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ISOMORPHISMS MODULO THE COMPACT
OPERATORS OF NEST ALGEBRAS

CONSTANTIN APOSTOL AND FRANK GILFEATHER

Let &/ and Z be nest algebras of operators on a Hilbert space with
finite-rank nest projections A, = {P("} and A, = {Q"}, n €N,
respectively. Let P, = P("*D — p(") and Q, = Q("*D — Q0" pe the
block diagonal projections for the two nests. & and % are thus the
upper triangular matrices with respect to the decompositions determined
by {P,},en and {Q,},cn respectively. It is easy to see that &7 is
isomorphic to # if and only if rank P, = rank Q, for all n. J. Plastiras
has shown that the quasitriangular algebra o/ + K(H), that is &/ plus
the compact operators, is isomorphic to Z + K(H) if and only if there
exist integers n, and m, so that rank P("0*") = rank Q("o*" for all n.
Using different techniques this paper shows that the image of %7 in the
Calkin algebra .« is isomorphic to & if and only if there exist integers
n, and m; so that rank P, =rankQ, ., forall n.

no+n

Nest algebras were introduced by J. Ringrose as generalizations of
reflexive triangular operator algebras [6]. Recently there has been a spate
of important and deep developements in the theory of nest and the related
quasitriangular operator algebras. A discussion of these recent results can
be found in W. Arveson’s CBMS conference lecture notes [1] while earlier
and related work is aptly described in a survey by J. Erdos [2]. We note
that for nest algebras one has that &/+ K(H) is norm closed and
Z=[A+ K(H)|/K(H) = /[« N K(H)] so that our results concern as
well the isomorphism classes of certain quasitriangular algebras modulo
the compact operators [3].

We illustrate the obvious different results concerning the isomor-
phisms of these different algebras with some simple examples. Let
& (ny, n,,...) represent the nest algebra with block diagonal projections
having ranks {n,},cn. Clearly #/(2,1,1,...) is not isomorphic to
£Z(1,2,1,1...) however the corresponding quasitriangular algebras are
isomorphic and hence are isomorphic modulo the compact operators.
Moreover Plastiras’ result [4] shows 2/(1,2,2,...) + K(H) is not isomor-
phic to £7(2,2,...)+ K(H), while the result in this paper shows
#(1,2,2,...) is isomorphic to 7(2,2,...). Finally our result shows that
#(1,2,1,2,...) is not isomorphic to «7(1,1,2,1,1,2,...). This result can
be restated in terms of the nest projections as: The algebras &7 and & are
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264 CONSTANTIN APOSTOL AND FRANK GILFEATHER

isomorphic if and only if there exists integers n,, m,, k, so that the nest
rojections satisfy rank P(o*" = k_ + rank Q%™ for all n. For

proj y 0

Pastiras’ result about quasitriangular algebras one has k, = 0.
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1. Preliminaries. Throughout this paper H will denote a complex
infinite dimensional, separable Hilbert space, L(H) will denote the
algebra of all bounded linear operators acting in H and K(H) the ideal in
L(H) of compact operators. For every T € L(H), the symbol T will
denote the image of T in the Calkin algebra L(H)/K(H) and for every
M <€ L(H)weshallput M = (T: T € M).

Let o/, # be nest algebras of operators in H, with the finite-rank
nest projections { P}, _n, (@™}, cn- Correspondingly we consider the
block-diagonal projections { P, }, c x> { @, } » e n» defined by

P = PO, 0, = Q(l), P., = pth — p(m

0, = Q" -0, neN.
For each k > 0 define the operators
D,: L(H)—- L(H), A,: L(H) - L(H)
by the equations
D,T= Y PTP,,, AT=3 0,70, TeL(H).
neN neN

It is plain that both D, and A, are norm-one projections that leave
invariant K(H). The corresponding quotient operators D, A, are norm-
one projections, too. Observe that we have D, &/ C &/ and A, # C #. For
each n € N put

A,,y={A€A: D, A=0,0<k<n}.
The core of the nest algebra &/ denoted by &7, is the commutant of
& N o/ *. Clearly &, is an abelian von Neumann algebra and we define
gy = Ay + -
Then &/, is a closed subalgebra in &/ and &/, for n > 1, is an ideal in

both &/ and /. Since &/ is norm-closed and we have J(n) =N
(N;Z4kerD,), n € N, we deduce that &7,, (n > 1) is closed. The algebra
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& is the direct topologlcal sum 7= (D) +Jz/(1) and an elementary
argument shows that &7, is closed and in particular M(O) o, + 47[(1) is
closed. We shall use analogous notation involving %.

The first two lemmas below express well-known basic facts in the
theory of nest algebras. We sketch their proofs for the sake of complete-
ness. The proof of the first we learned from W. Arveson and the second
lemma is due to D. Larson.

1.1. LEMMA. Let # = {T € L(H): (1 — P")TQ" =0, n € N}.
Then we have
M+ K(H) = {Te L(H): Tim ||(1 - P™)TQ™| = 0}

and consequently M is closed.

Proof. Let </, be the nest algebra in L(H © H) determined by the
nest { PV & Q) _ . Itis easy to see that we have

(0 T

0 O

Hence if lim,_, _|(1 — P‘)TQ™|| = 0 we, can find K, , € K(H) such
that

| o+ K(HoH) it Tm (1 - P70~ 0

n— 00

K T+ K
(50 TR,
K2,1 K2,2

Since { P ® QM}, . are invariant projections for &/, we easily de-
duce that T + K, , € A and in particular

M+ K(H) D {Te L(H): Tm |(1 = P™)TQ™| = o}.

n— oo

The opposite inclusion is obvious.

1.2. LEMMA. Let P C &/ be a finite lattice of commuting projections.
Then there exists A € &/, invertible in o such that A~ 'PA is self-adjoint for
every P € 2.

