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SOME UNDECIDABILITY RESULTS
FOR LATTICES IN RECURSION THEORY

JEFFREY S. CARROLL1

A major open question from recursion theory had been whether 6%
the lattice of recursively enumerable (r.e.) sets, was undecidable. Re-
cently, Harrington and, independently, Herrmann have announced that
the lattice is indeed undecidable. Previous to this, Nerode and Smith
showed that the lattice of r.e. subspaces of the (canonical) recursive
vector space V^ is undecidable. Their proof involved powerful techniques
of recursive algebra. This paper presents two more undecidability results
for lattices of r.e. substructures but no advanced recursion theoretic
techniques will be required. The primary result of the first section is the
undecidability of the lattice of r.e. equivalence relations. Recursive
Boolean algebras have been more widely examined and, in the second
section, for any infinite recursive Boolean algebra, the lattice of its r.e.
subalgebras is shown to be undedicable.

1. The lattice of r. e. equivalence relations.

DEFINITION. Say that η is a recursively enumerable (r.e.) equivalence
relation if η is an equivalence relation over 9Ϊ and {(x, y)\xηy} is an r.e.
set.

We will prefer to think of η as a subset of 9ϊ2 and the notation
"(x, y) G Ϊ ) " will be used.

R.e. equivalence relations have been used as a tool for recursion
theorists, particulary with respect to strong reducibilities (see [Od] for a
survey) but it was Ershov [Er] who introduced the lattice of r.e. equiva-
lence relations (therein called "positive equivalences"). The lattice has not
been examined as closely as the r.e. substructure lattices of other recursive
objects such as vector spaces, Boolean algebras, and fields ([NRl] provides
a comprehensive survey of this work). Some recursion theoretic properties
for the lattice of r.e. equivalence relations have been studied in [Ca 1,2,3]
and the relationship between r.e. equivalence relations and provability in
Peano arithmetic has been considered in [Be, BeS, Mo].

We begin this study of the lattice of r.e. equivalence relations by
reviewing the basic definitions from [Er] (although we use a different
terminology).
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If η and v are both r.e. equivalence relations then η < v (read: η is

finer than p; or v extends η) if η is a finer equivalence relation than v,

that is, if

If R is a r.e. subset of 9Ϊ2 then R* is the finest r.e. equivalence

relation containing R (as a set). Equivalently R* is the closure of R under

reflexivity, symmetry and transitivity over 9ΐ.

The partial ordering < of the r.e. equivalence relations forms a

lattice 2P where η Ap v = άfη Π v (as sets) and η Vp v = d f ( η U v)*. We

define \p = SSI2 and 0^ = {(«, « ) | » e S t t ) (equality).

Contrary to the translation of Ersov [Er], the lattice is not modular.

Recall that a lattice L with operations Λ and V is modular if

(VX)(VY < X)(VZ)[XA(YVZ) = YV(XAZ)].

We give a counterexample to the modularity. Given a r.e. equivalence

relation η, say that η = (Al9 A2, .) if each Aι is an equivalence class

of η and U ^ , = 9?. We can thus express the r.e. equivalence relations in

terms of their equivalence classes. If

,4 ,5 , . . . } , {2,3,6,7,. . .}),

},{2,3},{4,5},...), and

then XA(YWZ) = X, while YW(XAZ) = 7.
Ershov's simplest example of a r.e. equivalence relation is ηR = d f

{(x, y)\x9 y ^ Λ} ^ 0 ^ , where R is a r.e. set. The mapping that takes the

r.e. set R to the r.e. equivalence relation ηR is a natural one and "nearly"

defines a sublattice of ^ . This relationship between r.e. sets and r.e.

equivalence relations will be exploited in obtaining the undecidability of

the lattice ^ .

We shall next consider the atoms of ίP and a subclass of coatoms of

^ . All atoms of & are the form A(itJ> = d f {(/, j)9(j, 0} U 0 .̂ The coatoms

of interest are C / = d f ( 9 ? - {/})2 U {(/,/)}.

