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PLANE ELLIPTIC GEOMETRY OVER RINGS

FRIEDER KNUPPEL AND EDZARD SALOW

The classical model of plane elliptic geometry is a sphere of the real
affine space. The points of this model are the pairs of antipodal points of
the sphere, and the lines are the great circles of the sphere. Right angles
retain their ordinary meaning. This model is isomorphic to the real
projective plane, where orthogonality on the set of lines is given by a
symmetric bilinear form such that no line is orthogonal to itself.

In the present paper we attempt a foundation and a study of plane
elliptic geometry over commutative rings.
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Introduction. Let R be a commutative ring with 1. The points of the
projective plane Π(i?) are the sets Ra, where a is a vector of the free
/?-module R3 such that a, b, c is a basis for some b, c. Replacing R3 by
the dual module i?3* one obtains the definition of a line Rg of Π(i?). Ra
is incident with Rg if ag = 0. Two different points need not have a
common line, and they can have more than one common line.

Let /: R3 X R3 -> R be a symmetric bilinear form such that (α, a)f
is a unit for every point Ra of U(R). For every a e R3 let α* denote the
linear function R3 -» JR, x •-» (a,x)f. Then the homomorphism R3 ->
i?3*, a ^> α* is a bijection; i.e. / is an inner product in the sense of [6]. If

337
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Ra is a point then Ra* is called the polar line of Ra. A line is called
orthogonal to Ra* if and only if it passes through Ra. The projective
plane together with this polarity is called the elliptic plane U(R,f). The
main purpose of Part II of our article is a synthetic approach to substruc-
tures of elliptic planes over rings.

Let Ra* be a fixed line of Π(i?,/). Taking all points Rb such that
(a, b)f is a unit we obtain the point set of an affine plane Π'(iϊ). If R is
a field then Π'(l?) contains all points except the points of the line Ra*.
But in general the affine plane will constitute a rather small part of the
projective plane. This is one reason why the coordinatization of a (synthet-
ically defined) elliptic plane involves difficulties.

In order to characterize pairs of points and lines being uniquely
joined to each other we introduce a relation —*. Ra*-^Rb means that Rb
is an affine point when Ra* is the line at infinity. In our system of axioms
we use only one basic relation |, standing for incidence. The relation — is
derived from | (compare [10], where ^ is a basic term). Therefore,
however, we must restrict our study to commutative rings where every
non-unit is a zero-divisor. Then two points A, B satisfy A+—»B if and only
if there is a pair of orthogonal lines g, h such that g is the unique
perpendicular of h through A, and h is the unique perpendicular of g
through B. This property will supply the definition of — in our axiomatic
approach. If A^-*B and h is an arbitrary line through B then there is
exactly one orthogonal of h through A. This property will be our first
axiom. The second one is a richness condition, and the third one uses a
three-reflection-theorem. A geometric property called (M) will not be used
until we prove that 2 is a unit of the coordinate ring in the last section.

We need a weakened version of the property denoted by —* which
holds for arbitrary distinct points. Being unable to offer a suitable axiom
that applies to any elliptic plane over a commutative ring, we use

(U) Given points A, B. Then there exists a line h through B such that
exactly one line is incident with A and orthogonal to h.

In an elliptic plane over a commutative ring of stable rank < 3
property (U) is valid. In particular (U) holds if any two points are
incident with at least one common line. This plain geometric property
would considerably facilitate our efforts. However we feel that this
restriction is not adequate since it excludes too many rings.

In an elliptic plane each point and its polar line define a reflection.
The basic concept of our system of axioms is a group G together with a
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subset S of involutions such that S generates G. The elements of S
represent reflections, hence simultaneously also points and lines. Within
this framework we formulate the axioms mentioned above.

The construction of a coordinate ring requires the existence of enough
automorphisms of the geometric structure. Within our axiomatic approach
the existence of sufficiently many suitable automorphisms need not be
explicitly presupposed but can be proved.

Reflections of an elliptic plane are elements of its orthogonal group.
Hence the study of elliptic geometry from our point of view is also a study
of orthogonal groups over rings.

PART I. Metric Planes over Rings

Let R be a commutative ring with 1. Then the rank of a free
i?-module is unique. Let R3 denote the free 3-dimensional i?-module
RX RX i?. We write i?3* := Hom(i?3, R). Rx is called a point (a line)
if JC, y, z is a basis of R3 (of I?3*) for some y, z. The point Rx is incident
with the line Ry if xy = 0; notation: RxIRy or RylRx. Let ^(R) denote
the set of points and &(R) the set of lines. U(R) := (&>(R), &(R\ I) is
called the projective plane over R. We shall write &>= &>(R) and <£?=

Every linear bijection R3 -> R3 induces a contragredient mapping
R3* -* i?3*. This pair of mappings induces an automorphism (collinea-
tion) of U(R).

Let Rx, Ry e &. We write Rx distant Ry if x, y, z is a basis of R3

for some z. The analogous definition applies to a pair of lines. Take
Rx e & and Ry e Jδf\ We say i?* <fofa/ιί Λy or Ry distant Rx if xy e Λ*
(group of units).

Next we collect some elementary lemmas. From each of them a dual
counterpart can be obtained by interchanging the words "point" and
"line". I.I and 1.3 can be found in [7] and in [10]. Proofs of 1.2 and 1.5 are
given in [10]. 1.4 is due to [2].

1.1. Let A, B e &>. If A distant B then A, B lie on exactly one line g.
We write g = (A9B).

1.2. The following statements are equivalent.
(i) A distant B if and only if A, B have a unique common line.

(ii) Every non-unit ofR is a zero-divisor.
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1.3. Given ^ e ^ and g G jSf. The following statements are equivalent.

(i) A distant g.

(ii) A distant B and (A, B) distant gfor any point Big.

(iii) A distant B and (A, B) distant g for some point Big.

An «-tuple (α 1 ? . . . , an) G Rn is called unimodular if Λα^

+ + Rccn = i?. In other words, βλaλ 4- + βnan = 1 for some /?, G

/?. Another equivalent statement is that ab = 1 for some 6 G 7?"*, where

1.4. ^4/?j /wo points have at least one common line if and only if the

following condition holds. Let (a,β) <Ξ R X R. Then O , β ) = (λγ, λδ) for

some λ G i? and some unimodular (γ, 8) ^ R X R.

1.5. The following statements are equivalent

(i) Le/ i 4 E ^ α/?d g,h^J? with Alg,h. Then] distant g, A /or ̂ Όm^

y' e JS? withjlA.

(ii) i? Λα5 stable rank 2; i.e. */ (oc,β) ^ R X R is unimodular then

a + / ? γ Z5 u n i m o d u l a r f o r s o m e γ € Λ ( z . e . α + ) 8 γ G i ? * ) .