Proof. Let T € L(H) be any invertible operator such that 7~ 'PT,
P € 2 is self-adjoint. If we put ¥= T~ 'o/T, then by the nature of our
nest we can find a unitary operator U € L(H) such that &/ = U*%U.
Since obviously 4 = TU and A~! belong to &/ and A 'PA € P is
self-adjoint, the proof is concluded.
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1.3. LEMMA. Let P C &/ be a finite lattice of commuting idempotents.
Then there exists or finite lattice of commuting projections P, C & such that
the map

P>PeP, Pep

is a lattice isomorphism. Moreover, if P C o/, we may suppose P, C L.

Proof. We can choose { 4,}%_, € 2 such that 4,4, =0, n # m and

n=1
(A4,}r_, generates P. Pick A, €. (or A, € ;) such that A=A,
Since o( A7) C {0,1}, 6(Aj]) can accumulate only at 0 or 1. Let I' C p(4])
(the resolvent set of A7) be a simple admissible contour surrounding 1 and
leaving 0 in its exterior. Because p(A4}) is connected we have (A — A7) ™!
€ .o/ (or € .#,) for A € p( A7), thus if we put

1 -1
P1=mfr()\—A1) dn,

we have P, = P} € & (or € ;) and P, = A,. Further we may suppose
P A, = A, P, =0,2 < k < n (after possibly a compact perturbation) and
then produce P, as before. In a finite number of steps we can produce
{(P,}k_y C (or &) such that P, the lattice generated by { P, }i_,

n=1

has the desired properties.
1.4. LEMMA. Let A = A> € o/. Then DyA = 0 iff A = 0.

Proof. Using Lemma 1.3 we can find P = P2 € &7 such that P = 4.
By Lemma 1.2, we also can find 4, € 7, invertible in &/, such that
Ay 'PA, is selfadjoint. Since we obviously have

Ay 'PA, = DO(A(;lPAo) = (DOA(;l)(DOP)(DOAO)
the equivalence in the statement follows.

1.5. LEMMA. Let f,g: N — N be strictly monotone functions and let
T € L(H), ¢ > 0. Then there exists an infinite set 6 C N such that

K= Z Pf(n)TQg(n)_( Z Pf(n))T( Z Qg(n)) = K(H)’ “KH < e&.

neao neao neo

Proof. We shall determine by induction a sequence { 7, } ,  n Such that
n=1 ”me)TQg(rm)

Observe that if { r, }7_, is determined we have

lim || Py TQyny | = 1im || Py, 70,0,

n— o0 n— o0

k # m.

< €
‘ - 2k+m’

g(ny) = 0’
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thus we can choose r,, , ;, large enough. If we put ¢ = {r,}, c n, then

IK|< X ”Pﬂ,k)TQg(,m)l <e ) 27ktm <
k#+m k#*m

and because Py, TP,

() is finite-rank, k is thus compact.

2. Isomorphisms. In the sequel a will denote a fixed isomorphism

a: /> B.

Let 4" denote the complemented lattice of all subsets in N and put
Ny = {0 € N: ¢ is finite}.
We define an equivalence relation in A~ by
oc=8 iff (o\8)U(8\0)eEA.
The resulting set of equivalence classes in /4" will be denoted by A, i.e. if
o € N we put
6={8eN:8=0}.

For every 6 € 4, we have 6 = ¢ where ¢ is the empty set. For every o,
8 € A7, the lattice operations

6U8=0US and 6Né=0n3s
are well defined and thus /" becomes a complemented lattice.
Let 71 #/"— A be the set-translation map defined for 6 € A" by

m(0)={n+1:neo}.
We also define 7*: /"= A by
*(6)={n:n+1€0}, o€EN.

The map 7* is not injective because 7*(3) = 7*({1}) = . However it
clearly follows that 7*r(0) = o for 0 € A/ and 77*(0) = 0, 0 € 7(A).
Defining #: A= A" and #*: #"— A" by

—

#(6)=1(os) and %*(6)=11*(0)
we have #7*(6) = #*#(6) = 6 and thus 7 is invertible and 77! = #*,
Let P = P? € &/ and put
supp,(P) = {n € N: P PP, # 0}.
By Lemma 1.2 we know that P, PP, is a projection, thus if P’ = P> € 4
and P — P’ € K(H), we have Dy(P — P’) € K(H) and this obviously
implies supp,,( P) = supp,(P’).
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Let A = A*>€ /. The above observation allows us to define
supp,(4) € A4 by
supp,, (A) = supp,,(P),
where P € o and P =&/ is produced by Lemma 1.3. For each ¢ € 4

we define

= > P ifo+ @and P, =0.

neo

Because a( P,) is an idempotent in & we can define a: A" — A", by

&(6) = suppg(a(P,)).
Our main objective in this section will be to obtain some basic

properties of the isomorphism « and of the map & However, we shall
need as an auxiliary tool a result on isomorphisms between .+, 0, and %’(0)

2.1. LEMMA. For every isomorphism : .52?(0) - g?’(o), the compression
Agy; A, = %,
is an isomorphism, moreover

(Ao¢lﬂo) ="O\p“1|9?0 and Y (1)) 93(1).

-1

Proof. Let 4, € o, be such that Aj¥(4,) = 0 and let P = P* € &,
be such that A%4,P = ||4,||?P, P + 0. Since obviously A |7, is an
homomorphism, we have

-~ D~ ~ - ~ o~ o~ -~ ~ -~ ~ ~ ~
[ Aol"Boy (P) = Aoy (A5 P) = (Aoy (48))(Aod (4o)) (Aot (P)) = 0
and by Lemma 1.4, Agy(P) # 0, thus we derive A, = 0. This shows that
Oxplﬂo and Dyy 1|4, are injective. Now let 4, € .,Q/(l) and B, € y(4,).
If B & Q(l) we can find y >0 and a stnctly monotone functlon f:

N — N such that ||Q/,,B,Q |l = v, for all n € N. Applying Lemma 1.5
we can find o € AN\ A, such that

QB1Qso) — Ao(Q1(0)B1Q)oy) € K(H),  Qy0yB1Qy(0) & K(H).