Our first goal is to see that the above class of coatoms is definable in

&. The definition is due to Burris and Sankappanavar [BuS] who use it to

prove a related result; namely, that the theory of the class of partition

lattices on arbitrary sets is recursively inseparable. The proof of the

proposition that follows is essentially the first half of their proof. Define

U(x) = d f Coatom(x)&(Vj;)(Vz Φ y)[(Atom(y)&Atom(z)

&(x V y = lp = x V z)) -> Config(7 V z)\,
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where Atom(x) and Coatom(x) have the obvious definitions and
Config(x) says that the lattice restricted to elements less than or equal to
x is isomorphic to the lattice below.

PROPOSITION 1.^1= U[x] iff (3i)[x = CJ.

Proof. First consider the coatomCn. Let Aλ and A2 be distinct atoms
such that ( Q V Ax) = lp = (Cn V A2). Since (A, V Cn) = lp9 Aλ = A(n^}

and A2 = Aζnj2y for some j \ and j 2 . Consequently (Aλ V A2) =
({ n9 Ji> Ji})2 u 0^which clearly satisfies Config().

On the other hand, let 0>\= U[E] and suppose that (V«)[£r Φ Cn].
Since E is a coatom, £ = (/, K) where J U K = $1 and J Π K = 0.
Because (V/i)[f; # Cπ], \J\, \K\ > 2. Let j l 9 j 2 e /, fc1? A:2 G ̂  and
consider the atoms Aλ = ^(Λ,^) and ^42 = A^hΛi). Clearly A V E = lp

but & Ψ Configl^! V ^42], a contradiction. D

Before we begin to show that the lattice & is undecidable, we shall
consider automorphisms of the lattice. Lachlan showed that the lattice of
r.e. sets has continuum many automorphisms. Guichard [Gu] has de-
termined that there are only countably many automorphisms of the lattice
of r.e. subspaces of the recursive vector space V^. The result here is
attacked in a manner similar to [Gu]. We first need to prove the following
proposition.

PROPOSITION 2. Let Σ be an automorphism of the lattice of all
equivalence relations over 9i; Σ is induced by a permutation on 9ί.

Proof. First notice that the above definitions and Proposition 1 do not
depend on any effective argument; most importantly, U(x) defines the
same class of coatoms in the (complete) lattice of all equivalence relations
on 9?. Also, if Σ(JC) = y and U(x) holds then U(y) also holds. Given Σ,
we can define a permutation m on 9Ϊ as follows: if Σ(CW) = Ce then
π{n) = d f e. Since Σ is an automorphism, π is clearly a permutation. It
suffices to see that π induces Σ. Define ΐl(E) =df{(π(x),π(y)) |(x, y)
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Clearly Π is an automorphism of the lattice and by construction,
(V/i)[Π(Cπ) = Σ(CJ]. For any atom A{ujy A(ιJ> = Λ{Cn\n Φ ij) and
so U(A^jy) = Σ(A^jy). Finally, we note that any equivalence relation is
a join of atoms, namely E = V{Aζijy\(i9 j) e E}9 and since an infinite
join of atoms is preserved under automorphism, TL(E) = Σ(2s) for any
E. D

THEOREM 3. Σ e Aut(^) // and only if Σ is induced by a recursive
permutation on 9Ϊ.

Proof. The sufficiency is trivial. To prove the necessity we first note
that an automoφhism Σ of & can be extended to an automorphism of all
equivalence relations and by Proposition 2, this extension (and so also Σ)
is induced by a permutation 77 of 5R.

It suffices to show that 77 is a recursive permutation. Let π(n) = d f an.
We shall define two r.e. equivalence relations Ex and E2 such that with a0

we can effectively find an for any n. Define η x and η2 with equivalence
class structures as follows:

}, {2,3}, {4,5}, {6,7},...);

Both ηι and η2 are recursive equivalence relations; let Eλ = Σ(ηλ)
and E2 = Σ(τj2). We claim that given El9 E2 and aθ9 we can effectively
construct av a2,... (hence TΓ is recursive).