1.6. Suppose that R has stable rank < 3; i.e. if (a, β,y) <Ξ R X R X R

is unimodular then (α + μγ, yβ + ^γ) is unimodular for some μ, v e i?.

7%e« /or eί ery 1̂ G ̂  α«J g G jSf /Λere zs ύf //«e Λ 5wcΛ that hi A and h

distant g.

Proof. Every bijective linear mapping of R3 induces an automorphism

of Π(i?). Thus we may assume g = Λ[0,0,l], A =R(a,β,y). A set

h = R[χ,ω,η] c i?3* is a line with the asserted properties if and only if

(4-) (χ, ω) is unimodular and αχ + βω 4- γi] = 0.

The triple (a,β,y) is unimodular since yί is a point. By our assumption,

(a 4- μγ, β 4- ^γ) is unimodular for some μ, v G R. Let χ : = —β — vy,

ω := α 4 μγ, η:= va — μβ. Then ( 4 ) holds.

A substructure ΓΓ of an incidence structure Π is called locally

complete if each line of Π which is incident with a point of ΓΓ is a line of

ΓΓ.

1.7. Let U<Ξ££. Define &>':= {A <Ξ @\ A distant u) and &'\= ( g

G J27: g distant u}. Γ/zeπ ίAβ substructure W := ( ^ ' , Jίfr, I) o/ Π = Π(i?)

zi locally complete. For g, A G JS?' ê/zVze g||Λ {parallel) if (g, t/) = (A, u).



PLANE ELLIPTIC GEOMETRY OVER RINGS 341

Then for every A G &' and g e ££' there is a unique h G !£' with A||g and
hIA.

The assertion follows immediately from I.I and 1.3. IT is called the
affine plane (related to the line u).

EXAMPLE. Let u = i?[0,0,l]. Then &' = {R(a,β,l): a,β G R] and
JSP' = {R[a, β9 γ]: a, β, γ G iί and (α, j8) unimodular).

Let /: i ? 3 X i ? 3 - > i ? b e a symmetric bilinear form. In the sequel we
assume 2 G ] ? * . Call lines Rg, Rh orthogonal if (g, A)/ = 0. For A <z R3

let Λ -1 := {JC e R3: (a,x)f = 0 for every a ^ A}.

If α G R3 satisfies (a9 a)f G iϊ* then R3 = Ra Θ Rax , and

is the linear injective mapping with a •-> a and JC •—> — x ίor x ^ Ra± .
σRa is called the reflection in Ra. oRa is an involution and satisfies
(xoRa,yσRa)f= (x9y)f for x9y G i?3, i.e. σΛβ is orthogonal. σΛα = σΛZ>

implies Ra = Rb.

1.8. GtoέTi a,b <E R3 with (a9a)f, ( 6 , 6 ) / G i?*. The following state-
ments are equivalent.

(i) σΛΛ αwJ σΛft commute.
(ii) ασΛ/> = λa for some λ G /? w/ίA λ2 = 1.

(iii) λ χ β G i?Z> β/iJ λ 2 α G Rb1^ for some λ1? λ 2 G R with λ\ = λ l 9

λ\ = λ 2 , λλ 4- λ 2 = 1 tffld λ 1 λ 2 = 0.
(iv) ασΛ/, G Λα.

Prας/". Let c:= flσw. Then (*) σRhσRaσRb = σΛc. (i) => (ii). (aσRh)σRa

= aσRh implies aσRh = λa for some λ G i?. Furthermore, λ2 = 1 as
(a, a)f = X2(a, a)f. (ii) => (iii). We have λ2 = 1 and aoRh = λa. Let
λx := i ( l + λ) and λ 2 : = \{l - λ). Then λ ^ G i?6 and λ 2 β (Ξ Rbx.
(iii) =» (iv). (iii) implies α σ Λ i = (λ !^ 4- λ2a)σRh = λλa — λ2a =
(λλ — λ2)a G i?β, hence i?c = i?α since σΛ/> is orthogonal, (iv) ==> (i)
follows immediately from (*).

1.9. Let {a, a)f9 (b, b)f9 (c, c)f G 7?*. ΓAe iΛ/iίi/y σRaσRb = σΛ

if and only if any two of the vectors a, b, c are orthogonal. Then a, b, c is a
basis ofR3.
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Proof. Let us assume that a, b, c are pairwise orthogonal. Define

a* G Λ3*, x -> (JC, a)f for JC G i?3; likewise 6*, c*. We have αa * G Λ*

and Z>α* = 0 = cα*. Let 4̂ denote the matrix whose rows are the coordi-

nate vectors a, b, c, and let B denote the matrix whose columns are the

coordinate vectors of α*, b*9 c* in the dual basis. Obviously,

AB =

aa*

0

bb*

hence A is invertible. This means that a, b, c is a basis of R3. We have

*°R<PRb = - * = *<^c> &σΛflp™ = ^Λ^ Λ f l = 6 σ * * = -b = bσRc (cf. 1.8

(iϋ) => (i)), cσΛ βσΛ 6 = c = cσΛc. Therefore σΛασΛZ, = oRc.

Conversely, assume oRaσRh = σRc. The reflections σRa, σRh and also

σRh, σRc commute. From L8(ϋi) we obtain idempotent elements λ,μ G R

such that λa <Ξ Rcx and (1 - λ)a G i?c, μZ? G RCX and (1 - μ)Z? G i?c.

Pick x e Tie-1. The assumption yields - x σ ^ = xσΛfl, hence

(b,b)fb+(a9a)fa

Furthermore, ((1 - μ)b, x)f = 0, thus (b, x)f = μ(b9 x)f. Also (a, x)f =

λ(a, x)f. We conclude x G i?μZ> 4- i?λα. Thus we proved Rc± c i?μ6 4-

i?λα, hence i?3 = i?c Θ i?c x c i?c + iίμδ + i?λα. Therefore c, μfe, λβ is

a basis of 7?3. This implies μ, λ e i ί * . Finally, since λ and μ are

idempotent, μ = 1 = λ and a,b G i?c x .

1.10. Lέ?/ σ Λ a , = σ Λ α σ Λ e , σ Λ y = σΛZ,σΛ^, σ Λ c , = σRcσRe. Then σRaσRhσRc

= σRJ, where d:= (b,c)f - a - (a,c)f - b + (a, b)f c. oRdoRe is a reflec-

tion. Furthermore, if Ra distant Rb then Re distant Rd.

Proof. Let d' := (b\ c')f a' - (a\ c')f V + (a\ b')f c'. Let

Λ := - ( a , c)f-b + (a, 6)/ c. Then j G ΛΛ X Πi?^ x cf. 1.9. Since α, α',

e is an orthogonal basis (cf. 1.9), Ra± ΠRe1 = ita7. Also s' G i?α, where

Λ1' is defined correspondingly to s. Thus (s, Λ 7 ) / = 0. This implies

(a,c)f-(a',b')f-(b,c')f + (a,b)f-(a',c')f(c,b')f=O.