Since ,Q?(l) is an ideal in &?(0), we have

¥ 00y B1Qso) = ¥ Qy0)) A Qo)) € Hyy

and thus Dy~ Y0 (o) le(a)) 0, contradicting the injectivity of
D,y !|4%,. The conclusion is that we have x[/(JaZa)) (- @(1) and by symme-
try ¢~ 1(95’(1)) - Jzi(l) Finally using the relation ¢(.#,)) = %;), we infer
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that

(Do) (B¢ (4y)) = (Doy™")(¥(A4,)) = 4y, whenever 4, € &,
and

(AOHI’)(DO"P_I(BO)) = (AOIP)(‘P_I(BO)) = Bo whenever Bo = '@0-

2.2. THEOREM. The compression Aa: Dy — A% is an isomorphism,
moreover

(BgalDo?) ™" = Doa YRoB, a(Zy) = By, and o Fg) = B

Proof. The properties of A a|D,/ and the relation «f sza)) (1),
can be derived as in the proof of Lemma 2.1, choosing P € D,/ (in
place of P € %/,). Let A €, and B €& a(A). For every T € .o we
have

AT - TA € 4, and Ba(T)- a(T)B = a(AT — TA) € %,
consequently for § € #

BS - S§Be B, and (A,B)(E,S)—(AoS)(AoB) = 0.

In particular A,B commutes with every B, € A, % and this implies
A,B e %, or equlvalently Be %‘(0) Thus we have a(, 0)) - gé’(o) and
by symmetry a (.93(0)) C M(O)

2.3. LEMMA. Let P = P> € &/ be such that rank P, PP, = n, for
n € supp,,(P). Then there exists Q = Q* € & such that

0=a(P), rankQ,00,=n, forn € suppg(Q).

) Proof. Let Q' = Q"> € # be produced by Lemma 1.3, such that
Q’ = a(P) and put

o = {n € supp,y(Q’): rank 0,00, > n,}
and
8 = {n € suppy(Q’): rank 0,0°Q, < n, }.
If 6 € &/, wecanfind T € A% such that
Trotl =0, T"#0 and (A,Q)T=T(A,Q)=
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Applying Theorem 2.2 we deduce that D,ja~Y(T) is nilpotent with
(Doa~!(F))" # 0 and

(DyP)( Dy Y(T)) = (Dya YT))(DyP) = Dy X(T).
Since D,P = X, P, where A = supp,(P) and rank P, = n, if we
choose S € Dya™}(T) we have

S—S,€ K(H) and S ¢ K(H), whereS,= ) P.SP,.
nel

But this is a contradiction because S, is similar to an orthogonal direct
sum of operators acting in spaces whose dimensions do not exceed n, and
such essential quasinilpotents are nilpotents of order at most n,. The

conclusion is that we have 0 € 4}, and analogously é§ € #;. Now putting
B=Q -X, ..,:9,00, we can define

2mf(}\ B) d

as in Lemma 1.3.

24. LEMMA. Let P, P’ € o/ and 0, Q' € X be idempotents such that
SUPPM(P ) = SUPPy(P ) and Q = a(P), O’ = a(P’). Then we have
suppg(Q) = suppg(Q").

Proof Put o = suppg(Q), ¢’ = suppg(Q’). Using Theorem 2.2 we
derive Dya~(Q,) and Doa‘l(Q ) € &, and in addition
(DoP)(Dga™(Q,)) = DoP and (D,P’ )(Doa‘l(Q )) = D,P’. Since

Dy 1(Q ) = PB and Doa‘l(Q )) = P,, for some & and &’ € ./V we derlve
(DyP)Pyry = DoP, (DyP)Byy = DoP’s (Bg0)0,00 0 = A0,
(A0 0O, ne = ApQ’. Consequently we must have 6 N 6" D 6 and 6 N
6’ D ¢'so it follows that 6 = §’.

2.5. PROPOSITION. & is a lattice isomorphism.

Proof. Let o and 8 € A". Since Pyns = Py Py and a(P,.;) =
a( P,)a( Py), choosmg ¢’ € a(é) and 8’ € &(8) and applymg Theorem
2.2 we have Q. = Aja(P,), Q05 = Aya(Ps) and Aya(P, . 5) = 0,05 =
0, -5 This implies

&(8 N &) = suppg(a(B,,)) = 6" N & = &(6) N a(8)
and analogously &(é U §) = &(6) U a(8) &(2)= @ and &(N) = N.

Isomorphism questions concerning the von Neumann algebras D,/
and A,% naturally arise. Clearly D,/ is isomorphic to A,%# if and only
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if there exists a bijection 7,: N — N so that rank P, = rank Q, ,,, for all n.
In [5] J. Plastiras has shown that in fact D,/ + K(H) is isomorphic to
A,% + K(H) if and only if there exists finite subsets N, and N, of
N and a bijection 7,: N\ N, > N\N, such that rank X, .y P, =
rank X, .y @, and, for all n € N\ N,, rank P, = Q.. The results in
this section give certain preliminary results concerning isomorphisms of
D,sZ. A corollary of the proof of Lemma 2.3 yields such a result whenever
{rank P,}, < n is bounded. Whether this result is true in general appears to
be an open question.

2.6. PROPOSITION. Let {rank P,}, . be bounded. Then DysZ is iso-
morphic to A% if and only if there exists finite subsets N, and N, of N
and a bijection 1;: N\ Ny, = N\ N, such that for all n € N\ N,, rank P,
=rankQ, .

