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AN EXTENSION OF SINGULAR HOMOLOGY
TO BANACH ALGEBRAS

WILLIAM J. RALPH

By making use of a simple connection with Banach algebras we
introduce certain relations into singular homology and cohomology at the
chain level and show that we obtain homology and cohomology theories.
The deviation between singular and the new theory is measured by what
turns out to be another homology theory HM. One of the main results is
that HM is zero on simplicial complexes but not on metric spaces in
general. This shows that for any coefficient group there are an infinite
number of different homology theories agreeing with the associated
homology theory on simplicial complexes.

Section 2 shows that HM detects all the anomalous singular homol-
ogy constructed by Barratt and Milnor in [BM]. Section 3 gives a simple
application to co-products and shows that we get the usual addition
formula in homology for co-products without the assumption of a co-
identity.

The main applications of this theory will be in a subsequent paper
where the same relations are introduced into homotopy theory. The results
of the present paper will show that the Hurewicz map factors through
these new groups. Another application will be a nice (i.e. computable) way
of relating the algebraic structure of [X, H] (H an //-space) with proper-
ties of the maps induced by elements of [X9H] in homology and
cohomology.

1. In this section we will introduce a functor A: 2Γ-* <% where &* is
the category of spaces and continuous maps and ^ is the category of
chain complexes of abelian groups and chain maps. This functor will be
very similar to the functor S which assigns to each space X the singular
complex SX (see [G]).

For any two complex algebras Bλ and B2 we defiine L(Bl9 B2) to be
the group of all complex linear maps from Bx and B2 under pointwise
addition. Recall that for a space X, the group SqX in the singular chain
complex SX is the free abelian group on the set of all continuous maps
from the ^-simplex Δ^ into the space X. Every such map induces an
algebra homomorphism from C(X) to C(Δ^), where C(X) is the algebra
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of all complex valued continuous functions on X. This suggests that we

might replace the group SqX by a group generated by certain algebra

homomorphisms from C(X) to C(Δ^). However, we will not take the free

group on such algebra homomoφhisms but rather will use the natural

group structure of L(C(X),

(1) DEFINITION. Let X be any space. For q > 0 let AqX = Z-span of

{ T: C(X) -> C(Δq)\τ is an algebra homomoφhism induced by a continu-

ous map T: Δ^ -> X) c L(C(X),C(Δq)). For q < 01etAgX=Q.
The graded groups SX and AX are connected by the following:

(2) DEFINITION. Let p: SX -* AX be the homomoφhism of graded

groups defined on SqX as the unique homomorphism from SqX to AqX

such that if / e C(JQ and σ: Δ^-> 5 is a generator of SqX then

p(σ)(/) = / ° σ , that is, p(σ): C(X) -> C(Δ^) is the algebra homomor-

phism induced by σ. D

It is easily shown that AX can be made into a chain complex in a

unique way by requiring that p be a chain map. Similarly we can make A

into a covariant functor from 3Γ to #, in a unique way, by requiring that

p be a natural transformation.

Let sέ be the category of complex algebras with identity and identity

preserving algebra homomoφhisms. Let si be the category of complex

algebras and algebra homomoφhisms. We can extend A, in a sense to be

made clear, to functors A: j&-* # and A: s/-* # as follows:

(3) DEFINITION. Let ί e i be any algebra. Then for # > 0 let

i ^ = Z-span of {r: 5 -> C(Δ,)|τ: 5 -> C(Δ^)|τ G ^ / } C L(tf,C(Δ,))

and for ^ < 0 let ^ 5 = 0. D

We make a similar definition for AqB and B £ i . The graded groups

^45 and ^45 can be made into chain complexes by defining a boundary

operator as follows. We define 9(τ) = ρ(didq)° T, where id^: Δ^ -> Δ^ is

the identity map considered as an element of S^Δ^). With this definition

we obtain functors A: J / - » V and A: jtf-^> Φ. We now make clear the

sense in which A is an extension of A.

(4) PROPOSITION. Let 3?~' be the full subcategory of ZΓ whose objects

are compact Hausdorff spaces. Then
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Proof. This follows immediately from the well known fact that any
algebra homomorphism from C(X) to C(7), where X and Y are compact
Hausdorff, is induced by a continuous map from Y to X. D

Now let 38 be the category of commutative Banach algebras with
identity and G: 38 -> &" the Gelfand factor. The previous proposition
suggests the following:

(5) THEOREM (see [R]). There exists a natural chain isomorphism from
toA°G\gS. •

We can also show

(6) PROPOSITION (see [R]). Let M be a maximal ideal in some algebra
B <= 38. Then

HqAB s HqAM for all q > 0

and

H0AB = H0AM Θ Z. D

(7) DEFINITION. Let M: SΓ-* ̂  be the functor that is the kernel of
the natural transformation p (see (2)). D

There is a short exact sequence 0 -> MX -> SX -» AX -* 0 of chain
complexes for any space X. We turn now to the characterization of
elements in MX.