Two similar equations arise from cyclic permutations of a, b, c. These

equations immediately imply (d, d')f=0. For xγ'.= a, x2:= b and

x3 := c Gram's determinant G:= det((x/9 xk)f) is zero, because a, b, c G

Re±= Ra + Ra'. Hence (d,d)f= (a9a)f (b,b)f (c9c)f - G e R*.
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Also (d\d')f ^ R*. Consequently e, d, d' is an orthogonal basis; cf. 1.9.

We assert that σRd and oRaoRhσRc coincide on {e, d, d'}. Both of the

mappings fix Re. We have dσRa = (b9 c)f - a + (a, c)f b — (a, b)f c

since -{a, c)f b + (a, b)f c e Rax . Two similar arguments yield

d°Ra°Rh°Rc = d = ̂ <W Similarly

d'σRj>RlpRe = -(ft',*')/' β/ +(« /,c0/ ^ - K W ^

since

-(a',c')f V +(a',b')f c' e Rex ΠRaf±= Ra.

Finally we obtain d'σRaσRbσRc = — df = rf'σ^^.

Now let us assume in addition Ra distant Rb. 1.9 yields e ± = Ra +

i?Z>, and a, Z>, ̂  is a basis of R3. Hence c = \a + μb for some λ, μ G i?.

The coordinates of the vectors c, d, e in the basis a, b, e are

λ,/ι,0

(b9c)f+λ(a,b)f9-(a9c)f+μ(a9b)f,0

0,0,1,

respectively. The matrix M consisting of these three rows satisfies

detM= -λ(a9c)f-μ(b9c)f= -(c,c)/eϋ*.

Therefore, c, J, ̂  is a basis. In particular, Re distant Rd.

1.11. DEFINITIONS. For any a e i?3 let «* e i?3* denote the mapping

x -> (£i,jc)/. We define a sub-structure Π(Λ,/) = (^(i?,/

I) of Π(Λ):

i?αe^(i?,/)<=»α, 6,c isa regular orthogonal

basis of /?3 for some 6, c.

Regular means that (α, α)/, (6, 6)/, (c, c)f G JR*.

i ) ^>g = α* for some i?β (

Let i?α G ̂ (i?, / ) . The line i?α* is called the /?o/αr of ita, and jRα is

called the /?o/e of the line Ra*. The pair of mappings: Ra >-> Ra* for

RatΞ&>(RJ) and Ra* ̂  Ra for Ra* e&(R,f) is a polarity of

Π(i?,/). A pair of points i?α, i?£> G 0>(R,f) (a pair of lines Ra*, Rb* G

, /)) is called orthogonal if RalRb*.

1.12. Lei Rae0>(RJ) and Rb* G^(i?,/). Γfew italita*

//β, ό, c is a regular orthogonal basis ofR3 for some c.
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Proof. If a, b, c is an orthogonal basis then (a,b)f=0, hence
RalRb*. Conversely let us assume RalRb*, i.e. (a,b)f = 0. Ra distant
Ra* (since aa* = (a, a)f e #*) and RalRb* imply ito* distant ita*; cf.
I.3(i) => (ii). Hence RclRb*, Ra* for some iϊc e ^ ( i ϊ ) ; cf. I.I. Any two
of the vectors a, b, c are orthogonal. From Ra distant Ra* and Rb,
RclRa* and Rb distant Re follows that a, b, c is a basis of i?3.

1.13. Le/ Sf(R9f):= {σRa: Ra <Ξ 0>(R,f)}. For Ra, Rb e
the following statements are equivalent.

(ii) RalRb*.
(iii) Ita* ± i?Z>*.
(iv) ita ± i?Z?.

(vi) a, b, c is a regular orthogonal basis of R3 for some c.
This is obvious from 1.9 and 1.12.

1.14. U(RJ) is called an elliptic plane if U(RJ) = U(R).

REMARK. ΐl(R,f) is an elliptic plane if and only if any homomor-
phism of R onto a field R induces a homomorphism of Π(i?,/) such
that the image Π(i?, /) is an elliptic plane in the usual sense.

LEMMA. Π(i?,/) = Π(i?) if and only if (a, a)f ^ R* for every point
RaofU(R).

Proof. Let (a,a)f ^ R* for every basis a, b, c of R3. Given Ra e
£P(R). The usual vector space method can be applied in order to construct
an orthogonal basis a, b, c. Hence Ra e @(R,f). The mapping Ra •->
Ra* is a bijection of £?(R) into ££(R) since a regular orthogonal basis of
R3 exists. Therefore ^(7?) = <&(R, f).

1.15. Let Ra, Rb e ^ ( Λ , / ) . We write σRa\σRh if σΛΛσΛZ>

cf. 1.13. If σΛα, oRh\σRc for a unique σΛc e ^ ( i ? , / ) then we write oRauσRh.
The abbreviation oRa>-^σRb is to denote that σ Λ Jσ Λ c ; <*Λc|σΛί/; ^ΛJI^Λ/, and

a n d σRflσRb f o r s o m e σ/?c. σΛ^

PROPOSITION. Suppose that every non-unit of R is a zero-divisor and
) / G R* for every Ra e ^(i?) (AOTC^ Π(i?,/) = Π(i?); cf. 1.14).

(i) RalRb* <=> σRa\σRh <=> Ra 1 Rb <=> i?^* ± Rb* ** f(a, b) = 0.
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(ii) Ra distant Rb <=> there is a unique line of ΐl(R) = Yl(R,f)

joining Ra to Rb <=> Ra* and Rb* intersect in just one point <=> oRauσRb.

(iii) Ra distant Rb* <* Ra* distant Rb <=> f(a, b) e R* <=> σRa^σRb.

Proof, (i) and (ϋ) follow immediately from 1.2 and 1.13. The equiva-
lence of the first three statements of (iii) is obvious from the definitions.
The last one is a translation of 1.3 (iii).

1.16. Suppose that every non-unit of R is a zero-divisor, and that
{a, α ) / e R* for every point Ra e @>(R). Let &:= @(R,f) denote the
group generated by &*:= £f(R,f). We denote the elements of £f by lower-
case letters and use the notations introduced in 1.15: a\b means ab e y, and
aub indicates that c\a, b for just one c. a*—ώ is to denote that a\c; c\d\ d\b
and and and cub for some c,d.

Sf is invariant under inner automorphisms of ^, and {&, 5f) satisfies
the following properties.

(El) Ifa—^b andb\c then auc.
(E2) If a\b then c\a and cub and c>—*bfor some c.
(E3) a, b, c\e implies abc e y.
(M) Ifa*—*b then ab is not an involution.