To find aλ: search for and find y Φ a0 such that (aθ9 y) e Ev Since
£'1 and ηλ have the same equivalence class structure, a unique such y
exists, namely y = av

Assume that a2k is known and find ^ 2^+i a s follows: search for and
find y Φ a2k such that (a2k, y) e Ep As above, y = Λ2Λ+I ^ a t ^ s u c ^
that j ; # a2k + 1 and (fl2Λ + 1, ̂ ) e E2 is ^2^ + 2. D

This completes the proof of Theorem 3; since the number of recursive
permutations is countable, there are countably many automorphisms of
0>.

We now turn towards the main goal of showing that number theory is
definably embeddable in Th(^). Our approach is similar to that of [Ru].
Define

ψ e(x,j,z)Ξ {(U(x)&U(y))

&{x Φ y -> (3w < z)[Atom(w)&[w v(x Λ y) Φ x]

&{[w V(x A y ) Φ y]&[w V ( x A y ) Φ x A y]}}}.
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PROPOSITION 4. & \=. ψ e [x, y, z] iff

{3i)(3j)[x = C,& y = Cj& (ij) e z].

Proof. The necessity is easy, for if x = Cf , j> = Cy and (i, 7) e z then

choose H> = Aζ, y ) ; H> < z and w V ( x Λ y) does not equal C,, C ; , or

C, Λ C;.
Now suppose that ^ t = ψ e [ x , jμ, z]: by Proposition 1, (3/)(3/)[jc =

Ct & y = C ;]. Suppose JC # >> and let A^km^ be an atom below z that

works, that is, [A(km) V (C, Λ C;)] ¥= C, , Cy or (C, Λ Cy). Since C, Λ Cy

- ((K - {/,y})2)*'and since [A<k^m) V (C, Λ Cy)] # Q A Cj9 we know

that ({k, m) Π {/,y}) ^ 0 . Assuming that fc = /, A(km) V (C# Λ C;) =

C Γ unless 7 = m. The other possibilities are analogous and thus A^^ =

A(knl) < z, implying that (1, j) e z. D

We next define a formula, Set*(jc), which determines those r.e.

equivalence relations which are images of the natural map from $ into &.

Sef(x) ^ d f (Vy)(Vz)(3v Φ y)(3w Φ z)

Notice that the definition implies that x has at most one equivalence

class of size greater than one. Hence @>\= Set*(x) if and only if x = ηR

for some r.e. set R.

At this point, we could demonstrate that Th(<?) is definable in T h ( ^ )

and obtain the undecidability indirectly (knowing that £ is undecidable);

however, we will obtain the undecidability directly and obtain the defina-

bility of Th(<?) in T h ( ^ ) afterwards.

It is well known that any relation can be encoded by equivalence

relations; however, the following proposition demonstrates that r.e. rela-

tions on 9Ϊ can be definably encoded by equivalence relations of ^ . The

proposition is an effective version of a theorem of Shelah which was

communicated to the author by Matti Rubin.

PROPOSITION 5. Any r.e. n-ary relation R on 31 can be coded by

2(n + 1) r.e. equivalence relations with 2(n + 1) parameters.

Proof. We shall assume that R is a r.e. binary relation on ϊ i . For any

r.e. binary relation our "parameters" will be the sets St={x\x =

i (mod 3)} for / = 0,1,2, as well as the sets Sj . Actually, our parameters

are the r.e. equivalence relations of the form ηs for the 5"s above; we
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abuse notation and say "x e S " as shorthand for

"(3y)[yΦx&(x,y)<Eηs}".