(8) DEFINITION. For any collection of continuous maps θt: X -» 7,
/ G /we let /(x,y) = {/ e /|^(x) = ̂ }. D

(9) PROPOSITION. Let X be an arbitrary topological space and let Y be
any metric space. Let θέ: X -> Y, i G /, be any finite set of not necessarily
distinct continuous maps. Denote by τi the algebra homomorphism induced
byθιfromC(Y) to C(X). //{^} / e / c Z then:

Σ υi = Qforall(x,y)eXxY.
I ί(x,y)

(Note: when I(x, y) is empty we define Σ / ( x v^vi = 0.)



394 WILLIAM J. RALPH

Proof. => Fix (x, y) G X X 7 and assume I(x, y) Φ 0. Define Yx =
{ Z G 7|ί{(jc) = z for some i ε / } , Now let / be a continuous function
such that f(y) = l and / vanishes on any elements in Yx\ {y}. Evaluat-
ing Σ 7 υίτi at / and then at x we have

by our choice of /.
<= Let / G C(7) and j c e l , then

= Σ ί/ω Σ

COROLLARY. Let X be a metric space. If Σιviσι G SqX then

P ( Σ *,*,•) = 0 ~ Σ ^ = 0 /^^//(/,X)GΔ< ?X

It can be shown that p is injective when restricted to the subgroup of
S^X generated by simplicial maps. This suggests a result we will shortly
prove, namely that for a simplicial complex X, H*MX = 0 and hence

Corollary (10) suggests the analogues of the complexes MX and AX
when coefficients are taken in some group G.

(11) DEFINITION:

Σ gi = 0 for all (/, x) G Δ^ X X

= SqX®G/Mq(X\G). Π

Note that Mq(X\Z) = Mq{X) and Aq(X\Z) = Aq(X). We will let
M{ \G) and A( \G) denote the obvious functors from ZΓ to <g7. We now
set out to show that M( \G) and A( \G) are homology theories on ST.
There are short exact sequences

0 -> A(Y\G) -> i4(AΊG) -> i4(JSΓ|(?)/>4(y|G) -• 0

for any spaces Y c X. We define M(X,7|G) = M(X|G)/M(7|G) and

(12) THEOREM (Homotopy Invariance). Let (X, Y) and (W, Z) be any
pairs of spaces. Iffo,fι'. (X, Y) -* {W, Z) are homotopic, then

HM(fo\G) = HM{fx\Gy. HM(X, Y\G) -* HM{W, Z\G)
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and
HA(fo\G) = HA(fι\G): HA(X,Y\G) -* HA(W,Z\G). D

This theorem is proved in singular homology by defining an operator
P called the prism operator (see [G]). The proof of Theorem (12) proceeds
identically once we have shown that the prism operator on SX ® G can
be suitably restricted to M(X\G). This is contained in the following which
uses nothing more than the naturality of P.

(13) LEMMA. Let P be the prism operator on SX ® G. Then
P(Mq(X\G)aMq+ι(XXl\G)).

Proof. Let id^ e Sq(Δq) be the identity map. Suppose P(id^) =
ΣjcjWjδj where w, e Z and β,. e S,+ 1 (Δ, X /) . Let Σj&σ, e M^(X\G).
By the naturahty of the prism map we have

Λ) = Σ *,*(*,) = Σ gΛ+i(σ-x i d)(Σ
' I I X J

Let f/ = 59+1(σ, X id)° δy, We will show that Σ/g. // e Affl+1( JT X 7|G).
Let / e Δ ? + 1 and (α, 6 ) e l x / . Then

/ ( / , (a, b)) = {i\Sq+1(a, X id) o δ.(ί) = (a, b)}

{ ^ ^ ( C ) ) , f(ή) ( , ) } = 0 or {i\

Therefore

Σ Si= Σ gf = 0 since

or

and hence

( E ) ( ) D

(14) THEOREM (Excision). Let (X, Y) be any metric pair. If U is any
open subset of X such that U c int Y, then the excision map J: (X — U,
Y — U) -* (X, Y) induces isomorphisms

HM(J\G): HM(X- U,Y- U\G) -> HM(X,Y\G)
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and

HA(J\G): HA(X- U,Y- U\G) -> HA(X,Y\G). D

We will first prove excision for HM. Excision for HA will then follow

from the five lemma. In outline the proof of excision for HM is the same

as that for singular homology (see [G]). The only substantial difference lies

in the proof of Lemma (16), which requires a new idea.