3. Restriction isomorphisms. Throughout this section w, y €
N\ N, will be fixed sets such that ¥ = &(&). The sequential representa-
tions

w = {an}nEN’ a, < an+1; Y= {an}nEN7 a, < ®pi1s

are unique. If we put

P = pa) Py = P[l,all’ P = Pans1) — p(ay)

n

then the nest A = {Pm) N determines the nest algebra /. We
shall define Dy, Dy, 5, &5, LGy, Jz?(‘,‘i), k > 0 as in §1. It is easy to
see that .«7“ depends on & only and we have for k > 0

HD, DifdC, AP Coy and LY CH,,.
For every n > 1, &, is an ideal in &/ as well as in /“. Making

analogous definitions for # and y we want to prove the relation «( Jz?(‘;i))
= Bl k = 0. We shall use the notation

a“: o/ —> %, where a®(A) = a(A) whenever 4 € 7,

to point out that we consider .« and & as subalgebras in 2/, respec-
tively #Y (which are related to the nests A7, respectively A4)). If
P = P? € o/ then D{P is a projection in &/( C /) and we can define

supp,.(P) = {n € N: P°PP? # 0}

and supp,,.( P) is determied by D@P modulo = (see Lemma 1.4). Thus
if 0 = supp,.(P) we shall put

supp,-(P) = 6.
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Using Lemma 2.4 we can define

& N> N
by &“(6) = suppg(a(P)), if ¢ = supp,.(P) where P=P2 e It
should be noted that @“ depends on y and in fact different y give
different values of &“; however the argument in Lemma 4.10 shows that
the resultant &“(-) differ by a factor 7" for some n,,.

For technical reasons we need to consider some compression algebras
associated with o/ and subsets of N. Let P’ = P’*> € .&/. For simplicity
assume that we have supp(P’) = w. By Lemma 1.2 we know that P’ is
similar (in &) to a self-adjoint projection P” € . Let &, &, be the
compression algebras P'®/|P'H, resp. P"/|P”"H. If we put P =
P,P"P,, n € N, then &/, appears to be the nest algebra determined by
the nest {X}_; P,’},n- This shows that ./, is a nest algebra. Choose
Q’ € Q”* € B such that Q' = a(P’) and supp,(Q’) = y. Now we can
define the isomorphism

ap: Ap = By
as follows: Let 4’ € o/, and choose B € a(A'P’) (where AP’ € /).
Then putting B’ = Q’B|Q’H we see that B’ depends on A’ only, thus
ap(A’) = B’ is consistent and the properties of . can easily be checked.
Since a,, is an isomorphism between essential nest algebras we can define
&p. asin §2.

3.1. LEMMA. Let P’ = P> € A, Q' € Q"* be such that

Q' =a(P’) and supp,(P') = suppg(Q’) = N.
Then we have & = &, (where ap: Zp — gZ’Q,).

Proof. 1t is plain that our statement is similarity stable thus we shall
assume P’ = P'* Q' = Q'*. Let 0 € # and choose Q = Q? € & such
that O = a(P/P,), QQ’ = Q'Q = Q. Making a new similarity we may
suppose Q = O* and Q}; = Q|Q’H, where § = &,.(6). But obviously § is
a minimal element in 4", with the property a( PG)Q = Qa( P)= 0 and
this implies a(6) = a,.(8).

Recall that T was defined as the set translation map on A" with 7 the
resultant map on A

3.2. THEOREM. & commutes with 7.

Proof. By Lemma 2.3 and Lemma 3.1 we may suppose rank P, =
rankQ, = 1, n € N. Let 0 € A" and pick

o’ €+ '%a Y(ar(6)\7a(6)) and o” € a % (7a(6)\ a%(6)).
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A

Suppose 6’ # . Since 7&(6’) N a#(8’) = @, we can find & € &#(8")
and &’ € &(6’) such that 6 N 7(8') = &. Let W e/, be a partial
isometry such that

DW =W, W*W=P,,,

By Theorem 2.2 we can find U € %, such that U = a(W). Since we
have

and WW+*=P,.

AU=0 and U=a(P,)0=0Ua(P,)
we derive
510 = ( oa(P ))( 1U) = (A1U)( oa(i)o'))-

Because rank Q, = 1 for all n € N we also have

~ = = 2
Ao“(Po') = Qs A ( T(o)) Qs, g(2)= (%’(1))
and in particular
Alfj:' Q(’)"(Alf]) = (AIU)QS'
Now using the obvious relation Q. (A,U) = (A,U)Q, 5 we infer
510 = QB’(AIU)QS = (Alﬁ)QT(S')Qs =0
or equivalently U € B,,. Let U, U, € %,;, be such that U = U,U,. Since
by Theorem 2.2 we have
= 1Y — ~ \2
W=a"Y(U)a"(U,) € (‘2{(1)) =)

and this is a contradiction, we deduce 6’ = @ and analogously 6” = &.
It follows that a7 = 7a.

33.LEMMA. Let A = A> € o/. Then 4 € .M(‘(')’) ifand only if DyA € /.
Moreover if A € M(‘é’) then D¢A = D, A.

Proof. Suppose A e M(g’) Using Lemma 1.3 we can find P = P? €
&5, such that P = A and in particular D¢P = P¢ for some 6 € A4". Since
obviously P’ € A,, n € Nand D,Dy’P = D¢D,P = D,P, we derive

D,P = D,D¢P = D,P® = P* € A%

If Dy €., applying again Lemma 1.3 we can find P = P* € ¢/,
such that P = 4 and D,P = P for some o € 4 . Since P® — P*PP?,
n € N is a projection and D,(Py — P°PPy) = 0, n € o, we easily derive
P° = PePP? ne€o.lf n€ N\ o,then P°PP? is a projection such that

n’
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D,(P,;PP,;) = 0, consequently P°PP,° = 0. Thus it follows:
D¢P = Y. PPPP? = DyP € o/,
neN

or equivalently P € o/,

3.4. LeMMA. Let A = A> € 45, P = P> € A and let 0 € supp,,(P)
be of the form 6 = U, . \[b,,¢,], b, < ¢, <b,. . Letusput o,= {b,},cn>
= {c,},en- Then we have A Eéf(g) if and only if #7(6,) U 6, C .