Proof. (El) follows from I.15(ii) and I.3(i) => (ii). (E2). Let σRa\σRb,
i.e. oRaσRh = σRd for some RdeίP(R). Then α, b, d is a regular
orthogonal basis of i?3; cf. 1.9. Thus, α, Z>, c := b + d is a basis of R3. In
particular, Re e &>(R) and Re distant Rb. Hence oR<μσRb; cf. I.15(ϋ).
(b,c)f= (b, έ ) / e R* implies oR(r-+σRb\ cf. I.15(iϋ). (E3) follows from
I.15(i) and Ϊ.10. (M). Let σRa*-*σRby hence (a,b)feR*; cf. I.15(iϋ).
Suppose that σRa and oRb commute. From I.8(iv) we have aσRb e Ra.
Now the formula for σRb immediately shows Ra = Rb, hence σRa = σRb.

REMARK. IfR has stable rank 3 (cf. 1.6) then (G, S) satisfies
(U) Let a,b e ^ . Then c\a and cub for some c^ίf.
{<&, £f) is called the group of motions of the elliptic plane.
Let J^(i?,/):= [a G Aut(i?3,/): detα = 1 and det(l + a) e R*}.

The following result is a "representation theorem" for J^(i?, / ) .

1.17. Let (a, a) f^ R* for every point Ra e &>(R). Let Rp
(a) Let a ^^(RJ) and Rg* ^^(RJ) with Rg*lRp. Then a =

oRqσRgσRh for some Rq e &>(RJ) and Rh* GjSf(i?,/)? where Rh*lRp
andRg* distant Rh* andRp distant Rq*.
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(b) Given RqtΞ0>(RJ) and Rg*,Rh* ejδ?(Λ,/) such that Rg*,
Rh*IRp and Rg* distant Rh* and Rp distant Rq*. Then α:= σRqoRgσRh

Proof of (a). Let q:= p(a~ι + 1). det(α"x + 1 ) = detcT 1

α ) e # * implies Rq e 0>(R,f). Select Rj*e&(R,f) with
Rj*lRq. Let e =7(1 + α). Then i?e* e Jg?(Λ,/), and the equation

0 = (

implies Re*IRp.

l +p)f

Also, R* Ξ (e,e)f= 2(j\e)f. Hence, Rp* distant Rq and Rj distant
Re*. In particular, Rp* distant Rj*9 since Rj*\Rq. Thus, Rd*\Rp, Rj
for a unique line Rd* e «£?(!?, / ) .

p<χ-ισRq = (1/2 •/?(! 4 α" 1 ) - 1/2

= 1/2 - p{\ + α" 1 ) + 1/2 • />(1 - α ' 1 ) = p,

since /?(1 4- a~ι) = q and(/?(l + α" 1), /?(1 — «~ 1))/= 0.
j . Together with pσRe = — p and joRq = —j we conclude pβ = —^ and
7)β = — j \ where β = oRqaσRe. Therefore, xβ = —x for any x ^ Rp + Rj
= dL (apply Rp distant Λ/). This yields (Rd)β = Rd, hence dβ = d SLS
detβ = 1. Thus we proved β = σRd, i.e. a = oRqσRdσRe. From 1.10 we
obtain oRdaRe = oRgσRh, where i?Λ* is a line with Rh*lRp and i?g*
distant i?Λ*.

Rh1

/ (b). det α = 1 as a is a product of reflections. We want to
prove det(α + 1) e i?*. Select gl5 ^ 2 such that q, qv q2 is an orthogonal
basis. The assumption Rp distant Rq* implies Rp distant Rqt. Let
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Rd* <Ξg>(R,f) such that Rd*lRp,Rqr Then Rd? distant Rd% (apply
1.3, using Rp distant Rq* and Rqλ distant Rq2). By L10 there are lines

Re? through Rp such that σRgσRh = oRdoRer The equation σRdσRdi =
GRe°Re a n c * &dι distant Rd2 imply Re1 distant Re2; cf. 1.10. Hence
Re[ + 2Re2 = p ± . We have

where λ y := ^ ^ ^ / ( ( ^ e , ) / ) - 1 e i?*. Hence

^ x ( α + 1) = (Λήfx + i?^2)(« + !) = Reι + Λ e 2 = / ? " L

Finally,

ΛgσΛΛ + 4) = λ/? + w,

where >v denotes the last bracket and λ = 2(q, p)f((p,p)f)~ι ^ R*.
From the reflection formula one infers that

We proved R3 = Rp + pxQ R\a + 1). Therefore det(α + 1) e iϊ

PART II. Plane Elliptic Geometry in Terms of Reflections

1. The system of axioms. The main theorem. Our system of axioms
aims at elliptic planes over commutative rings. Under the assumptions of
1.16 of Part I the group of motions of such an elliptic plane will satisfy our
system of axioms, possibly apart from (U). If the ring has stable rank 3
then (U) will be fulfilled, but we do not know a nice property of the ring
which is equivalent to (U).
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The basic assumption. The pair (G,S) consists of a group G =
{ α, β,...} and a set S = { 0,6,...} Φ 0 of involutions such that S is
invariant under inner automorphisms of G and S generates G.

NOTATIONS. a\b if ab e S. Let aub denote that there is a unique c
with c\a, b. Given a, b. If a\c; c\d\ d\b and and and cub for some c, d
then we write a*-^b. We say c joins a to Z? if c|tf, ό. u, and | are invariant
under inner automorphisms.

AXIOMS.

(El) Ifa*—*b andb\c then auc.
(E2) If a\b then c\a and cub and c—+bfor some c.
(E3) a, b, c\d implies abc e S
(M) If a*—ώ then ab is not an involution,
(U) Given a, b. Then c\a and cub for some c.

Our last axiom implies the following two statements.
(U') Let a e S. Then a\b for some b.
(U") Given a, b. Thena\c\ c\d\ d\b for some c,d.
Axiom (M) will not be used until we study the group of motions in

§11. Moreover, in §2 and §3 only (El), (E2), (E3) and (IT) will be used.

The main purpose of this article is the proof of the following theorem.
Simultaneously, the proof is a study of the group of motions of an elliptic
plane over a commutative ring.

THEOREM. Let (G,S) satisfy the basic assumption and (El), (E2), (E3),
(M) and (U). Then there exist a commutative ring R, a bilinear form /:
R3 X R3 -> iί, and a mapping σ with the following properties.

1. Every non-unit ofR is a zero-divisor, and 2 is a unit.
2. Π(i?, /) is an elliptic plane in the sense of Part I.
3. σ is a monomorphism of the group G into the group & such that

Sσ c S?9 where (@, S?) denotes the group of motions of H(R,f). Further-
more, &(RJ) c Gσ.

2. Basic concepts. In this section we assume that (<?, S) satisfies
our basic assumption and (El), (E2), (E3) and (U r).

2.1. (a) |, —-* and u are symmetric relations on the set S. Furthermore,
they are invariant under inner automorphisms of G.

