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ISOMORPHISMS MODULO THE COMPACT
OPERATORS OF NEST ALGEBRAS

CONSTANTIN APOSTOL AND FRANK GlLFEATHER

Let srf and 38 be nest algebras of operators on a Hubert space with
finite-rank nest projections JV^= {P(n)} and JΓ® = {Q(n)}, n e N,
respectively. Let Pn - P(n + l) - P(n) and Qn = Q(n + l) - Q{n) be the
block diagonal projections for the two nests, s/ and 38 are thus the
upper triangular matrices with respect to the decompositions determined
by { J U , I € N and {Qn}n(=N respectively. It is easy to see that *? is
isomorphic to 38 if and only if rank Pn = rank Qn for all n. J. Plastiras
has shown that the quasitriangular algebra J / + K(H), that is stf plus
the compact operators, is isomorphic to 38 + K( H) if and only if there
exist integers n0 and m0 so that rank /><Λo+Ό = rankβ ( w°+ / ϊ ) for all n.
Using different techniques this paper shows that the image of J / in the
Calkin algebra jύ is isomorphic to 38 if and only if there exist integers
n0 and m0 so that rank PflQ+n = rankβWo+,, for all n.

Nest algebras were introduced by J. Ringrose as generalizations of
reflexive triangular operator algebras [6]. Recently there has been a spate
of important and deep developements in the theory of nest and the related
quasitriangular operator algebras. A discussion of these recent results can
be found in W. Arveson's CBMS conference lecture notes [1] while earlier
and related work is aptly described in a survey by J. Erdos [2]. We note
that for nest algebras one has that s/+ K(H) is norm closed and
j ^ = [A + K(H)]/K(H) = J / / [ J / Π K(H)] so that our results concern as
well the isomorphism classes of certain quasitriangular algebras modulo
the compact operators [3].

We illustrate the obvious different results concerning the isomor-
phisms of these different algebras with some simple examples. Let
s/(nv n2,...) represent the nest algebra with block diagonal projections
having ranks {/i.}/eN. Clearly s/(2,1,1,...) is not isomorphic to
j^(l ,2,1,1. . .) however the corresponding quasitriangular algebras are
isomorphic and hence are isomorphic modulo the compact operators.
Moreover Plastiras' result [4] shows s/(l, 2,2,...) + K(H) is not isomor-
phic to stf(2,2,...) + K(H), while the result in this paper shows

, 2,2,...) is isomorphic to J / ( 2 , 2,...). Finally our result shows that
, 2,1,2,...) is not isomorphic to J ^ ( 1 , 1,2,1,1,2,...). This result can

be restated in terms of the nest projections as: The algebras J / and $8 are
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264 CONSTANTIN APOSTOL AND FRANK GILFEATHER

isomorphic if and only if there exists integers «0, m0, k0 so that the nest
projections satisfy rank P ( " o + " } = A;o + rank g(m°+/2) for all n. For
Pastiras' result about quasitriangular algebras one has k0 = 0.

We take this opportunity to express our gratitude to W. Arveson, K.
Davidson and D. Larson for discussions on the subject. The second
author also wishes to acknowledge partial support from the SERC (British)
and the National Bureau of Standards and both authors acknowledge
support from the National Science Foundation.

1. Preliminaries. Throughout this paper H will denote a complex
infinite dimensional, separable Hubert space, L(H) will denote the
algebra of all bounded linear operators acting in H and K(H) the ideal in
L(H) of compact operators. For every Γ G L(H), the symbol t will
denote the image of T in the Calkin algebra L(H)/K(H) and for every
M ^ L(H) we shall put M = {f: Γ E M ) .

Let s/, 38 be nest algebras of operators in if, with the finite-rank
nest projections {P ( w )} n G N, {β(w)}„ e N Correspondingly we consider the
block-diagonal projections {Pn} n e N, {Qn} n e N, defined by

Qn+i = β ( w + 1 ) - Q(n\ n e N.

For each k > 0 define the operators

Dk: L(H) -> L(H), Δk: L(H) -> L(H)

by the equations

It is plain that both Dk and Δ^ are norm-one projections that leave
invariant K{H). The corresponding quotient operators Dk, Δk are norm-
one projections, too. Observe that we have Dks/a si and Δk3t c g§. For
each n e N put

s/(n)= { i G i : Dkjtf= 0 , 0 < k < n ) .

The core of the nest algebra s/ denoted by s/θ9 is the commutant of
/*. Clearly s/0 is an abelian von Neumann algebra and we define

Then s/(0) is a closed subalgebra in s/ and J / ( Π ) , for « > 1, is an ideal in
both si and s/(0). Since J / is norm-closed and we have J/ ( W ) = J / Π

, « G N, we deduce that J/ ( / 2 ) (n > 1) is closed. The algebra
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^ is the direct topological sum j&= (bo&?) +^ ( 1 ) and an elementary
argument shows that j&0 is closed and in particular J/ (0 ) = J / 0 + J/ (1 ) is
closed. We shall use analogous notation involving 3&.

The first two lemmas below express well-known basic facts in the
theory of nest algebras. We sketch their proofs for the sake of complete-
ness. The proof of the first we learned from W. Arveson and the second
lemma is due to D. Larson.

1.1. LEMMA. Let Jt= {T e L(H): (1 - P^)TQ{n) = 0, n €= N}.
Then we have

Jt + K(H) = lT^L(H): lim ||(1 - P(n))TQ{n)\\ = 0
^ n—* oo

and consequently Jt is closed.

Proof. Let s/x be the nest algebra in L(H Θ H) determined by the
nest {P{n) θ Q{n)}n e N. It is easy to see that we have

(o o) iff

Hence if ϊ ϊ rn^JKl - P ( B ) )Γρ < " ) | | = 0 we, can find KtJ e K(H) such
that

k ^ 2 , 1 ^ 2 , 2 /

Since {P (" } Θ β ( n ) } r t e N are invariant projections for j ^ x we easily de-
duce that T + Kxl^Jt and in particular

): ϊΐm | (1 - i><">)Γβ( l l ) | | = θ\.