Proof. Since the part “only if” is obvious assume 77 '(8,) U 6, C &.
After deleting a finite set we can reduce to the case o C fr(N) T*(o,) Ua,
C w. But this obviously unphes P, € /¢ and because D,P = P, apply-
ing Lemma 3.3 we infer 4 € y/((‘;’).

35.LEMMA. Let A € . Then A € A3 iff DyA = Dgd € .

Proof. If A € 2 © We may suppose that there exists 4 € & of the
form A = A, + A,, where 4, € o/, A, € o). Because &’ C o/, and
Ay € &y, we deduce

DyA = Ay = DyA, = DyA € ;.

The part “if” is trivial.
3.6. LEMMA. For every A = A* € &, we have a(A) € VJZ’(’O).

Proof. Pick § € suppg(a(A)) and define §,, 8, as in Lemma 3.6.
Since obviously 7‘1(8) N 8§ = @, using Theorem 3.2 we deduce
7 a 1(8 )N a“1(8) = @.Let 6 € @ %8) and o’ € @7Y(8,). Since o €
supp,(A), A € 4§ and 6’ C 6,77 (6") N6 = 3 we easily derive 6’ C
6,, 718’ C &. It follows #71(8,) € ¥ and analogously 8, C 9, thus by
Lemma 3.4, a(A4) € @(O)

3.7. THEOREM. a(vqi(o)) (0)
Proof. Let A €, B € B, be such that B = a(4). Suppose
Be& @(0) Then we can choose A, e o(QVBlQVH) with
lim ||Q7(B - A,)Q1] > 0.
n— o0
Applying Lemma 1.5 we can find § € 4"\ 4}, such that
lim A, =X, 03By = 03(&yB)03,

ned

QX(B-X)QX|=a>0, nes.
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Since by Lemma 3.6 we have a " (Q})4da"Y(0}) € «, 6 We can use again
Lemma 1.5 to produce o € 4"\ A, such that
Po(Dea-!(07)) = B and PedBe = ube.
Now applying Lemma 3.6 we can find §’ € #"\ A, and §’ C § such that
Aba(Py) = 03 and  03.(A%B)Q3 = ndy.
But because A , € o(Q)B|Q)YH) we deduce that

lim X\, =A=p and [Q}(B-u)Q}l= 5
ne
for some n > n,, n € §’

which yields a contradiction. It therefore follows that a(.2/g) C %, and

analogously a (%4}, C .
3.8. COROLLARY. The compression Aa®: o7 — B is an isomorphism

with

( Bralely) = (Agales?),

(Epadlde) " = (DgaY|B3) and a(2E) = B,

Proof. We apply Lemma 2.1 and Theorem 3.7.

3.9. LEMMA. Let P’ = P* €/, Q' = Q> € B be such that O
a(P’), supp,(P") = {a,},cn> supPx(Q’) = {a,},cn where a, | <a
<a,and a,  <a,<a, n€N. Then we have &° = &p (where ap:
AL p — gé’ ).

Proof. Let 0 € A. By Theorem 3.7 we know that we have Ala“(P)°)
QY where 8 € suppg,(a(P“’)) Let Q = 0% € # be such that QQ’ =
Q0= 0 and 0= a(P’P“’) Since ¢ is minimal in ./, with the property

a(PYO = Qa(Pf) = Q we derive as in the proof of Lemma 3.1, that we

Il

have &,.(6) = & = 6“(4).

3.10. COROLLARY. & is a lattice isomorphism and &“7

Proof. Apply Theorem 3.2 and Lemma 3.9.

3.11. LEMMA. For every 6 € /\ A, 8 € a“(0) put w, = {a,},cq.

= {a,},cs Then we have
(a’o) = ?6-

[=33
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Proof Makmg a similarity we may suppose that we have Q =a(P)
and Q' = a(P, ) where Q'Q = Q. 0" =Q’" Let &', &’ denote the
compression algebras p , T€SP. QZQY and let

o A > B
denote the isomorphism induced by a. Since the block-diagonal projec-
tions of #’ are {Q, },n and by Lemma 3.9 we have suppgz Q' = § we
deduce suppy Q' = y; or equivalently &(&,) = ¥;.

3.12. PROPOSITION. For every k > 0 we have a(4(;)) = %

Proof. For k = 0 we apply Theorem 3.7. If kK > 0 put
={kn+m:neN}, 0<m<k
and pick §,, € &“(3,,). Since q,, = 7™(0,), Corollary 3.10 implies §,, =
7(65") and by Lemma 3.11 we derive ?3 = &(&, ). On the other hand

because o,, N6, = J, m # i and U Yo, = N we infer that §,, can be
chosen of the form

8, = {k(n+ny)+m: neN} forsomen,eN.

m

But using the relations

m

Al = ﬂ A?ﬁ, (k) ﬂ B(l), where w,, = @, , ¥,, =

and because by Corollary 3.8 we have af (1)) B3, the proof is
concluded.

3.13. LEMMA. Let 0 € A", § € &“(6) and let 0,, §,, 0,, 8, be defined as
in Lemma 3.4. Then we have
8,=4a°(8,) and 8 =a“(3,).
Proof. We have a“(6,) C $ and by Corollary 3.10, we deduce
#71¢“271(8,) c N\ §
which implies a‘“(o,) C 8 Analogously we can prove that we have a&“(4,)
> §,and 4“(6,) =8,

4. The Essential Equivalence of 4/, and 4%. The aim of this
section is to prove the main result of the paper, namely:

4.1. THEOREM. There exist n, € N and an integer m, such that

& =4%" and rank P, = rank Q whenever n > n,.

n+mg
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The second relation in the above statements describes what “essential
equivalence of A, and A" means.