The subdivision operator Sd: Sq(X) <8> G -> Sq(X) ® G and the de-

generacy operator T: S (X) ® G -> Sq+ι(X) ® G can be suitably re-

stricted to Mq(X\G) with their usual properties. The proof of this is the

same as that for the prism operator and uses nothing more than the

naturality of Sd and T.

(15) LEMMA. Let X be any space with Y c X. If z e Mq(X\G) and

dz e Mq_λ{Y\G\ then, for all n, z - Sd"z e dMq+ι(X\G) + Mq(Y\G).

Proof. Identical to (15.14) of [G]. D

(16) LEMMA. Let X be a metric space with z e Mq(X\G) and <% an

open cover of X. Then there exists an r so that Sdrz = ΣLZj with zt e

Proof. Fix z = Σn

J = ιgιoi where gi e G and σ7: Δ^ -> X. Let id^:

Δ^ -> Δ^ be the identity map and suppose that Sd(id^) = Σn

J=ιw)δJ for

integers wy and maps δy. Δ^ -> Δ^. An easy induction argument shows

that

w

Let MK e X be the union of the images of all the σ,. W is compact

since it is the finite union of compact sets. Now apply the Lebesgue

covering lemma to the space W and the open cover Ψ* of W defined by

Ϋ~= {U Π W\U G °U). This yields an ε > 0 such that if Z c W with

diam(Z) < ε then there i s a K e f with Z c K . B y (15.13) of [G] we

may choose r so that each of the maps σ ° δ ° ° δy is such that

diam(imσ7 ° δ^ ° ° δ jr) < ε/n. This r will be fixed for the remainder of

the proof.
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For any integers 1 < j l 9 . . . , j r < m, the set
m

W(jl9..., jr) = U imσf. o δΛ o o 8Jr

i = l

has a finite number of compact components since it is a finite union of

compact connected sets. Define

D(j\>..., Λ ) = {Λ c {1, . . . , Λ } |3 a component, C, of W(j\,..., jr)

with i l = { / ε { l , . . . , « } |image of σt o δΛ o . . . o ^ . c C}}.

Since W( j l 9 . . . , 7r) is the disjoint union of its components it follows that

D(Jv -', Jr)is a partition of {1,.. ., n}.
We now show that if A G D O Ί , . . . , jr) then

Σ giσi ° V ° 8

Jr

 G Af^(J7|G) for some U G Φ.

First we show that Σ/€Ξ/4g/σJ^o δ^o . . . ofi^ G Af^A'IG) and then that

U / e y < imσf o δ o . . . o δ c £/ for some [/ e Φ.
* *= Λ ι J\ Jr

Let C be the component of W(jl9...9jr) associated with A and

suppose x G C and ί G Δ^. Since Σ^Lig^σ G Mq(X\G) we must have

Σ / ί δ o... oδ m x̂  ft = 0- But this implies that ΣieAgt = 0 since only those

maps σi ° o^ <> ° δŷ  with / G ̂ 4 can have image containing x. We

conclude that ΣiGAgισi °8Jι

o ° 8j G M^( Jf|G). Since C is connected

and diam(imσ/ ° δ ° ° δj) < ε/n9 it follows from the triangle inequal-

ity that diam(C) < card(;4) ε/n < n ε/n = ε. By our choice of ε there

must be F e f with C c F . But V is of the form U Γλ W ίoτ some

ί/ G Φ and hence there is t/ G °lί with C c U. Therefore

ΣiGAgiσι o j . o . . . o δΛ G Af^(ί/|G) for some 17 G Φ.