The opposite inclusion is obvious.

1.2. LEMMA. Let ^ c i be a finite lattice of commuting projections.
Then there exists A e j / , inυertible in si such that A~ιPA is self-adjoint for
every P <Ξ 0>.

Proof. Let T <= L(H) be any invertible operator such that T~ιPT,
P <E 0> is self-adjoint. If we put <#= T~1Λ?T, then by the nature of our
nest we can find a unitary operator U e L(H) such that s/= U*C£U.
Since obviously A = TU and Λ" 1 belong to si and A~ιPA <E ̂  is
self-adjoint, the proof is concluded.
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1.3. LEMMA. Let # c j / be a finite lattice of commuting idempotents.

Then there exists or finite lattice of commuting projections ^ o c r f such that

the map
p __» p £= φ p ^ op

is a lattice isomorphism. Moreover, if & c j ^ ( 0 ) we may suppose ^ 0 c J / ( 0 ) .

Proof. We can choose {^4π}*=i c # such that AnAm = 0, n Φ m and

{AfΊ}
/;Ί = ι generates # . Pick Λ'π G i (or Λ'w e i ( 0 ) ) such that A'n = An.

Since o(A[) c (0,1}, σ(^ί) can accumulate only at 0 or 1. Let Γ c p(A[)

(the resolvent set of A[) be a simple admissible contour surrounding 1 and

leaving 0 in its exterior. Because p(A[) is connected we have (λ - A[)~ι

E j / ( o r G ̂ (0)) f°Γ λ G p(^4ί), thus if we put

we have /\ = P 1

2 E j / (or e ^ ( 0 ) ) and P x = Aλ. Further we may suppose

PλA'k = Af

kPλ = 0, 2 < k < n (after possibly a compact perturbation) and

then produce P2 as before. In a finite number of steps we can produce

{pn)t=i c ^ ( 0 Γ ^(0)) s u c h Λat ^ 0 , the lattice generated by {Pn}
k

n=ι

has the desired properties.

1.4. LEMMA. Let A = A2 e j??. ΓAe/z D0A = 0 ^ i = 0.

Proof. Using Lemma 1.3 we can find P = P2 e j / such that P = A.

By Lemma 1.2, we also can find ^40 G ja/, invertible in J / , such that

AQ1PA0 is self adjoint. Since we obviously have

the equivalence in the statement follows.

1.5. LEMMA. Let /, g: N -> N be strictly monotone functions and let

T G L(H), ε > 0. 77ze/2 //zere ex/s/s β« infinite set σ c N swc/z

M £ T ~ V „£=„ I ^ nl=l~ I

Proof. We shall determine by induction a sequence {rk} k e N such that

Observe that if {rk}™=1 is determined we have

l = 0,lim P / ( Λ ) Γβ (rt J = lim
n —» oo «—> oo
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thus we can choose r w + 1 , large enough. If we put σ = {rk} k e N , then

kΦm kΦm

and because Pf{rk)TPg{r.m) is finite-rank, /c is thus compact.

2. Isomorphisms. In the sequel a will denote a fixed isomorphism

Let ~/Γ denote the complemented lattice of all subsets in N and put

Jf0 = {σ G JV: σ is finite).

We define an equivalence relation in Jf by

σ = δ iff ( σ \ δ ) u ( δ \ σ ) e ^ T 0 .

The resulting set of equivalence classes in Jf will be denoted by JΓ, i.e. if
σ G N we put

σ = {δ E / : δ ^ σ } .

For every σ G cyΓ0 we have σ = φ where φ is the empty set. For every σ,
δ G Jf \ the lattice operations

σ U δ = σ U δ and σ Π δ = σ Π δ

are well defined and thus Jf becomes a complemented lattice.

Let T: c/Γ^ ^Γ be the set-translation map defined for σ G Λ^ by

τ(σ) = { « + l : « G σ}.

We also define T*: Jί^> Jf by

τ * ( σ ) = { / ί : n + l G σ } , σ G , / .

The map T* is not injective because τ*(0) = τ*({l})= 0 . However it
clearly follows that τ*τ(σ) = σ f o r σ G ι #

> and ττ*(σ) = σ, σ G τ(Jf).
Defining f: Jf^> Jf and f *: Jf-> Jf by

f(σ) = τ(σ) and f *(σ) = ί*^0

we have fτ*(σ) = f *τ(σ) = σ and thus f is invertible and τ~ι = f *.
Let P = P2 E i and put

By Lemma 1.2 we know that PnPPn is a projection, thus if P r = Pa G 4̂
and P - P r e i^(i/), we have D0(P - P') e ^ ( ^ ) and this obviously
implies supp^(P) ^ supp^(Pr).
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Let A = A2 G jtf. The above observation allows us to define
S U P P Λ ( ^ 0 G ΛΓ by

supp^(Λ) = supp^(P),

where P £ J / and P = J / is produced by Lemma 1.3. For each σ G /

we define

P f f = Σ ί » if σ ^ 0 and P0 = 0.

Because α(P σ) is an idempotent in 3$ we can define ii\ JΓ-* Jf', by

ά(σ) =

Our main objective in this section will be to obtain some basic

properties of the isomorphism a and of the map a. However, we shall

need as an auxiliary tool a result on isomorphisms between J / ( 0 ) and 3${0),

2.1. LEMMA. For every isomorphism ψ: J / ( 0 ) —> Sft^y the compression

/5 aft isomorphism, moreover

. Let yί0 G j ^ 0 be such that Δoψ(^ίo) = 0 and let P = P2 G J / 0

be such that v4^40P = | |yίo | |2P, P Φ 0. Since obviously Δ oψ|j/O is an

homomorphism, we have

\\Ao\\2ΔorP(P) = K^{A*0A0P) = (Δ oψ(^))(Δ oψ(i o))(Δ oψ(P)) = 0

and by Lemma 1.4, Δ oψ(P) # 0, thus we derive Ao = 0. This shows that

Δ0ψ|j</0 and D0^'ι\^^ are injective. Now let Ax <^s#{l) and 5X e ψ ί ^ ) .