For each z = 0,1 or 2, we shall construct r.e. equivalence relations E]
and E} over 9ί which shall define R Π (S^)2; we will have (ab) G i? n

2 if and only if

, 6 ^ & (3z e S,)[(*,z) e E}&(b,z) e

It is easy to see that i? is determined by the disjunction of the three
formulae. We shall construct El and Efi (the other /?/ have analogous
constructions). Let (xl9 yλ)9 (x2, >>2),... be an effective enumeration of
R Π (So)

2 and let nv n2,... be an effective enumeration of So without
repetition. Let Ao = 0 = Bo, define As+ι = As U {(x5+1, «J+i)} and
£ J + 1 = 5 5 U ( U + 1 , Λ , + 1 ) } . Let A = ΌSAS, B = USBS and define ^ =
A* and EQ = B*. Clearly, El and 2?o are r.e. equivalence relations. It is
also clear that if (α, b) e (i? Π (SO)2) then there exists a z e S 0 such that

( a , z ) e £ i and(Z>,z)e£ 2 ._
So suppose that α, b e SO and z e So are such that (α, z) G £Q and

(Z>, z) G £Q. Since z G SO, z = nk for exactly one /:. Since α G SO,
(α, z) G .EQ if and only if (a, z) = (a, nk) G ̂ 4̂  if and only if a = xk,
where (xk9 yk) G iί. Similarly (fe, z) G £Q if and only ii b = yk and thus
(α,fc) G i?.

This completes the proof of Proposition 5. D

We are now ready to define formulae in J£?( Λ, V, 0̂ , 1̂ ) which will
allow us to represent number theory. Using the proof of Proposition 5, we
will be able to define in 9> standard models of number theory with
parameters in &\ from this we will show that we can characterize these
parameters so defining such standard models.

By applying Proposition 5 to the recursive binary relation < and to
the recursive ternary relations 4- and X for the standard model of
arithmetic, there is a sequence of r.e. equivalence relations el9 e29 , e36

= d f ε which code < , +, and X. Using the proof of Proposition 5, we
can obtain formula ψ<(x, y, ε), ψ+(x, y9 z, ε), and ψx(x9 y9 z, ε) which
will, with an appropriate ε, define the relations for the standard model.
For example, ψ < (x, y9 ε) is defined to be the formula

V ta
i = 0, l ,2

where σz(x, y, ε) is

(3u Φ x)(3υ Φ
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and τ,(x, j , z, ε) is

If x = Cj and y = Ck then a,(x, y9 ε)Sc(3z)τi(x, y, z, ε) says "y, /c G 5,

& ( 3 Λ ) [ ( ) , Λ) G E?&(k9 n) G £"/]" which codes linear order restricted to

For an arbitrary ε of the correct arity, define ( ^ U, ψ < , ψ+, ψ x , ε)

to be the model with universe {x | ̂  1= £/[x]} (which equals {Cι \ i G 5ft})

and with relations ψ< (, ,ε), ψ + ( , , , ε), and ψ x ( , , , ε).

From the above, the following proposition is now immediate.

PROPOSITION 6. There exists a finite sequence of r.e. equivalence

relations e such that

We have thus obtained a standard model of number theory which is

definable in 0* with parameters. To show that the theory of arithmetic is

embeddable in & it shall thus suffice to construct a formula χ(ε) such

that if & 1= χ[ε] then <<?; £/, ψ , , ψ+, ψ x , ε> s (K; < , + , X>.

Supposing χ(ε) exists then given δ, a sentence in number theory, we

can define

where δ'(ε) replaces occurrences of < , + and X by ψ < ( , , ε), ψ+( , , , ε)

and ψ x ( , , ε) respectively and where the quantifiers (VJC) and

(3x) are replaced by (Vx)[U(x) -• ] and (3x)[U(x)&- ]. It is

easily seen that 8 G Th((9?; < , + , X » if and only if δ* G T h ( ^ ) ,

which would complete the proof.

To obtain the formula χ(ε) we must define a few more formulae. Let

Complex, y) be the formula

Set*(jc)&Set*(>>)&(x Ay = Op)&(x V y = l j .

We see that & \= Compl*[x, y] if and only if x = ηR, y = %, Λ U 5

= $1 and |/? Π S\ < 1: hence 5 and R are recursive sets.

Define Fin*(x) to be the formula

Set*(x)&(Vy < x)(3z)[Set*(^) -> Compl*(>>, z) ] .

Since any infinite r.e. set contains an r.e. nonrecursive subset, 0> 1=

Fin*[x] iff x = ηR where \R\ < ω. Note that it is only with these last two

definitions that effectiveness is used in the undecidability argument.