(b) a\b and α, b\c implies ab = c.
(c) If a\b then aub.
(d) α — α/or every a.
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(e) a\b and abc e S implies ab\c.
(f) Let d*—*e and a\d and b\a, e. The

Proof, (a) and (e) are obvious, (b). Select d such that d\b, dua and
d—*a; cf. (E2). (El) implies bua. Thus, a, b\c andα, b\ab yields c = ab.
(c) is a consequence of (b). (d). Select b ^ S such that b\a\ cf. (IT). Then
a\b\ b\ab\ ab\a and a\ab and b\a. Thus, α—a by (c). (f). Our assump-
tions yield d\a\ a\b; b\ab. (El) implies dub. Finally, auab by (c). Hence
we obtained d*—ab.

2.2. Let a\b and c\ab. Then awe if and only if b>—*c. The figures
indicate four possible interpretations of "a\b and c\ab".

c

ab

Π

Co

ab

b~i a

Ci

ab

a

Proof. We have b\a; a\ab; ab\c and buab; cf. (c). Hence, auc implies
b>—<c. Conversely, the assumption b<—>c together with a\b yields auc; cf.
(El).

2.3. Let a, b, c\d. Then abc e S and abc\d.

Proof. abc<=S by (E3). Also a,b,cd<=S and a,b,cd\d. Hence
a- b cdψ Sby(E3).

2.4. (i) Let a, b\g and anb. Then c\g and cua, bfor some c.
(ii) Let a, b\g and a—^b. Then c\g and cua and c—bfor some c.

Proof, (i). Select r, s with r\a and s\b and r, sug and /*, s—g; cf.
(E2). Then r— b and s—>a, hence rus. Let v\r, s. We have υua, b and
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conclude w— g and vug. Let d\g9 v. v\r; r\a\ a\ag and vua and ruag (as

r>—«g by 2.2) imply v—*ag. Hence duag. Applying 2.2 twice we get

c:= dgua and, likewise, cub.

Proof of (ii). From 2.2 we know aubg. From (i) we obtain c\g with

cua, bg. Thus cua and o— Z>; cf. 2.2.

2.5. = bd and aub then cud.

Proof. 2.2 yields a*-*bac = d, hence cuJ; cf. (El).

2.6. Lei a, 6|c. Ifd\a, b andd^c implies d = c then aub.

Proof. We proceed in a number of steps.

(i) Let ab = α/ α«J α, 6, c, ί/|e. Suppose that g\c9 d and g*—*e implies

g = e. Ifh\a9 b and A—e then h\ec9 ed.

m

me

Proof of (i). (El) implies huc.d. Let m\c9h. Since m,a,b\h, (E3)

implies raα/ = mα& e S, i.e. mc|c, d. h—*e yields eum; cf. (El). There-
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fore, e*—*mc by 2.2. Our assumptions imply e = me, i.e. ec = m\h. Simi-
larly ed\h.

(ii) Let ab = cd and α, b, c, d\e. Suppose that g|c, d and g*—*e implies

g = e. Then h\a, b andh*—*e implies h = e.

Proof. Let h\a, b and Λ— e. Then h\ec,ed by (i). Select v such that
v\e and vuc, ec; cf. 2.4 (i). (E3) implies w:= UΛZ> G 5; furthermore, w\e
by 2.3. We claim

(*) If /1 υ, w and /—«e then / = e.

Namely, /|y, w and /—i^ implies /|^c, ed by (i) (take u, w, / instead of α,
Z>, Λ). Hence /, e|ϋ, ec, and the assumption i uec yields / = e. Thus, (*) is
true. Applying (i) once more, we obtain h\ev,ew. 2.5 implies eυuec, since
ev v = ec c Ei S and vuc. Therefore, h\ec, ev implies h = e.

Now we are ready to prove the proposition. Let a, b\c and suppose
that aub is not true. Then e\a, b for some e Φ c. Select s with s|e and
sua and s*— α; cf. (E2).

(El) yields cus. Let t\c,s. Then />:= 5α6 e S and /?|e by 2.3. The
equation tsp = tab e S shows p\st, and 5—.<? implies stua; cf. (El). Let
g|5/, a. Since />,.?, g|5/, (E3) yields r:= bag = psg ^ S, hence b,r\ag.
Now tf —5 implies cu^, hence c>—st by 2.2. As g\st, (El) and 2.2 yield
cug and c—*ag. Furthermore βg|β, b. The assumption in the proposition
implies ag = c. In particular, b, α, g|c, hence r\c by 2.3. We have
a, 6, g, r|c and ab = gr. Furthermore, st\g, r and Λ ̂  -HC and st Φ c (the
last statement is true, since st = c would imply a, s\c, e, contradicting ans
and c Φ e). We apply (ii) and obtain an element dΦ c with d\a, b and
dι—*c. Thus we reach a contradiction.

Statement (ii) in the proof of 2.6 and the assertion of 2.6 yield
2.7. Lei α, 6, c, d|e am/ α6 = cd. If aub then cud.
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2.8. Let a\c, e and b\d, e. If due and aub then cud.

Proof, aub and eud mean α —d by definition. Hence cud.

2.9. Let a, b\e and c\a9f and d\bj. If e—</ and aub then cud. This
follows immediately from 2.8.

2.10. Let e\a, b\ abc e S\ aub and cue. Then c\e.

Proof. Let rf:= abc; h\e,c and g := abh. Then g\e and guh; cf. 2.3

and 2.7. We have g, h\e, gd = Λc, and guΛ. Hence e = gd = hc\g, Λ, c, J.

A similar argument shows

2.10'. Suppose that (U") Ao/ώ. Lei ab = erf απrf ήr|c? rf αnrf αufe. ΓΛOT

^|Λ, b. In particular, if ab = erf αwrf ̂ ufe α«rf curf then q\a, b, c, dfor some

2.11. Suppose a\c, rf; /?|Z>, c; ήr|ό, rf; buc,dandpuq. Then a
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Proof. The assumptions yield c —q, hence auq. Furthermore, a\d;

d\q\ q\b and dub. Thus <z—b.

2.12. Le/ a,b ^ S. Then a>—«b <=> cub for every c\a.

Proof. " => " is (El). " <=". Select any c\a. Then cuέ by our assump-
tion. Let p\b,c. Select g\b such that gup; cf. (E2). Then c—g, hence
αug. Let ί/|α, g. Our assumption yields duZ>. Now b*— α by definition.

Without success we made attempts to avoid (U) in our system of
axioms, since an analytic model may fail to satisfy (U). Observe that (U)
is valid in the particular case that a*—*b or c\a, b for some c holds for
every pair a, b; cf. (El) and 2.2(c).