If 5 X ί ^ ( 1 ) we can find γ > 0 and a strictly monotone function /:

N -> N such that | |β/(n)#iβ/ ( / l)| | > γ, for all n ^ N. Applying Lemma 1.5

we can find σ e ^Γ\cyΓ0 such that

Since J2?(1) is an ideal in ^ 0 ) , we have

and thus D^\>~γ{Qj^BxQj^ = 0, contradicting the injectivity of

JDQΨ"1! ̂ O The conclusion is that we have ψ(j/ ( 1 )) c ^ ( 1 ) and by symme-

try ψ ' H ^ t t ) ) c J<?(1). Finally using the relation ψ ( ^ ( 1 ) ) = ^ ( 1 ) ? we infer
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that

o)) = A09 whenever Ao e ^ 0

and

(Δoψ)(Z)oψ-1(^o)) = (Δ 0ψ)(ψ- 1(5 0)) = Bo whenever £ 0

2.2. THEOREM. 77ze compression Δoα: D
moreover

o& is an isomorphism,

Proof. The properties of Δoα|Z)oj/ and the relation a
can be derived as in the proof of Lemma 2.1, choosing P
place of P G i 0 ) , Let ^ ^ ^ ( 0 ) and B G α(/) . For every
have

( )

(in
we

and - a(f)B = a(AT - TA)

consequently for

and

In particular ΔQB commutes with every ί 0 G A O I and this implies
Δ o £ G J Q , or equivalently B e ^ ( 0 ) . Thus we have a
by symmetry a~ι(&(0)) c j / ( O V

c ,# ( 0 ) and

2.3. LEMMA. Lei P =

n G supp^(P). 77ze«

β = α(P),

tf be such that mnkPnPPn = n0 for
= Q2 G ̂  .ywc/z //zα/

supp^(β).

Proof. Let g r = g / 2 G ̂  be produced by Lemma 1.3, such that
β r = α(P) and put

σ = [n G supp^ίβ'): rax±QnQ
fQn > n0}

and

δ = {/i e supp^ίρO ranlLQM'Qn <n0}.

lϊ σ <£ JV0 we can find Γ G A 0 ^ such that

f + i f o and (Δoβ^Γ = ^ Δ o β 7 ) = T.
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Applying Theorem 2.2 we deduce that boa~\f) is nilpotent with

(Z) o α- 1 ( f))" °^0 and

Since Z>0P = Σ n e Λ P n ' where Λ = supp^(P) and rankPn' = n0 if we
choose 5 e ^ α ' ^ f ) we have

5 - So e # ( # ) and S*° £ * : ( # ) , where So = Σ * W

But this is a contradiction because SO is similar to an orthogonal direct
sum of operators acting in spaces whose dimensions do not exceed n0 and
such essential quasmilpotents are nilpotents of order at most n0. The
conclusion is that we have σ e JΓ^ and analogously δ e JΓ^. Now putting
B = Q'- Σn&σUδQnQ'Qn we can define

as in Lemma 1.3.

2.4. LEMMA. Let P,P' G i αwd Q,Q' ^ & be idempotents such that
and Q = a(P), Q' = α(P')

Proof. Put σ = supp^(β), σf = supp^ίβ'). Using Theorem 2.2 we
derive £>oa~1(Qσ) and Z)oα~ 1(βσ,) G J / 0 and in addition
(boP)(Doa~\Qσ)) = D0P and ( ^ o ^ ' X ^ ' H G a O ) = ^ o ^ ' Since
DQa~\Qσ) = Pδ and Doa~\Qσ,) = Pg, for some 8 and δ' G ,/* we derive
(z>0P)P,nδ, = DOP: φop')pδn8, = bop\ (Λ o ρ)ρ σ n σ , = Aoρ, and
(ΔoβOβσnσ' = Δ oβ'. Consequently we must have σ Π σr D σ and σ Π
σ' D σr so it follows that σ = σ'.

2.5. PROPOSITION, ά w α lattice isomorphism.

Proof. Let σ and 8 G / . Since PσΠδ = PσPδ a n d « (^nδ) =
α(Pσ)α(Pδ), choosing σ' e ά(σ) and δ7 G ά(S) and applying Theorem
2.2 we have Qσ, = Δoα(Pσ), Qδ. = Δoα(Pδ) and Δ o α(P σ Π δ ) = Qσ,Q,, =
δαnδ τ h i s implies

α(d Π 5) = supp^(α(Pσ Π δ)) = σ' Π δ' = ά(σ) Π α(δ)

and analogously ά(σ U δ) = ά(σ) U ά(δ), ά(0) = 0 and ά(N) = N.

Isomorphism questions concerning the von Neumann algebras Dos/
and Δ o ^ naturally arise. Clearly Dosέ is isomoφhic to Δ o ^ if and only
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if there exists a bijection τ0: N -> N so that rank Pn = rank Qτ{n) for all n.
In [5] J. Plastiras has shown that in fact Dos/+ K(H) is isomoφhic to
Δ o ^ + K(H) if and only if there exists finite subsets No and Nx of
N and a bijection τ0: N X N Q - ^ N X ^ such that rank Σn€ΞNoPn =
rank Σ w < Ξ N i β r t and, for all n e N \ N O , rankPw = Qτ(n). The results in
this section give certain preliminary results concerning isomoφhisms of
Do sέ. A corollary of the proof of Lemma 2.3 yields such a result whenever
{rank Pn}n e N is bounded. Whether this result is true in general appears to
be an open question.

2.6. PROPOSITION. Let {rankP w } n e N be bounded. Then Do&? is iso-
morphic to h§38 if and only if there exists finite subsets No and Nx of N
and a bijection τ0: N\N0 -> N\Nλ such that for all n e N \ N1? rank Pn

3. Restriction isomorphisms. Throughout this section ω, γ e
N\N0 will be fixed sets such that γ = ά(ώ). The sequential representa-
tions

are unique. If we put

p(ω,«) _ p(an) pω _ n pω _ p(an + ι) _ p{an)

then the nest JT« = {P ( ω ' π ) } w G N determines the nest algebra j / ω . We
shall define D^ D£, j ^ o

ω , j ^ o

ω , j / ( ^ , j / ( ^ ) ? fc > 0 as in §1. It is easy to
see that si?ω depends on ώ only and we have for k > 0

/ , i o

ω ci o and j / ^ c i ^ .