We can now complete the proof of the lemma as follows:
m

Sd'z = Σ wA wj

= Σ w A * " w

(since /)(y1 ? > Λ ) ̂ S a partition of ( 1 , . . . , n})

= Σ Σ w Λ ••• u j £ ft σ f . o δ Λ o . - . o δ Λ

Since

W; ' * * W,
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for some U e <% we see that Sdrz = ΣL zι and £/7 G Φ. π

With Lemma (16) in hand the proof of Theorem (14) for HM follows

identically to that given in [G]. Excision for HA now follows from

excision for HM and HS and the five lemma applied to the diagram of

long exact sequences obtained from the diagram

0 -» M(X- U, Y- U\G) -» S(X- U, Y- U\G) -* A(X - U, Y - U\G) -* 0

i I I
0 -> M(X,Y\G) -> S(X,Y\G) - A(X,Y\G) -> 0

Technical Remark. We have been unable to prove excision directly for

HA. This was the original reason for introducing M. Π

In summary we have proved:

(17) THEOREM. HM( , \G) and HA( , \G) are homology theories on the

category of pairs of metric spaces. D

On simplicial complexes we can identify exactly what our functors

are.

(18) THEOREM. // (X, Y) is any pair of spaces homotopy equivalent to a

pair of simplicial complexes {not necessarily finite), then HM(X, Y\G) = 0

andHA(X, Y\G) = HS(X, Y\G) (naturally).

Proof. 1/Af(point|G) = 0. Therefore by the uniqueness theorem HM

vanishes on finite simplicial complexes. It is easily checked that HM is a

homology theory with "compact carriers" (see 4.8.11 of [S]) and hence the

first result follows. The second result is immediate from the long exact

sequence relating HM, HS and HA. D

Cohomology. Using results of Bergman [B] it is easy to move that

A( X) is a free abelian group. In [R] we give a long and tortuous proof that

A(X)/A(Y) is free abelian for Y an open subset of a metric space X. This

is enough to prove the analogue of Theorem (18) in cohomology for

G = Z. We mention in passing the following interesting connection with

the first Cech cohomology group Hλ(X\ Z).

(19) THEOREM (see [R]). If X is a locally path connected metric space

then there is a natural isomorphism η: Hι(X) -> HιA(X).
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2. In this section we will show that H*M is non-trivial on the
following spaces:

(20) DEFINITION. Let X(r) be a countable union of r spheres having a
single point in common and a metric topology in which the diameter of
the spheres tends to zero with increasing index. D

Our proof that H*M(X(r)) Φ 0 will be based on a result of Barratt
and Milnor, namely, that the singular homology of X{r) (for r > 2) is
anomalous in the sense that HqS(X(r)) Φ 0 for arbitrarily large q. We will
see that there is a one-one correspondence between the elements they
construct and certain elements of H*M(X{r)). Their theorem is the
following:

(21) THEOREM {see [BM]). The rational singular homology groups
HqS{X{r); Q) with q = 1 mod(r - 1), q > 1, r > 1 are not zero. In fact
these groups are not even countable. D

Their proof is based upon the Hurewicz homomorphism ωQ: πq{X(r))
-> HqS{X(r); Q). The non-trivial elements they construct, are images
under ωQ of elements in πq(X(ry) built up from Whitehead products. The
application of (10) requires that we have descriptions of maps at the point
set level. For this reason, in the following definition of Whitehead
products and other subsequent definitions, we will be careful to make all
choices of representatives explicit.

(22) DEFINITION (Whitehead Product). Let Γ be the oriented w-cube.
Let a G πm+1(X, *) and β e πn+1( X, *) have representatives /:
(Im+\dlm+1) -> (X,*) and g: (Γ+\dIn+ι) ^ (X,*) respectively. The
boundary of J " ^ " * 2 equals d(Im+1 X In+1) = Im+1 X dΓ+1 U dlm+ι X
In+1 which is an m + n + 1 sphere, S, oriented by the usual orientation
on / W + M + 2 . We define a map <?(/, g): (X,*)-+(X, *) by

(23) .(/,,)(,,,)- I ί W > ( χ >, ) 6 ί,.+ l χ /.+ 1_

Now fix for all time an orientation preserving homeomorphism λ w + Λ + 1 :
(Im+n+\dlm+n+1) -> (dlm+n+2,*). Denote by {/,g} the composition
e(/,g)oλ. This is the representative of an element in πm+n+1( X, *) which
is called the Whitehead product of a and β and denoted [α, β] or [{/, g}]
when we wish to make the choice of representative explicit. D
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Basic properties of the Whitehead product can be found in [W].
The next two definitions are in preparation for the description of the

elements constructed by Barratt and Milnor.