With these definitions we can define χ(ε) to include the conjunction

of the standard axioms for arithmetic (e.g., commutivity, associativity and
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distributivity) where addition, multiplication and linear order are defined
in terms of the ψop's. For example, the commutivity of addition is:

(Vx)(Vj;)(Vz)[ψ + (x, y, z, ε) ~ ψ + (.y, x, z, ε)].

The conjunct of χ(ε) which requires the definability of finiteness is
the following formula which states that ψ < ( , , ε) is the standard
well-ordering of 9Ϊ:

(Vy){U(y) -> (3r)[Fin*(r)&

(Vx){U{x)-+ [ ψ < ( x , ^ , ε ) ^ ψ e ( x , ^ , r ) ] } ] } .

That is to say, for any y = Cx there exists a finite set F such that
F = {j\C <ε C,}. Note that the r stated to exist equals ηF (and if j> = Co

then r = 0̂  will work).
With the above formulae, &>\= χ[ε] insures us that

is a standard model of arithmetic. Thus the following theorem has now
been demonstrated.

THEOREM 7. Th(( 3Ϊ; < , +, X » is definable in Th(^).

Before concluding this section, we wish to demonstrate the definabil-
ity of a number of recursive notions for r.e. equivalence relations (which
can be found in [Cal, 2]). First, as promised, we prove the following
theorem relating the theory of $ to the theory of &.

THEOREM 8. Th(#), the theory of the lattice of r.e. sets, is definable in
Th(^).

Proof. From the above argument we know that Set*[x] if and only if
x = ηR, for R an r.e. set. Define

LEMMA 8.1. ({x\&>\= Un[x]} Λ, V, 0̂ , 1̂ ) is isomorphic to £ for any
n.

Proof of Lemma. We first consider the case when n = 0: let R be an
arbitrary r.e. set, define Ro = {x + l\x e R) U {0} and let Φ: R -» ηRo.

We shall show that Φ is an isomorphism from $ onto

< { x | ^ Uo[x]}9V9Λ,0p9lp).
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Obviously Φ is one-to-one. If & 1= U0[x] then for some r.e. set S, x = ηs

and since ηs V Co = lp9 we know that 0 G 5. So x is in the range of Φ,

implying that Φ is onto. Clearly Φ(R n S ) = Φ(Λ) Λ Φ(S). lΐ R Π S =

0 then R0Π So= {0} and so η Λ o V ηSo = η ( Λ o U 5 o ) Thus even if i? Π S

= 0 , Φ(i? U S) = Φ(i?) V Φ(S). Obviously Φ(3t) = lp; since 0 O =

( } 0 = {0} and η { 0 } = 0,, we have that φ ( 0 ) = 0,.

In the general case, define

Rk = {x\x G R&x < k) U{k} U{x + l\x G R&x> k}\

let Φ Λ : JR -> τjΛ and proceed accordingly. This completes the proof of the

lemma. \S

Thus if δ G Th(#) then let δ* = df(Vc)[ί/(c) -* δ'(c)], where δ r(c) is

the formula δ with v^, Λ̂ >, 9Ϊ and 0 replaced by V^, Λ^, 1^ and 0^

respectively and such that occurrences of (Vx) and (3x) are

replaced by (Vx)[ί/C(jc)-> •••] and (3x)[Uc(x)& ]. Clearly, δ* G

and so the theorem is proved. D

It is also easy to see that there exists a formula Fin(x) such that

1= Fin[x] iff x is a finite join of atoms of &\

With this formula the ideal of finite r.e. equivalence relations is now

seen to be definable in &\ hence the definitions for maximal and simple

r.e. equivalence relations (found in [Cal, 2,3] are also definable in @.

The lower semilattice of r.e. equivalence relations without infinite

equivalence classes has a role of importance in [Cal, 2,3], since much of

these papers are devoted to constructions of simple and maximal r.e.

equivalence relations which do not have any infinite equivalence classes.

The next formula defines the elements of this semilattice:

(Vj;)[(Set*(j)&-,Fin*(^)) ->(yΛx)Φy].