For every n > 1, J / ( " } is an ideal in J / as well as in s/ω. Making
analogous definitions for Si and γ we want to prove the relation a(jtf"k))
= &Ίk), k > 0. We shall use the notation

aω: &?^> J , where aω(A) = a(Λ) whenever A G st,

to point out that we consider J / and 36 as subalgebras in j</ω, respec-
tively ^ γ (which are related to the nests Λ\£9 respectively Jf£). If
P = P2 e i then Do

ωP is a projection in J ^ ( c sfω) and we can define

supp^(P) = {n <Ξ N: Pn«PPn» Φ 0}

and supp^ω(P) is determied by DQP modulo - (see Lemma 1.4). Thus
if σ — supp^ω(P) we shall put

(P) = σ.
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Using Lemma 2.4 we can define

άω: JΓ-+JΓ

by άω(σ) = suppβγ (α(P)), if σ =* supp^ω(P) where P = P 2 G j / . It

should be noted that άω depends on γ and in fact different γ give

different values of άω; however the argument in Lemma 4.10 shows that

the resultant άω( ) differ by a factor τ"° for some n0.

For technical reasons we need to consider some compression algebras

associated with s/ and subsets of N. Let P / = ? / 2 G J / . For simplicity

assume that we have supp^(P') = ω. By Lemma 1.2 we know that P ' is

similar (in s/) to a self-adjoint projection P " e s/. Let s/p,9 sέp» be the

compression algebras P's/\PΉ, resp. P"sΐ\P"H. If we put Pn" =

Pa P"PQn > n ^ N, then stP., appears to be the nest algebra determined by

the nest {Σ2β l/
>* /}π e N. This shows that s£P, is a nest algebra. Choose

β ' e Q'2 e J9 such that β ' = α(P') and suρp5(β') = γ. Now we can

define the isomoφhism

aP.\ s/P. -> &Q.

as follows: Let A' <^s/P, and choose 5 £ α(ΛWP') (where ^ ' P ' e i ) .

Then putting B' = Q'B\QΉ we see that B' depends on A' only, thus

0Lp,(A') = B' is consistent and the properties of ar can easily be checked.

Since aP, is an isomoφhism between essential nest algebras we can define

aP, as in §2.

3.1. LEMMA. Let P' = P/ 2 e A, Qf
 G ρ / 2 teswcλ

β ' - α ί P ' ) and supp^P') = supp^ίβ') = N.

Then we have a = aP, (where aP,\ J/p, -+ 3&*Q,).

Proof. It is plain that our statement is similarity stable thus we shall

assume Pf = P'*, Q' = β'*. Let σ e ^ and choose β = β 2 ^ ^ such

that Q = a(P^Pσ), QQ' = β 7 β = β. Making a new similarity we may

suppose Q = β* and βg = <2|<27/, where δ = άP,(σ). But obviously σ is

a minimal element in *yΓ, with the property a(Pσ)Q = Qa(Pσ) = Q and

this implies α(σ) = άP,(σ).

Recall that r was defined as the set translation map on JΓ with f the

resultant map on JΓ.

3.2. THEOREM, ά commutes with f.

Proof. By Lemma 2.3 and Lemma 3.1 we may suppose rank Pn =

rank Qn = 1, n e N. Let σG^Γ and pick

σr e f~ 1ά" 1(άτ(σ)\fά(σ)) and σr/ e ά~1f~1(fά(σ)\άf(σ)).



ISOMORPHISMS MODULO NEST ALGEBRAS 273

Suppose σ' Φ 0. Since τά(σ') Π άf(σr) = 0, we can find δ e ατ(σ')
and δ' G ά(σ') such that δ Π τ(δ') = 0 . Let f f e j / ( 1 ) be a partial
isometry such that

DJV = W, W*W = Pτ ( σ, } and 0TF* = Pσ,.

By Theorem 2.2 we can find U G ̂ ( 1 ) such that £/= α(W )̂. Since we
have

Δo£/ = 0 and £/ = «(£<,)#

we derive

Δ 1U= (Δoα(Pσ,))(Δ1ί/) = (Δ1ί/)(Δ0«(Pσ,)).

Because rank Qn = 1 for all « e N we also have

Δoα(Pσ,) = £,„ Δ o α ( P τ K ) ) = Q9, <%(2) = (^ (

and in particular

Now using the obvious relation Q^iΔfl) = (Δ1U)Qτ(δ,) we infer

Δ1C/= QΛKU)Q8 = βιU)QriδΊQa = 0

or equivalently U G 5 ( 2 ). Let UVU2 ̂  ^ (i) be such that ϋ = f/if/2 Since
by Theorem 2.2 we have

and this is a contradiction, we deduce 6' = 0 and analogously σ" = 0 .
It follows that άτ = rά.

3.3. LEMMA. Let A = ̂ ί2
 G J / . ΓΛew ί̂ G J / ( ^ if and only ifD0A

Moreover if A G J/ ( ί ^ /

Proof. Suppose yί ̂  J/ (Q }. Using Lemma 1.3 we can find P = P2 ^

s/fa such that P = A and in particular Z)o

ωP = Pσ

ω for some σ E X Since

obviously Pw

ω G AO, n G N and I>oA)ωp = ^ o ^ o ^ = ^ o p

9

 w e derive

If Z)oyί ^ j/o

ω? applying again Lemma 1.3 we can find P = P2 E i ( 0 )

such that P = A and D0P = Pσ

ω for some α £ / . Since Pn

ω - Prt

ωPPw

ω

?

n G N is a projection and AX^Γ "~ PnPPn) = 0, π e σ, we easily derive

Pw

ω = P"PP", « £ σ . I f « G N \ σ , then Pw

ωPPw

ω is a projection such that
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D0(P,?PP?) = 0, consequently Pn

ωPP" = 0. Thus it follows:

D£P = Σ Pn

ωPPn

ω = D0P e s/0»,

or equivalently P e J / ^ .

