one map π: X -> X is called

a d-fold ramified covering iff there is a map

μ: X-> Z +

called the multiplicity map such that

(2) The function τm\ X -> SPd(X) defined by sending x into π~\x),

where each x G π~ι(x) occurs μ(x) times, is continuous.

As observed by Smith, this definition together with the Dold-Thom

theorem [2] allows for an elegant description of the transfer homomor-

phism 7r*: H*(X) -> H*(X) in the following manner.

For every integer d9 one can include Yd into γd+ι as the subspace of

(d 4- 1) — tuples whose last coordinate is a given fixed basepoint y0 G Y.

This respects the symmetric group actions, and so defines inclusions

SP°°(7)= li

d

THEOREM 1.2 (Dold and Thorn [2]). SP°°( Y) is homotopy equivalent to

the infinite loop space

Xim ςin(K(ϊ,n) A 7 ) ,

where K(Z; n) is an Eilenberg-MacLane space of type (Z, n). Thus

Now let 7r: X -> X be a d-fold ramified covering and consider the

composition

T:
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T extends to a map, which by abuse we also call T: SP°°JΓ -» SP°°X
defined by the maps

Passing to a homotopy group, we get a transfer homomorphism

This homomorphism was studied in detail in [9] and was shown to
have the usual properties of transfer homomorphisms. For example the
following are easy corollaries of the definition (see [9]).

PROPOSITION 1.3. Let G be a finite group that acts on a space Y with
orbit map τr\ Y -> Y/G, structured as a d = \G\-fold ramified cover. Then
the composition τ*°π*: H*Y -» H*Yis given by the formula

PROPOSITION 1.4. Let π: X -» X be a d-fold ramified cover. Then the
composite homomorphism

is multiplication by d.

REMARK. 1.4 is immediate after observing that the composite

is given by the d-fold diagonal map.
Now if Y is any space consider the projection hn\ Yn XΣn EΣn ->

Yn/Σn = SP"(7). Observe that if p: X/H -> X/G is the projection of
orbit spaces coming from a G-action on X, then the following diagram
commutes:

XXGEG ^ X/HnXΣnEΣn

if ihn

X/G -> SPn(X/H)

where / is the projection map and n is the index of H in G. Thus if the
action is free and hence / is a homotopy equivalence, the Kahn-Priddy
map Φ: X/G -> X/Hn XΣn EΣn that was used to define the stable
transfer map, homotopy lifts"the Smith map τp\ X/G -> SVn(X/H) that
was used to define the homology transfer homomorphism.
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For a general ramified cover 77: X -> X, the obstruction to the
existence of a such a homotopy lifting of τm will measure our obstruction
to the existence of a stable transfer map T: Σ°°X -> Σ°°X We end this
section by identifying this obstruction more precisely.

Let 7r: X -> X be a d-fold ramified cover and let C(/z) be the
homotopy cofiber (i.e. mapping cover) of hd: Xd XΣ^EΣd^> SJ)d(X).
For n a positive integer let {X, C(h)[l/n]} be the abelian group of stable
maps (i.e. maps of suspension spectra) from X to the localization of C(h).
We then define a class

to be represented by the localization of the composition

j

^(where j is the inclusion of SP^(X) into the mapping cone of hd.

PROPOSITION 1.5. // θπ[l/n] e [X9C(h)[l/n]} is zero then there
exists a map of localized suspension spectra

so that in homology,

T* = τ_ ® 1: H*(X;Z)

Proof. By definition, it is immediate that θn[l/n] is the obstruction to
the existence of a stable homotopy lifting

j[n

of the localization of T: X -> SPJ(X). It is therefore sufficient to show
how to construct the required map T: Σ°°X[l/n] -* Σ°°X[l/n] out of
such a lifting Γ.

For any space Y let

# : Ώ^Σ^Y-* SP°°(y) = lim Ω^A'ίZ,^) Λ Y)

be the infinite loop map induced by the inclusions

= sq A y-> ^(z,ςf) Λ y
M l
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where i e πqK(Z,q) = Z is a generator. It is clear that h*: 7r^(ί200Σ00Γ)
-» T Γ ^ S P ^ Y ) ) is the stable Hurewicz homomorphism h*: π%(Y) ->
//*(y). Moreover, it is also well known (see [6] for example) that the
following diagram homotopy commutes:

YkXΣkEΣk -t Ω^ΣT

spk(γ) -> sp°°(y)

where α^ is the Dyer-Lashof map mentioned above.
Thus a lifting

of the localization of r: Σ°°X -> Σ°°SPdX allows us to define a stable map

— I I I / ~ J \ I 1 I
Γ . ^^ o o \ r I I \^ o o / y d \ s T7 ^^ i l l

. Z ^ Λ I I ' ^ L I y \ /\ y X S 2 u j \ \ I '

L « J f v ^ d / L « J «,
or equivalently, its adjoint

f: x\-\

that homotopy lifts the localization of the composition

f: J T ^ S P d ( ! ) -» SP°°(1) -> Ω00Σ00(SP00(Jf)).