If v has no infinite equivalence classes and R is any infinite r.e. set

then (v A ηR) Φ ηR. On the other hand, if v has an infinite equivalence

class then let C be one such, C is r.e. and (v A ηc) = ηc.

2. The undecidability of the lattice of r.e. subalgebras of an infinite
recursive Boolean algebra.

DEFINITION. A recursive Boolean algebra 88 consists of \@l\ which is a

recursive subset of -R and operations Λ ^ (meet), V a (join) and -,^

(complement) which are partial recursive and under which \<3I\ becomes a
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Boolean algebra. Remmel [Re] defined this as a "weakly recursively
presented Boolean algebra".

If SB is a recursive Boolean algebra then a subalgebra B of SB is a r.e.
subalgebra if \B\ is a r.e. subset of \S$\.

Given a subset S of an arbitrary Boolean algebra B, we let 5* denote
the subalgebra generated by S. If A and C are subalgebras of B then by
defining A + C as (A U C)* and ^ X C as i Π C, we form the lattice
of subalgebras of B, which we denote as L(B). Moreover, if SB is a
recursive Boolean algebra then we denote the lattice of r.e. subalgebras by
<Sf(3B). Any finite Boolean algebra is completely determined by the
cardinality of its atoms; let Bn denote the Boolean algebra having n

atoms; it is clear that L(Bn) = &(Bn).

Our objective is to show that for any infinite recursive Boolean
algebra 38, J£(SB) is undecidable. It is worth noting that this result is in
contrast with a result of Remmel (see [NR1], Theorem 107) which gives
two different representations of a particular Boolean algebra (namely, the
Boolean algebra of finite and cofinite subsets of 9ΐ) such that the lattice
of r.e. ideals of one has an undecidable theory while the lattice of r.e.
ideals of the other has a decidable theory.

Assume that SB is a recursive Boolean algebra; a subalgebra B is
recursive if and only if \B\ is a recursive set. We introduce a lattice
theoretic condition which guarantees that B is a recursive subalgebra of

DEFINITION. Let B and C be subalgebras of SB. Say that B is a
complement of C if B X C = (0,1} and for all x (= SB - By (B + {x})*

X C Φ {0,1}. A complement of C is thus a maximal element in the class
of subalgebras which do not intersect C; a complement need not be
unique. Say that B is a strong complement of C if B and C complement
one another and B + C = ^ .

THEOREM 9 (Theorem 3.2 o/ [Re]). Lei SB be a recursive Boolean

algebra and let C e <£?(38)\ C is a recursive subalgebra if and only if there is

a B G J£(3B) such that B is a strong complement of C.

We can thus define the formula

SC(ϋ) = (3z)[(ϋ X z = 0)&(u + z = 1)

&(Vw){y < w -> w X z # 0}&(V>v){z < w -> w X v Φ 0}];

and the formula

ϋ) = (Vz < ϋ)SC(z).



UNDECIDABLE LATTICES 329

PROPOSITION 10. &( 38) 1= Fin[jc] if and only if x is a finite subalgebra
of®.

Proof. First notice that S£(38) 1= SC[x] if and only if x has a strong
complement in 38. From Theorem 9 we know that ££(38) t= SC[x] if and
only if x is a recursive subalgebra of 38.

If x is a finite subalgebra of 38 then x and all of its subalgebras are
recursive and so J?(38) \= (Vy < x) SC(y). On the other hand, suppose x
is an infinite subalgebra of 38\ if ££(38) \= -,SC[.x], then we are done. We
may then assume that x has a strong complement and hence x is an
infinite recursive subalgebra of 38. Thus x is also an infinite recursive
Boolean algebra, which, by a result of Nerode and Remmel [NR2], must
have a r.e. nonrecursive subalgebra y. If y had a strong complement
z e ££(38) then x X z would be a strong complement of y in JSf(x).
Consequently, ££(3$) \= -,(Vy < x) SC(j>) and the proposition is
proved. D

Remmel [Re] defines a number of recursive Boolean algebras but we
only need to consider his representation for the atomless Boolean algebra.
Let c2 = άί({[rv r2) \ rv r2 e £)})*, that is, elements of 2, are left-closed,
right-open intervals over the rationals.