3.4. LEMMA. Let A = A2 G J/ ( 0 ) , P = P 2 G yί β«J /e/ σ

beof the form σ = {JnGN[bn,cfll h < c n < bn + ι . Letusputσ^ {^} w G N ,

σr = {cn}n€EN. Then we have A G J / ^ if and only if τ~1(σι) U ί r c ώ.

Proof. Since the part "only if" is obvious assume T " 1 ^ ) U σr c ώ.
After deleting a finite set we can reduce to the case σ c τ(N), τ*(σ7) U σr

c ω. But this obviously implies Pσ G j / o

ω and because D0P = Pσ, apply-
ing Lemma 3.3 we infer A G j&°y

3.5. LEMMA. Let A G i . Then A G J / ^ iff D0A = D£A G i o

ω .

Proof. If A G J/(Q} we may suppose that there exists A e j / of the
form ^ = Ao 4- ̂ 4l5 where ^40 e j / o

ω , Λ̂  e J / ( ^ . Because j / o

ω c j / 0 and
A"λ) c J3f(1) we deduce

DωA = A = Γ) A = D A f^ o</ω

The part " i f is trivial.

3.6. LEMMA. For every A = A2
 G J/(Q} we /̂ we «(^ί) e ^(o).

Proof. Pick δ £ supp^(α(yί)) and define 8h δr as in Lemma 3.6.
Since obviously T " 1 ^ , ) Π δ = 0, using Theorem 3.2 we deduce
f ^ α " 1 ^ ) Π ά-^δ) = 0 . Let σ e ά ' ^ δ ) and σ' G ά'Hδ/). Since σ e
supp^(^4), v4 G J/(Q} and σ' c σ, f ^ σ ' ) Π σ = 0 we easily derive σ" c
σ/9 f "^σ') c ώ. It follows T " ^ ^ ) C γ and analogously δr c γ, thus by
Lemma 3.4, a(A) G J ̂ .

3.7. THEOREM. α(j*$}) = ^ } .

Proof. Let ̂ 4 ε ^ ) } 5 G ̂ ( 0 ) be such that 5 = a(A). Suppose
B <£ SS^y Then we can choose λn e o(Qy

nB\QΊ

nH) with

lim ||βί(5 - λjβ^l > 0.
n—> oo

Applying Lemma 1.5 we can find δ G JΓ\Jί{) such that

limλn = λ, Ql~BQl=Ql{h\B)Ql
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Since by Lemma 3.6 we have OL~\QI)AOL~1(Q%) G s/ffo we can use again
Lemma 1.5 to produce σ e jir\J^0 such that

Pσ

ω{b£a-ι(Ql)) = C and Pσ«APσ« = μP».

Now applying Lemma 3.6 we can find δ' G JT\Ji^ and δ' c δ such that

Δ>(P σ

ω) = ρ ^ and Q

But because λn G σ(Qy

nB\Qy

nH) we deduce that

n = λ = μ and | |βj(Λ ||

for some n > nθ9 n G δ'

which yields a contradiction. It therefore follows that a( Jaffa) c J ^ and
analogously α x(

3.8. COROLLARY. The compression Δy

oα
ω: j / o

ω -> 3&1 is an isomorphism

with

and

Proof. We apply Lemma 2.1 and Theorem 3.7.

3.9. LEMMA. Let P' = P / 2 E < Qf = Q'2 G

'), supp^PO = { < } Λ € N , supp^βO = { <
αΛ_! < a'n < an, n G N. 77ze« we Λαye άω = άP, {where aP,

. Let σ E ^ . B y Theorem 3.7 we know that we have Δ>ω(Pσ

ω)
= Ql where δ G supp^γ(α(Pσ

ω)). Let Q = Q2 G ̂  be such that g β ' =
Q'Q = Q and β = a(P^P^). Since σ is minimal in Λ", with the property
<*(Po)Q = β«(^σ

ω) = β we derive as in the proof of Lemma 3.1, that we
have aP,(σ) = δ = άω(σ).

3.10. COROLLARY. άω is a lattice isomorphism and άωf = τάω.

Proof. Apply Theorem 3.2 and Lemma 3.9.

3.11. LEMMA. For every σ G J/\Jί^ δ G άω(σ) jr?wί coσ = {α n } n e σ ,

(««}^δ Then we have

«(«. ) = Ύδ
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Proof. Making a similarity we may suppose that we have Qy = a(Pω)

and Q' = oi{Pω) where Q'Qy = QyQ' = Q'. Let sί\ 3' denote the

compression algebras sίFJ resp. &tQ and let

α': ά' -> 3δ'

denote the isomorphism induced by a. Since the block-diagonal projec-

tions of 3δf are { β α B } n e N and by Lemma 3.9 we have s u p p ^ β ' - 8 we

deduce supp# Qf ^ yδ or equivalently ά(ώσ) = γ g.

3.12. PROPOSITION. For every k > 0 we have a(s/{

ω

k)) = ^ (

γ

Λ ) .

Proo/. For A: = 0 we apply Theorem 3.7. If fc > 0 put
σ m = = { ^ + m : w e N } , 0 < m < k

and pick 8m e ά ω (σ w ). Since σm = τ w (σ 0 ) , Corollary 3.10 implies δm =

r(δ^) and by Lemma 3.11 we derive γ* = ά(ώσ ). On the other hand
m m

because σm Π σi? = 0 , w # / and U^= o σ m = N we infer that δ w can be

chosen of the form

δ w = [k(n + A20) + m: n G N) for some /i0 G N.

But using the relations
k-l fc-l

Aω

{k) = Π Aft, % } = Π % where ω w = ωσm, γ w = γδw
m=0 m=0

and because by Corollary 3.8 we have a(jtfffi) = Φffi, the proof is

concluded.