(24) DEFINITION. By an infinite sum of elements [hj] e πq(X, *),
j = 1,2,..., we will mean an element [h] e πq(X, *), where h: (Iq

9 dlq)
-> (X,*) is given by

( 2 5 ) h(tl9...9tg)

fOΓΛ G 1 ?—,1 - —

I v~ι v
Note that part of this definition is that the Ay must be such that h is
continuous. We will denote h by Σ^= 1 hj. D

(26) DEFINITION. We will say that [h] e πq(X, *) is an infinite sum of
Whitehead products if h = Σ^°=1 {./), g,}, where /̂  and gy are representa-
tives of elements in <πm +1(X, *) and TΓ̂  +1(-Xr, *), respectively, with ray +
Πj + 1 = q. We will denote an infinite sum of Whitehead products by
[Σ^ifpgj}}- π

(27) PROPOSITION. Λ// O/ the elements of HqS(X(r)9*), with q =
mod(r — 1), q > r, r > 1, constructed in [BM], are o/ ί/ze /orra

We will require a point set description of the Hurewicz map.

(28) DEFINITION. Fix for all time an orientation preserving homeo-
morphism /: (Δ^aΔ^) -> (Iq,dlq). Let Cq be the constant map (Δq, Δq)
-* (X9 *). Then for [f]^ irq(X9 *), the Hurewicz map 77: ^(X, *)->

can be described as

if. iseven.

(30) DEFINITION. For [f]^πk(X9*)9 we define η(f) to be the
constant map (/*, /Λ) ̂  (X, *). D

The elements in the next lemma will be used to construct non-trivial
elements in H*M(X{r)).
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(31) LEMMA. Let [Σ«U {fP g, }] e Vq(X, *). Then

(i) Σ%x { η(/ y), g, } flπrf Σ«U { /,-, η(g, )} are continuous;

(iϊ)[Σ?=1{'n(fJ),gJ}} = [ΣJ=1{fpV(fj)}] = 0 in πq(X,*).

Proof, (i) obvious

(ii) We will show that [ Σ ^ η ί / , ) , g7}] = 0, the proof for the other

term being identical. Since image η(fj) = *, we can regard [{η(fj)9 g7}] as

an element of ^(imageg,, *) by (23). [{ij(/^), g7}] = 0 in τr^(imageg7, *)

(since the Whitehead product of anything with the trivial element is zero)

and hence there is a homotopy Hy. I X (Iq,dlq) -» (imageg j9*) from

{τj(/), g } to the constant map. Since the image of Hj is contained in the

image of gj9 these homotopies can be glued together in the obvious way to

form a homotopy from ΣJ=Ϊ {*»?(/), g7} to the trivial map. •

(32) PROPOSITION. // [Σ^=1{/}, g7}] e 7τ^(X, *) w ^π infinite sum of

Whitehead products, then there exists [ψ] e HqM{X) such that Hq(i)[ψ]

= ω([Σ^°=1 { /)., g7}]) w^re /: Af(X) -^ 5(X) w rt^ inclusion.

Proof. Using Lemma (31) and (29) we have

(33) Σ {/,,*,}

= [ψ] (say).

Note that (33) will hold even if q is even since the Cq terms will all

cancel out (see (28)). We will complete the proof of the proposition by

using the criterion given in (10) to show that ψ e Mq{X).
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Let u e ΔΛ. Then

(34) - Σ {fj,gj} (h,...,tq) for some

I" with ft e [l - ^ _ , 1 -

by (24) and (25),

oλ / , - 1 - -Λl-fi-^,.,,...,,,

by (22).

for some (x, y) +1

Σ {fjMgj

which we think of as being /" *+ 1 X 3/"*+1 U 3/m* + 1 X /"* + 1, and where
l/J e ^ , + i ( ^ •) and [gk] e ^ + 1 ( X , •) (see (22) and (23)).

Similarly we obtain

(35)

(36)

(37)

There are two cases to consider. If (x, y) e Im*+1 x θ/"*+ 1 then by
(23) we have:

(0 e{fk,gk)(x,y)=fk(x) (ϋ)

(in) f(/ έ,iy(*,;)-/ t(x) (iv)

Similarly if (x,^) e 9/m*+1 X 7" t + 1 we have:

(0 e(fk,gk)(x,y) = gk(y) (ii)

)U»^)5 = * (iv) e(η(fk),η(gk))(x,y) = *.

= *
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If we let vt be the set of coefficients of the four terms in (33) we see
that Σi(^uz)vi = 0 for any z e X. Since u was arbitrary, we conclude, by
(10), that ψeMq(X). Π

(38) THEOREM. HqM(X(r),Q) and HqM(X{r)) are uncountable groups
forq=l mod(r - 1), q > r, r > 1.