3. The elliptic plane and the pseudo-plane. Let again (G,S) satisfy
the basic assumption and (El), (E2), (E3), (U').

In Part I we introduced the group of motions (&9S?) of an elliptic
plane over a ring. (^, Sf) satisfies our system of axioms (except perhaps
(U)). Every pair consisting of a point Ra and its polar line Ra* corre-
sponds to a reflection σRa. With this identification, incidence and ortho-
gonality of the elliptic plane both correspond to the relation " | " on S?; cf.
1.15. Hence, in order to reconstruct the elliptic plane, we must assign both
a point and a line to each element of Sf. Having this in mind we perform
the following construction.

Select a bijection * of S onto a set & = S such that & C\ G = 0.
This bijection will be maintained throughout the rest of this article. Also
for the rest of this article we fix an element u e S. Let J5f:= S, J5f' := {g
e JSf: guu} and ^ ' : = { α e ^ : a*-*u).

We regard ^ as a set of points, oSf as a set of lines. A point a is
incident with a line g, abbreviated ά\g or g|<5, if α|g holds. Lines g, /z are
called orthogonal, abbreviated g|Λ, if g|/z holds. The incidence structure
(^, J5f, I), together with this orthogonality, is called the elliptic plane
assigned to (G, S). The incidence structure (&\ ££', |) is called the affine
plane (with respect to u). {@\ S£\ |) is a locally complete substructure of
(^, &, I), i.e. if α e 0" and g G JS? with ά\g then g e JS?' (apply (El)),
α is called the polar point of the line α.

Let ί^:= (xμ: x,y\u) and ^ * : = (xy: *, y\u and xuj}. ^ is an
abelian subgroup of G; cf. (E3). For brevity, the elements of 3) will be
called angles, u is an element of 2 and is called the right angle. (More
precisely, the elements of 2 will serve as quantities assigned to pairs of
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lines by an angle measure.) We define an angle measure

w: &' X J S f ' ^ S , w(g,A):= cd,

where c\g, u and d\h, u. (&>', J£?', |, w) is called he pseudo-plane (of (G, 5)

with respect to u). Two lines g, A G J?7' are called pseudo-parallel if
w(g> h) — 1? a n d pseudo-orthogonal if w(g, A) = w.

An angle α G ® is called regular if for all g, A G JS?' w(g, A) = α

implies that g, A intersect in just one point of &'.

3.1. w(g, A)w(A, y) = w(g,y) βwJ w(g,A) = w ^ g ) " 1 for all g,hj

3.2. Gfoe/i ά<E&', g^Sέ" and a e ^

such that a\h with w(g, A) = α.

Proof, Let C G S with c|g, w, and rf:= cα. α^^w implies αiid. Hence

A|^, J for exactly one A e 5. Furthermore, A e JS?7.

3.3. «® * « /Aβ Λ e/ of regular angles.

Proof. Let g, A e JSP7 and α := w(g, A) G ̂ * , hence end (by 2.7),

where c|g, u and d|A, w. Then guA by 2.8, i.e. there is exactly one a G S

with a\g,h. We have A|d; J|w; M|C and Auw and due, hence A—c and

auc. Furthermore, a\g; g\c; c\u and gnu. Therefore, #•— w, i.e. ό G ^ ' .

Conversely, let us assume a G 2\3l*. We claim that α is not a regular

angle. Select c,d G »S with c, έ/|w and α = cJ. Then cu J is not true, and

2.6 produces an element a G S with ^ # « and α|c, J and α -^w. Thus,

c, J | δ , α, i.e. the lines c , J e Jδf77 do not intersect uniquely in the pseudo-

plane and satisfy w(c,d) = a.

3.4. Letg, h <£.<£' and a G ̂ >' w/YA <5|g, A. //guA ίA «̂ w(g, A) G ^ * .

The assertion follows immediately from 2.9.

REMARK. In 3.4 we were not able to replace the assumption guA by

the property that a is the only common point of g and A in the

pseudo-plane.

4. Products of two elements of S. From now on we assume that

(G, S) satisfies (El), (E2), (E3) and (U) of §2.

4.1. Let ab = cd and anb. Then end and e\a, b, c, d for some e. In

particular, abc G 5 and a, b\e and anb imply c\e.
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Proof. Let e\a, b. Select / such that f\c and fue; cf. (U). Let r\e,f
and s:= rab. Then s\e and rus; cf. 2.3, 2.7. Select # such that q\f and

/; cf. (U). Then q, e, r |/, hence m := #cr = gcαfo = qds e 5 and m|/.

Λ

e

jur and euf yield $•— /. In particular, mus. Also, m.s = qd and
Hence, g|m, s, q, d for some g; cf. 2.10'. From 5-—/ and g\s follows guf.
Together with qud follows cud; cf. 2.8. Thus, ab = cd and aub and cud.
2.10/ yields immediately the assertion.

REMARK. 4.1 subsumes the statements 2.5 and 2.10.
Due to 4.1 the following definition makes sense.

DEFINITION. Let <f:= {ab: aub}. To every ab e g corresponds a
unique c with c\a9 b, called the support of ab. Let ^ : = {gA#: guh and
support(gλ)—<^}. J*"o:= {PΦ P~<l}

The following remarks are obvious.
aub if and only if ab e <ί, /or any pair a, b; cf. 4.1. <f, IF and J ^ are

invariant under inner automorphisms of G. Furthermore, J ^ c Ĵ ". //
a G ̂ , J^ or J^ό, /Λew a" 1 e ^, Ĵ *, J^o, respectively.

For arbitrary subsets J / , J 1 C G let j / # : = {aβ: a (Ξsf, β

4.2. ^ = 5^"= J^S = 5^0 = ̂ QS. Furthermore, support(jcμ)—x for
every μ e J and every x e S.

Proo/. If μ e Ĵ " then SJ^3 aμ = μa a^J^S for any a. Thus the
second and the last equality are clear. Also &S Ώ. &ΌS. So it suffices to
prove

(1) &0S 2 <f and
(2) £-3

Proof of (1). Let ab e <T. Then αc—fe, where c|α, b; cf. 2.2. Hence
= c(ac)b
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Proof of (2). Let g, h\p and guh and /?—q. Let x e S. We claim
<f, and y~-+x, where y := support(xgA#). Select /|JC with fup; cf.

(U). Applying (E3) one can assume g\f. p*—*q yields huq. Let r|A,#.
From 2.8 we obtain fur. Let s\f, r. Then Γ.= xgs e S and ί|/. Also
v:= shq e 5 and v\r. We have r|y, s; f\t,s; vus (namely us = qh e <f
since q~p) and /ur. Hence ry G ̂  by 2.8. Therefore, cgAg = xgsshq =
to e ^. From g\p\ p\h\ h\r; guh; pur (since p^q) follows g~r. Thus
xt = gs e <ί. We have observed #U5 and fur. 2.8 yields /uj>. Together
with x\f\ f\t\ t\y follows x—«y.

y

4.3. Le/ ab = α/. If a>—b then c*—*d. In other words: cd e J£"o

// c —'t/, /or

. Let g\c. Then gJ = (gc)αδ e S ^ = (ί; cf. 4.2. 2.12 yields the

assertion.