3.13. LEMMA. Let σ G ^T, δ G άω(σ) αwjfe/ σ/? δ/? σr, δr be defined as

in Lemma 3.4. Then we have

. We have άω(σ7) c δ and by Corollary 3.10, we deduce

T-^T-^σ,) c N\δ

which implies άω(σ/) c δ7. Analogously we can prove that we have αω(σ7)

D δ 7and άω(σr) = 8r

4. The Essential Equivalence of JίA and JfB. The aim of this

section is to prove the main result of the paper, namely:

4.1. THEOREM. There exist n0 e N and an integer m0 such that

a = τm° and rankP r t = rankQn+m whenever n > n0.
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The second relation in the above statements describes what "essential

equivalence of Jf^ and Jfa" means.

In he sequel we need some new notation. Thus we consider the ideals

(in s/) I£, F£ defined as follows.

A e /£ if A e s/ft and for each n e N all entries of A along
the wth diagonal in j / ω , except the first n(n + l)/2, are 0.

A e F£ if A e j/(£} and for each Λ e TV, Λ > 2 all entries of A
along the wth diagonal in j / ω , except the first (n — l)n/2, are
0.

To be more rigorous, let [a] denote the integer part of a e R and define

the function v: N -> N by

«6N.
2

It is easy to see that we have

( \ , i. (Λ: — 1)A: Λτ(A: + 1) . , . .

v(n) = k + n whenever - — < « < — - for k e N.

We define the ideals /£, i ^ by

( l'<l'>-1> = 0, n

where P ( ω 0 ) = 0.

Applying Lemma 1.1 we note that /£ and / ^ are closed ideals in

4.2. LEMMA. Lei P,P' e i 6e self adjoint projections and let W e I>

(A: > 1) be such that

P'W: PH -» P ' #

w α Fredholm operator. Let Q= Q2 <Ξ 38, Q' = β ' 2 e ^ , β = α

β ' = α(P'), £/ e α(l^)

4 w β Fredholm operator.

Proof. Suppose that Uk is not left essentially invertible. Since by

Proposition 3.12 we have U e ^ (

γ

Λ ) , it is easy to find 5 G Δ ^ , such that
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Because QB - f i e ^ (\ ) ? using Corollary 3.8 and Proposition 3.12 we
deduce

P(b£a-ι(B)) = Dfa-^B) Φ 0 and PfWa'ι(B) e

But this implies P'WP(D$a~\B)) = 0, contradicting our hypothesis.
Analogously we prove that Uk is right essentially invertible.

4.3. LEMMA. Let us put ω0 = {n(n + 1)/2}Π € N . Then there exists an
integer m0 such that

Proof. By Lemma 3.9 we may and we shall suppose ω = N, thus
αω = α, and rankPrt = rankβΛ = 1, n e N. Suppose that γ0 = α(ω0) is
of the form γ0 = {βn}n<zN> βn

 < βn+v Since rankPn

ω° = n we can find
MK e D ^ J ^ such that » W * = /, W^*]^ = / - PωQ. Applying Lemma 1.2
and Proposition 3.12 we reduce to the case

Qj = U.

Since in particular (Δγ>t/)(7 - Qyo) = Δ\°ί/ and by Lemma 4.2.

is a Fredholm operator, we can find n0 e N, such that

rank(β;*+1 - β A + i ) = rankβ?, n > n0.

Now using the fact that rank Ql° = βn — βn_v we deduce

βno+n -βna= Σ(k + r0)

^2 ^ 9 ' n^JS

where r0 = rankβ^. Thus putting mo = βno~ ro(ro 4- l)/2 we have

or equivalently γ0 = ά(ω0) = f m°(ώ0).
Let y be the function introduced in the beginning of this section and

define v: JΓ-* JΓ by

ϋ(σ) = ί (σ) whenever σ e Jί,
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4.4. LEMMA. Let ω0 be as in Lemma 4.3 and assume ώ0 = ά ω (ώ 0 ) .

Then άω commutes with v.

Proof, as in Lemma 4.3 we shall replace aω by α, we shall assume
rank Pn = rankβ n = 1, Λ e N, and then to simplify the notation we shall
also assume ω = ω0. This will allow us to take γ = ώ. Now suppose that
our Lemma is false. Then proceeding as in the proof of Theorem 3.2 we
can find σ e JΓ of the form σ = {^}n e N and sn e N such that

n ~ l)sn sn(sSn + 1)
n ~ 2 ' n n+ι'2 n ~ 2 ' n

and άϋ(σ) Π vά(σ) = 0 . By the definition of v we easily derive

and

(sn + 1)(^ + 2)
_

( 2 / 2
Consequently

- rw, = υ2 n \ 2

Let σ' e ^Γ be such that coσ, = {Jn(jn + l ) / 2 } w e N and pick δr e άω(σ').
Applying Corollary 3.10 and Lemma 3.11 we infer

ωδ, = ά(ώσ0 and ώ τ ( n = ά ( ώ τ ( O ) .

Let us put

= y σα

and pick θ ( 1 ) e ά(σ(1)), δ® e ά(σ(2)). If ωβ, = { < ( ^ - l ) / 2 } n 6 N then
applying Lemma 3.13 we may suppose that we have δ ( 1 ) = Un^NS^1',

U n e N δ< 2 ), where

δd) = L s"« + !) 1 δ(2) = \r U + ! ) « + 2) _ J

(< - i ) , ; ^ _, ^ s'n{s'n +
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Because we have rank Pσo> = rank P^ we can find W e D"sί such that
W*W=Pσe> and WW* = P > . Let t/ e a{W). Using Lemma 1.2 and
Proposition 3.12 we may suppose that in fact

ββα, = α(Pσα>), βδ(2) = α(Pσ(2)), [/ e # & , ββ<i>£7 = t/βδ(2) = t/.

Applying Lemma 4.2 we know that

ttifJ: (QδvH) -> (Q^H)

is a Fredholm operator, and this obviously implies

rankg^i) = r a n k g ^ , n > n09

for some n0 e N. This means

or equivalently av(σ) = βά(σ), contradicting our working assumptions.