Proof. Suppose q = l mod(r - 1), q > r, r > 1. Then, by (27), there
are an uncountable number of elements in HqS(X^r),Q) of the form
ωgflΣyLxί/)-, gy }]), where we recall that ωQ is the composition of the
Hurewicz map ω: πq(X{r),*) -> HqS(X(r)) with the map HqS(X(r)) -»
HqS(X{r),Q) induced by the inclusion Z -> Q. By (32) we can always
find [c] €= HqM(X(r)) such that J5Γ,(/)[c] = ω([Σ7=1{/y,gy}]) and hence
we conclude that HqM(X{r)) is uncountable. If Ω: HqM(X(r)) -»
HqM(X{r), Q)is the map induced by the inclusion Z -> β, then we have

and hence HqM( X{r), Q) is uncountable. D

3. By a co-product on a space (X, x0) we will mean α«y continuous
base point preserving map φ: (X9xQ) -* (XV X9(xθ9xo)). In particular
we are not assuming x0 is a co-identity for φ. For any space (F, j 0 ) we
can then use φ to obtain a binary operation on [(X,xo)9(Y9 y0)] in the
obvious way. We will denote the constant map X -* yQ by j 0 .

(39) LEMMA. 2>/ (JΓ, x 0 ) ^«<i (F, y0) be any spaces and φ a co-product

on X. Let μ be the binary product induced on [(X, xo)9(Y9 y0)] by φ. Then,

for any c e Sq( X) we have:

(40) Sς(μ(f,g))(c)-S,(μ(f,y0))(c)

-Sq(μ(y0,g))(c) + Sq(μ(y0,y0))(c) € MqY.

Proof. Let σ: Δ^ -> X be any simplex. We will show

(41) μ ( / , g ) o σ - μ(/, J 0 ) °σ - μ(yo,g)°° + μ ( ^ o ^ o ) o σ G M

q(
γ)

From (41) we deduce (40) immediately from the definition of Sq and

linearity.
To see that (41) holds, let / e Δ^ and suppose in the first case that

Φ(σ(t)) = (x, x0) e X V X. Then we have
(42) μ(/,g)oσ(/) = Δ o ( / V g ) o φ o σ ( f )

= Δ o ( / v
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A similar computation gives:

(43) μ(f,yo)°σ(t)=f(x)

(44)

(45)

If in the second case φ(σ(t)) = (x0, x) e X V X then we obtain

(46)

(47)

(48)

(49)

If we let {ϋj) be the coefficients of the four terms in (41) then we see
by (42)-(49) that for any w e Y, Σ / ( , M,)υ; = 0. Since t was arbitrary, we
conclude by (10) that (41) holds. D

(50) THEOREM. Let (X, x0) and (Y, y0) be any spaces and φ a

co-product on X. Let μ be the binary product induced on [(X, xo),(Y, y0)]

by φ. Then, for q > 1 we have:

(i) if z e HtA(X) then μ(f,g)*(z) = μ(f,yo)*(z) + μ(y0, g)*(z)
and

(ii) if a € H*A(X) then μ(/,g)*(«) = μ(f,yQ)*(«) + μ(P0, g)*(a).

Proof. Suppose z = [p(c)] for some c e Sq(X). Then

(51)

This is because μ(y0, yo)q(z) e ί Γ ^ ( ^ 0 ) a n d H

q

Aiyo) = 0 for ̂  > 1.
Now if we use the fact that for any map h: X -* Y, hq[p(c)} =
[p{Sq{h)(c))l then (51) becomes:

-[p(Sq{μ{yϋ,g)){c))\ +[P(Sq(μ(yo,yo))(c))} = 0 by (40).

Therefore (i) of (50) holds.
Part (ii) follows in a similar manner. D

(52) COROLLARY. Let (X, x0) be any space and φ a co-product on X.

Suppose (Y, y0) has the homotopy type of a possibly infinite simplicial
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complex. Let μ be the binary product induced on [{X, xQ)9(Y9 y0)] by φ.
Then, for all q > 1, we have:

(i) Ifz e HqS(X), then μ(f9 g)q(z) = μ(f9 yo)q(z) + μ(y0, g)q(z)
(ii) If a G H<S(Y), then μ(/,g)*(α) = μ(f,yo)(«) + μ(yo> «)<(«)•

Proof. This follows from (18), its analogue in cohomology and (50). D

It can be shown that for each of the elements constructed in [BM]
there is a canoniclal way of constructing a space X and a co-product φ
providing a counterexample to Corollary (52) when X is not a simplicial
complex.
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