In he sequel we need some new notation. Thus we consider the ideals
(in &) I%, Fg defined as follows.

A eIy if A€« and for each n € N all entries of 4 along

the nth diagonal in /%, except the first n(n + 1)/2, are 0.

A€ Fg if A €3 and for each n € N, n > 2 all entries of 4
along the nth diagonal in /¢, except the first (n — 1)n/2, are
0.

To be more rigorous, let [a] denote the integer part of a € R and define
the function v: N — N by

o(n) = [@

It is easy to see that we have

]+n, n € N.

(k=Dk _ _ k(k+1)

v(n) =k + n whenever 5 < 5 for k € N.

We define the ideals I, Fg by
It ={A€L(H): (I - P D)4P*™WD=0,ne N},
Fe={AeL(H):(I—- P D)qpert0, ne N},

where P9 = (.
Applying Lemma 1.1 we note that 7% and F¢ are closed ideals in <.

4.2. LEMMA. Let P, P’ € &/ be selfadjoint projections and let W € Dps/
(k = 1) be such that
P'W: PH - P'H

is a Fredholm operator. Let Q = 0’e®B, Q=078 Q=aoP),
Q' = a(P’), U € a(W) and put

U, = (8%0")(&30): (&%Q) H — (A4Q") H.
Then U, is a Fredholm operator.
Proof. Suppose that U, is not left essentially invertible. Since by
Proposition 3.12 we have U € gZ’(Vk), it is easy to find B € A} 4%, such that
(AQ)B=B, B+#0, QUBE %},



278 CONSTANTIN APOSTOL AND FRANK GILFEATHER

Because OB — B € %)), using Corollary 3.8 and Proposition 3.12 we
deduce

P(Dga~(B)) = Dga ' (B)+ 0 and P'Wa '(B) €8,

But this implies P'WP(Dga~'(B)) =0, contradicting our hypothesis.
Analogously we prove that U, is right essentially invertible.

4.3. LEMMA. Let us put wy = {n(n + 1)/2}, < n- Then there exists an
integer m, such that

a°(&y) = #m0 ().

Proof. By Lemma 3.9 we may and we shall suppose w = N, thus
a® = @, and rank P, = rank Q, = 1, n € N. Suppose that y, = a(w,) is
of the form v, = {B,},en> B, < B,.1- Since rank P;* = n we can find
W € D{*o/ such that WW* = I, W*W = I — P, . Applying Lemma 1.2
and Proposition 3.12 we reduce to the case

U=a(W), UeBy, 0, =a(P,), UI-0,)="U.
Since in particular (APU)(I — Q, ) = APU and by Lemma 4.2.
ApU:(I-Q,)H - H
is a Fredholm operator, we can find n, € N, such that
rank( Y- QB.,+1) = rank O, n>ng.

Now using the fact that rank QY = B, — B,_,, we deduce

n

Bn0+n - Bno = Z (k + rO)

k=1

r(ro+1)  (rg+n)(r,+n+1)
= — + ,
2 2
where r, = rank Q). Thus putting m, = g8, — ro(ry + 1)/2 we have

(rg+n)(r,+n+1
:Bn0+n=m0 e )(5 ),

neN,

n €N,

or equivalently ¥, = &(w,) = 7™(&y).
Let v be the function introduced in the beginning of this section and
define o: #"— A" by

b(

) =v(s) whenevero € 4.

Q>



ISOMORPHISMS MODULO NEST ALGEBRAS 279

4.4. LEMMA. Let w, be as in Lemma 4.3 and assume &y = a“(&,).
Then & commutes with d.

Proof. as in Lemma 4.3 we shall replace a“ by «, we shall assume
rank P, = rank Q, = 1, n € N, and then to simplify the notation we shall
also assume w = w,. This will allow us to take ¥ = &. Now suppose that
our Lemma is false. Then proceeding as in the proof of Theorem 3.2 we
can find o € A" of the form o = {r,},cn and s, € N such that

(sn _ 1)sn SH(SSVI + 1)
T2 ShETT o

and &b(6) N H&(6) = . By the definition of v we easily derive

v(&gﬂ_?_*l)s—ﬂ)<v(rn)30(ﬂs—%+—1)), v(r,)=s,+r,

s, +1<s,,1 neN

and

1.

v( sn(sn2+ 1)) _ (s, + 1)2(sn +2)

Consequently

st l) oyl D)o

Let o’ € A4 be such that w,. = {s,(s, + 1)/2},cn and pick §" € a“(a’).
Applying Corollary 3.10 and Lemma 3.11 we infer

6’5’ = &(&’u’) and 6’7(8’) = &(a‘)‘r(u’))'

Let us put
orfl) = Irn’ sn(sn2+ 1) ]’ 0',52) = [U(r,,), (sn + 1)2(sn + 2) -1,
s®= Jo®, o@= | o?
neN neN

and pick 8© € &(6D), 8@ € &(6?). If wy = {s/(s" — 1)/2), cx then
applying Lemma 3.13 we may suppose that we have 8 =U, _\8®,
8@ =U,  n08?, where

50 — [r’ s,’,(s,’, + 1)

[, Gar1)(sn+2)
ns 2 > 8;52)_ [lna 2 -1 )

o, sl 1)
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Because we have rank P ® = rank P, o We can find W € D{s/ such that
W*W = P_ and WW* =P . Let U e a(W). Using Lemma 1.2 and

L4

Proposition 3.12 we may suppose that in fact

Os0=a(P0), Qso=a(Pe), UEBY, QulU=UQs=1U
Applying Lemma 4.2 we know that

NU: (Qs0H) — (Qs0 H)
is a Fredholm operator, and this obviously implies
rank Qs = rank Q;o), n>ng,
for some n, € N. This means
l,’,=s,’1+r,:=v(r,:), ne€N,

or equivalently &0(6) = d&(§8), contradicting our working assumptions.