Now since Ω ^ Σ 0 0 ! and SP 0 0 1 are infinite loop spaces and h: Ω^Σ^X ->
SP°°Jί is an infinite loop map, there exist infinite loop retractions a:
Ω^Σ^CΩ^Σ0 0!) -* Ω ^ Σ 0 0 ! and b: ^Σ^SP^X)) -»• SP°°(1) that
make the following diagram homotopy commute:

Thus the composition

T: JSrί-1 ^ Ω 0 0 Σ 0 0 ( Ω 0 0 Σ 0 0 1 ) [ - 1 ^

lifts the localization of T: X -» SP°° X By abuse of notation we let T also
represent the adjoint

T: 2°°
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It is now clear that in homology T induces

r. l: A.OT) z[i]-*.<*). z[i]
and hence the proposition is proved.

2. Proofs of Theorems 1 and 2. We now use Proposition 1.5 to prove
Theorems 1 and 2.

Proof of Theorem 1. As in the statement of the theorem we let Y be
any G-space, n = order of G, and π: Y -> Y/G the orbit map. Consider
the following homotopy commutative diagram

YXGEG ^ YnXΣnEΣn

if i hn

Y/G -> sp Λ (y) .
T

Now it well known (see [1] for example) that the projection map / induces
an isomorphism in localized homology

and hence after inverting n = \G\, f becomes a stable homotopy equiva-
lence. Let

be a stable homotopy inverse. Then by the commutativity of this diagram,
the composition

J] -Σ-(y- χ 2 n

is a stable homotopy lifting of the localization of T: Y/G -» SP°°(7).
Thus θw[l/n] e [Y/G,C(h)[l/n]} is trivial. Hence Theorem 1 follows
from 1.5.

Proof of Theorem 2. Let π: I -^ I be an arbitrary J-fold ramified
covering. Since d\ = the order of Σ^, then the map

hd: Xd XΣj EΣd -* SP^(l) = Xd/Σd

induces an isomorphism in localized homology,
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Thus after inverting d\, hd becomes a stable homotopy equivalence. This

says that the localized mapping cone, C(h)[l/d\] is stably contractible.

Thus θπ[l/d\] e [X,C(h)[l/d\]} is trivial, and so Theorem 2 follows

from 1.5.

We end this paper by giving examples to show that Theorem 2 is the

best possible result in the general ramified cover setting. We first exhibit a

3-fold ramified cover for which, because of Steenrod algebra considera-

tions, it is necessary to invert both the primes 2 and 3 before one can

stably realize the transfer homomorphism.

Let Σ3 act on S2 X S2 X S2 be permuting coordinates and let

Σ 2 c Σ 3 be the subgroup of elements that leave the first coordinate fixed.

Consider the orbit space projection map

TΓ: {S2)3/Σ2 -> (S2)3/Σ3 = SP 3 (S 2 ).

77 is a 3-fold ramified cover.

Now {S2Ϋ/Σ2 = SP2(S2) X S2 so therefore

[ Z Θ Z if q = 2 or 4

Hq((S2γ/Σ2;Z)= Z if q = 6

10 otherwise.
Moreover,

q ' \θ otherwise.

Now let p = 2 or 3 and A the mod/? Steenrod algebra. The dual,

A* = Hom(^4,Z/2) acts on mod/? homology. The following diagrams

describe the ^-module structures of the homology of these spaces. (The

nodes represent generators.)

2Ϋ/Σ2;Z/2) H2{SP\S2);

O

O

O

(s2);

4

2

(trivial A ̂ -action)

6

4

2

6

4

2

O

Sqil
O

Hq((S

O

o

0

o

o
2)3/22;Z/3)

O

O

O
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The reference for these homology structures is [7]. A quick examina-
tion of these diagrams yields that the transfer homomorphisms

do not preserve the A ̂ -structures. Thus T* cannot be realized by a stable
map unless both the primes 2 and 3 are inverted.

We remark that more general examples of d-ίold ramified covers that
have Steenrod algebra obstructions to constructing stable transfer maps
unless d\ is inverted can be found in a similar manner. Namely, one
studies ramified covers of the sort

We leave the details to the reader.
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