4.4. JSy, = Π

Let ab e ^ . Let c|α. Then cb = ca - ab <Ξ
cf. the remarks preceding 4.2. 2.12 yields the assertion.

= £, hence

4.5. J^= {γ e G: γx e <̂  for all x) = (γ e G: xy e <f for all c}.

Proof. " c " is an assertion of 4.2. Let γ be an element of the
right-hand set. Select an arbitrary q. Then γ# = gh e <?. Let p\g,h. We
want to prove /?—«#. By 2.12 it is enough to verify xq^i for any x|/?. So
let x\p. We can assume Λ = x\ cf. (E3). Then xq = gγ = (γg) g e <f by
our assumption.

REMARK. We shall prove a "representation theorem" for J^; cf. 6.4.
This theorem is the synthetic counteφart of 1.17.
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5. G = £S. We continue to assume that (G, S) satisfies (El), (E2),

(E3) and (U).

5.1. ££<z S£=£S.

Proof. Let a,β e £ and a:= support(α), b:= support(β). Due to

(U) we can assume a = gh, β = rs, h\r and hub. Then αβ = g(hr)s and

b—^hr. Hence su/zr, and aβ G 5^.

5.2. SSS

Proof. Given a, by c. Select g, h such that g\c; gub; h\b, g; cf. (U).

From 2.4(i) and 2.2 we obtain v such that v\h and v^—-b, g. Then vugh

and uuc since ί —<g and g|c. Thus,

abc = (abυ)(υc)

cf. 4.2. 5.1 finally yields the conclusion abc

A

V

f C

Γ.9h

5.3. G =

Prao/. 5.1 and 5.2 yield

55555 c SS • 55 c

This proves the assertion.

5.4. G = <?S = S£.

c #55 c 5555 c 55555.
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Proof. Let a G G. We can write a = βα/, where β G S\ cf. 5.3. Let

5:= suρport(β). Select / such that t\c and tus; cf. (U). Then β = ab for

some #, b with 6|j, / and a—^ί. Select 9 such that q\d and guί. Using

(E3) we obtain be = b'c\ where b\ c'\t and c'|#. qut implies q—*tc'9 and

0—-/ implies aub't. Thus,

α = abed = ab'c'd = a{b't)(tc')d

cf. 5.1.

5.5. //(M) holdsthen CG= {a (Ξ G: xa = x for every x} = 1.

/V00/. Let α G CG. We have α = βc, where j8 G <f cf. 5.4. Select /

such that t\c and tus:= support(β); cf. (U). Then β = ab for some a, b

with b\s91. ta = t yields ta = /, hence / = α by (M), since /—'β. Let

d:= ab. Then d ^ S and c, d|β and α = Jc. Select e such that e|d and

exxa and e —-α; cf. (E2). Then euc. Let s\e,c. We have e —>cs and

e = e α = ec = ec\ hence e = ĉ  ; cf. (M). Finally, from α, e|J, c and αue

follows d = e, i.e. α = 1.

6. A class of automorphisms of ( ^ , •£?, |).

6.1. DEFINITION. TO every y e f (cf. §4.1) we define a mapping Ty:

S -> 5, x -> support(xγ); cf. §4.1. We collect some properties of Ty.

6.2. Lei γef.

(a) X'—xTγ for every x.

(b) Tγ is a bijection.

(c) a\b <=> aTy\bT~λ for all a, b. In other words: a\bTy <=> aTy-ι\b.

(d) αuZ> ** aTyubTy for all a, b.
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Proof, (a) follows from 4.2.
(b) Given J G S and γ = ghq with p\g, h and guh and p—q. We

want to show y = support(jcγ) for just one x. Consider the figure of 4.2.
From (U) we obtain r, v such that v\y and vuq and r\q, v. Then pur
since /?—-q. Using (E3) we may therefore assume h\p,r. Let s:= hqv.
Then s\r and sh = vq e S. From suΛ and ru/? we obtain s>—*p, hence
sug. Let /|Λ , g. guΛ and /?ur yield fur; cf. 2.8. Together with suv
follows /*—«ϋ, hence /u>\ Let /|/, j . Now χ := tsg satisfies xy = tv and
support(xγ) = support(ίί ) = y. Let us assume support (x'y) = y for
some xr. Perform the construction in the proof of (2) in 4.2 with
g', h\ r\... instead of g, Λ, r,... Then jc'γ = ίV and xγ = tv, where
ίr, t>% ί, ί7|ĵ  = / . Let * " := rVt;. Then ί''^ and t"x' = ίx e ^ as j — x
and ί | j . Therefore /, t"\y,f. Furthermore, yuf as >>— x. Hence / = ί"
and x = x7.

(c) Let χ : = αΓγ and y:= bT~Λ; i.e. x = support(αγ) and b =
suρport(yy~ ι). The following statements are equivalent. a\b; yy~ιa G 5;
ayy e S; j | x .

(d) follows immediately from (b) and (c).

6.3. For every γ € ^ the mapping «£?-> JSP, g *-» gΓγ induces an
automorphism of {&, ££, |).

Proof. Define a mapping & -> ̂ , x •-> y, where ^ = xΓγ~ ΐ. The pair,
consisting of the two mappings, is an automorphism of (^, Jδf, |); cf.
6.2(b) and (c).

6.4. Let y e J^ α«J/? e 5.
(a) Leί gΛ̂ r = γ = g'h'q', where g, Λ, g', W\p. Then gh = g'A7

(b) γ = βqfor some β e ^ α«J g ŵcΛ /Λβ/ support( jS) = p andp^q.

Proof, (a) We have gh = yq e &S = «?; cf. 4.5.

#Γγ-i = suppor^^γ"1) = support(Λg) = p = suppor^Λ'g')

Hence ^ = q

qTδ

ice q = q'^—p by 6.2(a) and (b).
(b) Let δ:= γ" 1 . The mapping Tδ is surjective; cf. 6.2(b). Hence
= p for some q; i.e. support(β) = p, where β = qδ. Furthermore,
-9 by 6.2(a).



360 FRIEDER KNUPPEL AND EDZARD SALOW

7. Pseudo-semirotations. We refer to the notions and notations
introduced in §3. In particular, u e S is a fixed element, and the point set
of the pseudo-plane is 3P' = {a: a^u}; the set of lines is Jδf" = (g:
gnu).

Our next aim is to show that the pseudo-plane is a generalized
semi-rotation plane in the sense of [8].