4.5. LEMMA. Let w, be as in Lemma 4.3 and assume a“(&,) = &,.
Then we have

a(le) =1} and o(F2)=F}.

Proof. Suppose that there exists 4 € I%, B € a(A4) with B & I}.
Since by Lemma 1.1 we have

lim ||(1 - Q(Y,n~l))BQ(y,v(n)—l)|| >0

n— oo
wecan find k,, [, 7,, 5, € N such that
s,=v(k,) =1, k,<Il, <k, I <S,<Tyi1
|t .1BOY, ..

Letus put 8 = U, onlk,, 1, 8, = U, cnl7,, 5,] and pick o,, 0, € A such
that 8§, = a°(4,), 8, = &°(4,). Using Lemma 3.4, Lemma 4.4 and Lemma
1.2 we may assume that we have
U [kl &= U [rsil, 0% =a(B2), 03 =a%(By)
neN neN
where /] < k|4, v(k,)—1=s,<r,, ,. Applying Lemma 1.5 and de-
creasing o, and o, if necessary, we finally may assume that
PyAP; — X Piy, 11 APy, € K(H).
neN
However since A € I¢, we derive
2 Pl APy =0 and Oy BO, =0

neN
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thus contradicting the relation

1Q1,.01BC, 0

This shows that we have a(1%) C I} and by symmetry a(7%) = I}. The
relation a(F%) = F2 can be proved analogously, thus completing the
proof.
Let A € IS, A’ € FY. Then we have
PYAPP =0, k<uv(n)—1, PeAP*=0, k<uv(n).

We define
D’: L(H) > L(H) and AY: L(H) - L(H)

>a>0.

by
DT = ), PeTPR,,, AT = ) QITQl,, Te€L(H).

neN neN

We have 4 € Fj iff DA = 0 or equivalently
I5= (Dgst) + Fo.

4.6. LEMMA. Let w, be as in Lemma 4.3 and suppose a°(&,) = &,. Let
P, P’ € of be selfadjoint projections and let W € D s/ be such that

P'W: PH - P'H
is a Fredholm operator. Let Q = Q> € b, Q' = Q”* € B, 0 = a(P), 0’ =
a(P), U € a(W) and put

U, = (&Q")(&0): (84Q) H — (8%0") H.
Then U, is a Fredholm operator.

Proof. We repeat the proof of Lemma 4.2, using Lemma 4.5 in place
of Proposition 3.12.

4.7. LEMMA. Let P = P? € &/ be such that rank P°PP® = n,, for
n € supp,,.( P). Then there exists Q = Q? € & such that

Q=a(P), rankQIQQ)=n, forn € suppg(Q).

Proof. Pick Q' € a(P) and as in the proof of Lemma 2.3 put

o = {n € suppg:(Q’): rank Q0°Q7 > n, }
and

8 = {n € suppg (Q’): rank QQ'QY < n}.
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If 0 € 4, wecan find T € A}Z such that

Trotl=0, To+0 and (AVQ')T = T(A}Q')=T.
The existence of T can be proved using the freedom we have to use matrix
entries involving %,;,. But it is plain that Dfa~%(T) is a nilpotent of
order at most n and because (Dja~X(T))" = Dya~}(T)", Proposition
3.12 implies (Dga'l(f’)) " # (. The rest of the proof repeats the argu-

ments used in the last part of the proof of Lemma 3.2.
Let us put foreach n € N

- ()

It is easy to see that we have

n(n+ 1)}

6,No,=@, m#¥n, N= Jo, and v(on)=on\{ 3

neN
4.8. LEMMA. Let us put
No=(6eN b(6)=6+ 0).
Then 6 € A, is minimal in A, if and only if 6 = 8, for some n € N.
Proof. Let 6’ € 6 € ./170 Since N =U,.no0, and v(m) > m, m € N
we can find n € N such that ¢’ N o, & A4,. Forevey s € ¢’ N ¢, put
g(s) =sup{keN: v" (s) €0’ N0, 1 <m<k}
If the set 6” = {5 € 6’ N o,: g(s) < oo} is infinite then v(6”) N6’ N o,
= (g, §” # <. But this is a contradiction because #(6’ N 6,) = " N 6,.
It follows that there exists s € 6’ N g, such that g(s) = oo, and this
obviously implies
o’No,d {vF"s)},en=90,20" No,.
This shows that any 6, is minimal in ;. If 6’ is minimal and 6 N §, #
&, the above reasoning completes the proof by implying that
6"=6"N¢6,=6,.
Let R(A47;) denote the set of all ranks of the block-diagonal projec-
tions { P}, « n and analogously we consider R(A).

4.9. LEMMA. Let w, be as in Lemma 4.3 and assume

6“(wy) = &y, rank P® < rank P* ,

A

Then R(A¢) N R(ANP) #+ .
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Proof. Let P! = P> = P'* € o/, P < PP be such that
rank Pl-1(,(ni1)/2 = 10K P, o) 1, k,n€ N,

and put P’ =%, _\P,. Using Lemma 1.2, Lemma 1.3 and Lemma 4.4 we
may assume that we have Q' = a(P’), Q) = «(P)n), Qln)=
a( Py y)), where

Q'=0"=0%€g, Q=) 0,0, <0
neN

Because a“(&,) = &, we can take Q) .1y, = Qns1y2, 1 € N. Let
W € &/ be a partial isometry such that

P WPy, =0 wheneverm #n and WW* =P, W*W =P),,.
Let U € & be such that U = (W) and put

U,= Q'(&W): (0 mH) - (Q'H).