4.5. LEMMA. Let ω0 be as in Lemma 4.3 and assume «ω(ώ0) = ώ0.
Then we have

<*(/£) = / J and a{F2) = FJ.

Proof. Suppose that there exists A e 1%, Be a{A) with B £
Since by Lemma 1.1 we have

Q vM-V\\ > 0

we can find kn, ln, rn9 sn G N such that

Let us put δ = UnGN[/cn, /„], δ2 = Uw e N[r r t, sn) and pick σl9 σ2 e ^T such
that δx = ά^αi), δ2 = «ω(σ2). Using Lemma 3.4, Lemma 4.4 and Lemma
1.2 we may assume that we have

where /̂  < k'n+1, v(k'n) - 1 = s'n < rw

7

+1. Applying Lemma 1.5 and de-
creasing σλ and σ2 if necessary, we finally may assume that

- Σ P^APrcs^ K(H).

However since A e /£, we derive

Σ ; ] = 0 and β ^ β % = 0
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thus contradicting the relation

This shows that we have α(/£) c / | and by symmetry α(/£) = ΪJ. The
relation a(F£) = ££ can be proved analogously, thus completing the
proof.

Let A e I£, A' e /£. Then we have

C^P*" = 0, Jfc < υ(n) - 1, P " ^ " = 0, k < υ{n).

We define

/)„": L(tf) -» L(i/) and Δγ

tl: (

by

We have A ^ F^ iff Z ) ^ = 0 or equivalently

4.6. LEMMA. Lei ω0 be as in Lemma 4.3 and suppose άω(ώ0) = ώ0. Let
P9P' ^ s/ be self adjoint projections and let W e D"s/ be such that

P'W\ PH -> PΉ

is a Fredholm operator. Let Q = Q2 tί b, Q' = Q'2 (Ξ B, Q = α(P), Q' =

, ί /Gα(( f ) and put

Uυ = (Δ*oβ')(Δΐί/): (Δ^oρ)i/ -> (Δ^oβ')^.

Uυ is a Fredholm operator.

Proof. We repeat the proof of Lemma 4.2, using Lemma 4.5 in place
of Proposition 3.12.

4.7. LEMMA. Let P = P2 E i be such that rankP"PP" = nθ9 for

n e supp^ω(P). Then there exists Q = Q2 G ίg such that

Q = a(P), mnkQlQQl = n0 forn G supp^(β).

Proof. Pick β 7 G α(P) and as in the proof of Lemma 2.3 put

σ = [n e supp^ίβ ' ) : Γankβ^β'flί > « 0)

and

δ = {Λ e supp^(ρ') : ΓankβJβ'βJ < /i}.
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If σ G JT0 we can find T G Δ γ

0^ such that

f "o+i = o, f n° Φ 0 and (k\Q')T = T(&QQ') = T.

The existence of Γ can be proved using the freedom we have to use matrix
entries involving SS{ly But it is plain that b£a~ι{T) is a nilpotent of
order at most n and because (b^a~\T))n° = b^a~\t)n°, Proposition
3.12 implies (Z>o

γα""1(f))lfo # 0. The rest of the proof repeats the argu-
ments used in the last part of the proof of Lemma 3.2.

Let us put for each « G N

It is easy to see that we have

σmΠσn= 0, mΦn, N = (J <*„ and ϋ(σj = σ π \ { ^

4.8. LEMMA. Let us put

^ ^ { ί ε i 1 : β(σ) = σ # 0}.

7%e« σ e ^ίζ /5 minimal in JV*V if and only if σ = σn for some n e N.

Proof. Let σ ' e σ e i ; . Since N = U w e N σ r t and υ(m) > m, m e N
we can find n & N such that σ' Π σn ί JV0. For evey 5 e σ' Π σn put

g(5) = sup{& G N: ^ " ^ j ) <Ξ σ' Π σn,l <m < k)

If the set σ" = {s e σ' Π σw: g(Λ ) < oo} is infinite then v(σ") Π σ' Π σn

= 0 , σ" # 0 . But this is a contradiction because v(σ' Π σrt) = σ' Π σw.
It follows that there exists s G σ' Π σM such that g(s) = oo, and this
obviously implies

This shows that any σn is minimal in JΓυ. If σ' is minimal and σ' Π δn Φ
0 , the above reasoning completes the proof by implying that

= an.

Let R(JQ?) denote the set of all ranks of the block-diagonal projec-
tions { P " } n 6 N and analogously we consider

4.9. LEMMA. Let ω0 be as in Lemma 4.3 and assume

άω(ω0) = ώ0, rankP» < rankPn»+1

Then R(Λ^) Π R[JQ) Φ 0.
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Proof. Let P'n = PM'2 = P ' * 6 j / , P'n < Pn

ω be such that

rank ^ - 1 ( π ( n + 1 ) / 2 ) = rank Pn%+l)/2, k,neN,

and put P' = Σn(ΞNPή Using Lemma 1.2, Lemma 1.3 and Lemma 4.4 we

may assume that we have Q' = a(P'), Q'υ(N) = a(P^(N)), Qy

v(N) =

a(Pv"(N)), where

e' = ρ'2 = g'* e ^, ρ' = Σ e;,, Qn Ϊ QI

Because ά ω (ώ 0 ) = ώ0 we can take Q'n(n+l)/2 = QΎ

n{n+i)/2, n G N. Let
W e j / be a partial isometry such that

pmwpvω(n) = 0 whenever w # w and

Let ί/ G ^ be such that ί/ = a(W) and put

Since we have άωϋ(N) = vάω(N) = β(iV) (see Lemma 4.4) applying
Lemma 4.6 we know that Uυ is Fredholm and this implies

= dn, k^N,n>n0

for some n0 G N. Choose r = (m(m + l)/2) > n0 and σ G / such that
ά ω (σ) = σm. It is plain that σ is minimal in No9 thus by Lemma 4.8, we
derive σ = σι for some / G N . Because by our hypothesis we have

rankP£-i ( / ( / + 1 ) / 2 ) = r a n k P ^ / + 1 ) / 2 , k e N,

applying Lemma 4.7 we get r a n k g j = r a n k P ^ / + 1 ) / 2 , for infinitely many
r 's which completes the proof.