THEOREM 11 (from Theorems 2.2 and 2.5 of [Re]). // 38 is an infinite
recursive Boolean algebra and B is a finite Boolean algebra then B e J?(38).

Sketch. If 38 has infinitely many atoms then the result is obvious.
However if 38 has only finitely many atoms then Remmel showed that
38 = i x Bn, for some n. It suffices to see that Bk e Jέf(^) for any k. By
letting st = d f [ / — 1,/) ^=2, then it is easy to see that Bk =*

We now turn our attention to relevant undecidability results.
Let T be a theory in a language L and let Tf be the set of those

sentences in L which are finitely refutable in T (a sentence ψ is finitely
refutable in T if ψ is false in some finite model of T). A theory Γ is
recursively inseparable if the sets Γ and Tf are recursively inseparable; that
is, there is no recursive set R of sentences in L such that T Q R and
Tf Π 2? is empty.

Burris and Sankappanavar [BuS] showed that the theory of the class
of partition lattices over arbitrary sets is recursively inseparable; they
accomplish this by defining in it the theory of two equivalence relations.
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The proof consists of two claims: the first claim is the same as Proposition

1; the second claim, in which arbitrary pairs of equivalence relations are

defined, is similar in flavor to Proposition 4. However, our present interest

is in their corollary which follows.

T H E O R E M 12 [BuS]. Let Jίί= {L(B)\B is a Boolean algebra}: T h ( J f )

is recursively inseparable.

This theorem follows from a succession of corollaries in [BuS] but it

can be proved more directly using a theorem of Sachs [Sa]. Sachs showed

that the partition lattice of the Stone space of a Boolean algebra B is

dually isomorphic to L(B)\ using standard methods (see [BuS] or [Ra]),
Theorem 12 can be derived from the main result of Burris and Sankap-

panavar by using this isomorphism.

Finally, before we prove the undecidability, define the sentence ψx

from the sentence ψ in the language of lattices by restricting all quanti-

fiers occuring in ψ to elements less than or equal to x (we may assume

that x does not occur in ψ). It is not hard to see that the following is true:

for all finite x e &{38\ JSP(JC) = ^{3S)\x\ moreover, if £>(x) \= ψ then

£f(&8) 1= \px. This is true because the subalgebras of the finite algebra x

are independent of the Boolean algebra 38 of which x is a subalgebra.

THEOREM 13. If 38 is an infinite recursive Boolean algebra then &(3S)

is undecidable.

Proof. Let T be the theory of subalgebra lattices of Boolean algebras

and let Tf be the set of finitely refutable sentences in T. By Theorem 12

there is no recursive set of sentences which separates T and Tj.

If we assume that <?(3S) is decidable then the set C = d f {ψ | SP{3S) 1=

(Vϋ)[Fin(y) -» ψ j ) is a recursive set of formulas. The theorem follows by

showing that the set C separates T and Tf.

LEMMA 13.1. T c C.

Proof of lemma. Let ψ e T and let x e JS?(^). If JS?(^) 1= Fin(x)

then x is a finite subalgebra by Proposition 10. Since x is a finite Boolean

algebra and by the definition of T, L(x) t= ψ. Since L(x) = JS?(A:) =

N ψ, JSf(^) h= ψx. Thus for any x ^Se{38\ &(38) \= (Fin(x)

} and so ψ G C. •
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LEMMA 13.2. Tf Π C is empty.

Proof of Lemma. Let ψ e Tf; by definition of TJr, there is an rc such

that ^(Bn) = L(Bn) t= -nψ. By Theorem 11, there exists a subalgebra

*„ e oέ?(^) such that JCΛ = Bn. Thus ^ ( t j = o5f(5J \= -,ψ; now since

^ J s ^ ^ t x , , , ^(Λ)N-,ψv Thus ^(^^{FinίxJ&^ψ^}

implying that ψίC. 1/ D
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