Since we have a“0(N) = 0a“(N) = d(N) (see Lemma 4.4) applying
Lemma 4.6 we know that U, is Fredholm and this implies

rank( Q-1 UQuny) = d,y kK EN, n>ny

for some n, € N. Choose r = (m(m + 1)/2) > n, and o6 € A" such that
&“(8) = é,. It is plain that 6 is minimal in N,, thus by Lemma 4.8, we
derive 6 = 6, for some / € N. Because by our hypothesis we have

rank Pl-1gu1y2 = 1a0k P4y, 1, k €N,

applying Lemma 4.7 we get rank QY = rank P, ,, ,, for infinitely many
r’s which completes the proof.

The map &“ depends on both w and y. The dependence on y, when
is fixed is an indexation matter. The next lemma will allow us to optimize
the choice of y (modulo =), with respect to w,.

4.10. LEMMA. We can choose y € &(&) such that 6°(&g) = @.

Proof. Let y' € a(&) be of the form y' = {a},},cn> @, < a,,,. By
Lemma 4.3 we know that we have &7°(&,) = #™(&,) for some integer m’.
If we take v = {@,},cn> Where a, = o/, for large n and § € #™(&,),

then using Lemma 3.1 we deduce &(&, )= 5 =79, or equivalently
a“(&y) = &,.



284 CONSTANTIN APOSTOL AND FRANK GILFEATHER

4.11. LEMMA. Suppose that rank P’ < rank P;°.,, n € N. Then there
exist an integer m, and n, € N such that

rank P’ = rank Q) and n>n,, @a°=7",

n+mg

Proof. Arguing as in Lemma 4.4 we may suppose rank Q) <
rank Q) ,, n € N. Then the first relation in the statement is obviously
equivalent to the relation R(A) = R(A). Suppose R(N)) = R(NF).
Then replacing & and % by suitable compression algebras (see the
preliminaries to Lemma 3.1) we reduce to the case R(A0) N R(ANF) =

[

@ . But because R(.47}) does not depend on ¥, applying Lemma 4.10 we

may suppose &“(&,) = @&, and Lemma 4.9 implies R(A5) N R(A}) #
&, a contradiction. Thus we conclude that we have

rank P = rank QY n>ng.

n+mg?

Let 0 € A", § € a®(6). Applying the first part of the proof to the
compression algebras 4,. and B, we deduce

{rank P*: n€ o} = {rankQ: n € §}

and this obviously implies § = 770(§).

4.12. COROLLARY. Let 6 = U, n[b,,¢,), b, <c,<b,., andlet § €

n’ n

&(6) where & =U, \lb),c,), b, <c, <b,,y. If rank P, ., <

n

rank P, . then there exists an integer m, and n, € N such that

rank Py, = rankQ,

,
n+movcn+mO] ’

n>ng.

Proof. We reduce to the application of Lemma 4.1 to the compression
algebras &7, and %,

4.13. LEMMA. Suppose that there exists an integer m, such that & = 7.
Then there exists n, € N such that

rank P, = rank O n>ng.

n+mgy? =

Proof. Suppose the contrary. Then we can reduce to the case

rank P, # rankQ,, rank P, < rank P,

(a,,a,:1)°

n € N,
where a, = a, + m, for large n. Applying Lemma 4.11 we can find an
integer my, such that

rank P’ = rank Q) n=ng, Q=1

n+mgy
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Using Lemma 3.11 we infer a(&,) = 7"(&,) = ¥; for every o € A,
8 € #™(§) which yields

{a,+ my},c, = {an+m6 +mg} neo
This obviously implies mj = 0 and in particular
(1) rank P° = rankQ), n>n,, &°(6)=6, ce L.
Applying Corollary 4.12 we can find an integer my such that

rank P, ., _q)=rankQ, nxng.

n—1+m'6+1,01,,+,,,6—1]’
Using Lemma 3.11 and Lemma 3.13 we deduce as before mj = 0 and

(2) rank P, .y, =120k Q, . 1} n=ng.

Subtracting (2) from (1) we get rank P, = rankQ,, n > n,, a contradic-
tion.

The Proof of Theorem 4.1. Using Lemma 4.13 it suffices to prove that
we have & = 7™ for some integer. Applying Lemma 3.1 we shall suppose
rank P, = rank Q, = 1, n € N. Take w = w,, m, produced by Lemma
4.3 such that &(&®) = #™(&) and a, = a, + m, for large n. Suppose that
we have &(6’) # ™ (o’) for some o' € A" and pick & € &(6’). Let
o, € A besuch that o’ = {¢,},cq 8 = {€}},cq and

4 ’
a, .<¢,<a,, a, ;<c,<a,, n € o,

n

Case 1. The sequence {c, — a,_1},eq 1s strictly increasing. Let us

put
P=2 P, 0 2= 2 Ou
neag neao;

and assume (after a similarity) that Q = &(P). Decreasing ¢’ if necessary
we may assume 0’ N 77(§) = @ and then (because a,=a,+ m,,
¢ # ¢, + mgy n € of)

{rank P[a,._l,c,,]} ﬂ{rankQ[an_lvc;']} =g,

neag neag
But making a natural identification and applying Lemma 4.11 to
we deduce

{rank Plan-»cnl} = {rank Q["n—h‘";,]}

neaog neag

and this is a contradiction.
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Case 11. The sequence {c¢, — a,_1},c, Is Dot strictly increasing. If
{¢, = a,_1}neq 1s unbounded, decreasing o’ we can reduce to Case I. If
{¢, = a,_1},cq 1s bounded, then decreasing ¢’ we may suppose that the
sequence {4, — ¢,}, < 18 strictly increasing and then proceed as before.

REMARK. The best we could expect would be that « is implemented
by a Calkin similarity. Though Theorem 4.1 does not provide such a
similarity, it suggests that its existence is a reasonable conjecture. It also
seems reasonable to conjecture that the conclusion of Theorem 4.1 holds
true if we assume only that the algebras Jz?(o) and §3‘(0) are isomorphic.
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