The map άω depends on both ω and γ. The dependence on γ, when ω

is fixed is an indexation matter. The next lemma will allow us to optimize
the choice of γ (modulo - ) , with respect to <oo.

4.10. LEMMA. We can choose γ G ά(ώ) such that ά ω (ώ 0 ) = ώ0.

Proof. Let γ ' e ά(ώ) be of the form γ ' = { < } Λ e N , < < a'n+v By
Lemma 4.3 we know that we have &ΐ(ω0) = τ m (ώ0) for some integer m''.

If we take γ = {<xn}n€ΞN, where an = a'n+m, for large n and δ e τ m ( ώ 0 ) ,
then using Lemma 3.1 we deduce ά(ώω o) = γ§ = γωo or equivalently
ά ω (ώ 0 ) = ώ0.
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4.11. LEMMA. Suppose that rankP,z

ω < rankP r t

ω

+ 1, n G N. Then there

exist an integer m0 and n0 £ N such that

rankP n

ω = rankQΎ

n + mQ and n>n0, άω = f m°.

Proof. Arguing as in Lemma 4.4 we may suppose

rank<2^+ 1, n G N. Then the first relation in the statement is obviously

equivalent to the relation R{JQ) - R(JΓ£). Suppose R(JΓJ) * R{JΓ£\

Then replacing si and 38 by suitable compression algebras (see the

preliminaries to Lemma 3.1) we reduce to the case R(JVJ) Π R(J^J) =

0. But because R(J^j) does not depend on γ, applying Lemma 4.10 we

may suppose ά ω (ώ 0 ) = ώ0 and Lemma 4.9 implies R(JQ?) Π R(JQ) Φ

0, a contradiction. Thus we conclude that we have

Let σ G Jf, δ <E aω(ό). Applying the first part of the proof to the

compression algebras A&» and BQ^ we deduce

{rankPΛ

ω: n e σ} = {rankβj : Λ £ δ)

and this obviously implies δ = τm°(σ).

4.12. COROLLARY. Let σ = U^Nlfc^cJ , 6n < cn < bn+ι and let δ G

ά(σ) w/zerβ δ = U w e N [ ^ , < ] , ^ < < < ^ + i 7 / Γ a n k Λ ^ ^ j <

rank P[h + c ] ίÂ w //zere exz.s /.s1 απ integer m0 and n0 G N ̂ wc/z ί/zα/
r a n k P t ^ ? c J = rankρ [ f t j ί+#f iofC;+ | f io], Λ > w0.

Proof. We reduce to the application of Lemma 4.1 to the compression

algebras s/^ and SSQ^.

4.13. LEMMA. Suppose that there exists an integer m0 such that ά = f m°.

77ẑ « //ẑ r̂  exw/5 w0 G N ̂ wc/z //zα/

rankP^ = r a n k β w + m o ? n > n0.

Proof. Suppose the contrary. Then we can reduce to the case

r a n k P ^ Φ r a n k β α , rankP r t

ω < rankP ( α n ( ι i ) ? n G N,

where α/2 = αw + m 0 for large n. Applying Lemma 4.11 we can find an

integer m'o such that

_m>. n>n0, άω = τmK
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Using Lemma 3.11 we infer ά(ώσ) = f m°(ώσ) = yδ for every σ
8 G f m'°(δ) which yields

This obviously implies m'Q = 0 and in particular

(1) rankPM

ω = rankρ^, n > n0, aω(ό) = σ, σ £ / .

Applying Corollary 4.12 we can find an integer m^ such that

r a n k i > [ ^ _ 1 + i^-i] = rankδ[«M-1+^ό+i,«M+.ό-i]' Λ ^ ho-

using Lemma 3.11 and Lemma 3.13 we deduce as before TΠ'Q = 0 and

(2) r a n k P K i + 1 ^ _ η = r a n k β κ i + 1 α _ 1 ] 9 n > n0.

Subtracting (2) from (1) we get rankPα = rankβ^, n > n0, a contradic-
tion.

The Proof of Theorem 4.1. Using Lemma 4.13 it suffices to prove that
we have a = f m° for some integer. Applying Lemma 3.1 we shall suppose
rankPw = rankβ r t = 1, n e N. Take ω = ω0, m0 produced by Lemma
4.3 such that ά(ώ) = τm°(ώ) and an = an + m0 for large n. Suppose that
we have ά(σr) Φ τm°(σ') for some o' <= Jf and pick δ' G a(a r). Let
ao

r G ̂  be such that σ' = ( c B } w e j < , δ' = {<} n e β t f and

I. The sequence {cw — αΛ_i}w e o^ is strictly increasing. Let us
put

P = Σ Λ-.-,c]. δ = Σ β^_ιt<i]

and assume (after a similarity) that Q = a(P). Decreasing σ' if necessary
we may assume δ' Π f Wo(σr) = 0 and then (because an = an + m0,
c'nΦcn + m0 ? « G σ0')

frankΛ Λ n(rankβ Γ β , cΊ} = 0 .

But making a natural identification and applying Lemma 4.11 to

aP:

we deduce

(rankPΓ/2 . λ -

and this is a contradiction.
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Case II. The sequence [cn — an_ι}n(=o^ is not strictly increasing. If
{cn — an_ι}nGσ^ is unbounded, decreasing σ' we can reduce to Case I. If
{cn — an_1}n&σΛs bounded, then decreasing σ' we may suppose that the
sequence {an — cn}nea^ is strictly increasing and then proceed as before.

REMARK. The best we could expect would be that a is implemented
by a Calkin similarity. Though Theorem 4.1 does not provide such a
similarity, it suggests that its existence is a reasonable conjecture. It also
seems reasonable to conjecture that the conclusion of Theorem 4.1 holds
true if we assume only that the algebras J/ ( 0 ) and ί?(0) are isomorphic.
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