Let a e Q and y e &'. The pseudo-semi-rotation H = H^ a assigned
to the center j> and the angle a is a mapping of &' into Jδf", where xEJ is
the line passing through the foot of the pseudo-orthogonal of x through y

such that w(JC, xH) = a. This definition yields immediately:

7.1. w(x,xH) = α /or eι>e/y JC
w(;t, z) = w(χjtf, zH) for all x, z e J

' and H = particular,

7.2. Le/ Λ1? α2>
 α3 e e^?/ β / l ^ x ^ SPf with al9 a2, a3\x. Let us assume

that v/(av a2) ^ «®* 77ieπ euery pseudo-semi-rotation H satisfies a3H\z,
where z ^ 3P' is the unique point with z\aλH,a2H.

Proof. Let H = Hva. For h^S£f let A' e S be the element with the
property h'\u, h. For ϊ = 1,2,3 let cf = flf.jff and let ft, G JS?' denote the
pseudo-orthogonal of ai through y. Let dt denote the foot. With these
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notations the definition of H implies for / = 1,2,3:

(1) a\b\ = u and a\c\ = a

jcf := xa-di E S as x, a\, dt | α, (cf. (E3)),

λ - ^ e S ^y9bUdt\bi9

and for / = 1,2

(2) z,. := zc rf,. e S as z , c ; , ^ |c, .

Furthermore, a(# 2

 G ^ *
An elementary calculation yields

(3) x x * 2 = yλy2 = ^ z 2 and x2x3 = J ; 2 J 3 = z 2 z 3 ,

where z3 := zc3d3 but z3 G S is still unknown.

We have a2\d2,x2\ b2\d2, y2; a2b2 e g (since w(a2,b2) = u e S*)

and Jc2<i2 = xα 2 e ^ as α2|w and w—x. 2.8 implies

(4) x 2 j; 2 e <f.

We apply 2.8 once more, using the relations aλ\x, xλ\ a2\x, x2\ xxλ =

a[dx G £ (since α(|t/ and w—t^); ύfxα2 G <f (since w(av a2) G ̂ * ) . Thus

(5) XχX2 G ^ .

Let e := support(x2>^2). (3) implies x 2 y 2 x x G S and Λ: 2J ;

2> ;

3 G 5. (4)

and 5.1 yield xl9 y3\e. Therefore, support(jC!X2) = e. Since xλx2z2 G 5 we

obtain z 2 | e ; cf. 4.1. A simple calculation involving only (1) and (2) yields

z3 = z 2 ^ 2 7 3 . We have proved z2, y2, y3\e. Hence z3 G 5*. This stands for

zc'3d3 G S. Moreover, c3d3 G $ and c3 = support(c3rf3) since c3\u and

u—^d3. 4.1 implies z|c3.

7.3. The following property holds in the pseudo-plane. (Δ) There are

regular angles α , j 8 , γ e S * such that aβ = γ.

Proof. Select g, h, j with g,h, j\u and g|/ί and jug, h. This choice is

possible by 2.4(i). Let α := g/, β:= jh, γ : = w. α, /?, γ fulfill the desired

property; cf. 3.3.

7.4. 7b any x there exist av a2 such that av a2\x\ a^xa2\ av a2uu; and

c\a2 with C*—ΛU, ax for some c.

Proof. From (U) we get aλ\x with axuu. Let r\u9av As axr—^u (cf.

2.2) there is c\r with o— u and cuaxr; cf. 2.4(ii). From c—aγ and tf^x
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follows cux. Let a2\x, c. We conclude a1ua2 and a2uu; cf. (El).

a,r

7.2 and 7.4 assert that every pseudo-semirotation H = Hy a induces a

(unique) mapping 0>' -> 9' such that g\ά implies gH\άH for each

g G i ? ' and 5 E ^ ' . Hence we shall regard a pseudo-semi-rotation as a

mapping of JS?' and ̂ ' .

It is easy to check that Hy a is injectiυe if and only if ua G <©*, i.e.

α G f , 77iew H = H-va is already a bijection (of £?' and &>') with

g\ά~gH\άH.

7.5. Let OLΪΞQ)CΛ& and ytΞ @f. Then gHya = gT;^Tyua for any

g G j£? '. jE^cλ bijectiυe pseudo-semirotation can be uniquely extended to an

automorphism of (3P, ££, |) (the elliptic plane where the orthogonality is

not taken into account).

Proof, yu G J£~ since j — w. Write a —be with fe, C|M and w = «6.

Then ua G <̂  by 4.2 and wα = αc, so αuc. Further, jwα = (acy)y G J^,

since support(^c) = w— j . Let /f := ί^,α, g ^ JS?' and Λ:= g//. Take

g'|w, g and /zr|w, h. Then α = g'Λr. Let c denote the pseudo-orthogonal of

g through y and let / be the foot. Then y, g'u, / | c , hence z := f(g'u)y G

5 and z|c. We have zyw = fg\ Therefore zTyu = g. Now zywα = /g'α = fhf

yields zΓVMα = support(yft') = h. The second assertion follows from the

first one together with 6.3 and 7.4.

u
g'u

c
Λ

\v
π \

9'

\

z

Ί Π
y

A
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8. Transvections. Let g, h e Jδf'. We write g(u)h if x\g and x—Λ,
or x\h and x—«g for some Jc e 0>'. Clearly, g(u)h implies guh.

We need this technical term in the proof of 9.1.

8.1. Let g,h^S£f and a G &' such that a\g, h and guh. Then g@h.

Proof. Let b\g, u. Then bua. Select c\g such that cua,b; cf. 2.4(i).
Then £ G ̂ r and c~A.

8.2. L^r a ^ S. Then g, h\afor some g,h
This is a reformulation of 7.4.

8.3. Let g,h\u\ a\h; auu; guh. Define JΓ^ recursively:

:= {ά} u{Zg) U{y^0>': y\g] U I J C G J S ? 7 : χ\u},

&0>y\xl9x2 andxx(u)x2 for some xl9 x2

U {x G J2?': x\yx,y2 andyιuy2 for some yl9 y2

Proof. Let c:= wg. Select fe|g such that b~-^u and Zmw; cf. (E2). Then
cub, u and b, c G ̂ ( 0 ) . Then #u& since «—g. Let e|έi, ό and let / denote
the pseudo-parallel of e through ύ. Then gue, /; e—w; c— ê, /.

(1) ( j > e ^ : j | e }

Proof. Let j | e . As w—e there is a unique JC G JSP' with JC|M, j). Then
jc@β. From e G ̂ Γ ( 1 ) and x G J^ ( 0 ) it follows that j)

(2) { j > e ^
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Proof. Let y\f and j — u . Then x\y, c for a unique x. We have o—*e,
hence z|e, x and zuc for some z e ^ . Then z G ̂ Γ ( 2 ) by (1). Also,
c e c/Γ(0) and zuc. Hence x e ^Γ (3). c—•/ implies xuf. Select w|/ such
that w — w and wuj; cf. 2.4(ii). Then w e ^ ' and w—x. Hence f(u)x.
Together with / e Λ^(0) follows j>

(3) {x e JS?': J>I/,x and z\e9x for some >>, z with 7—u} c

Proof. From jui// and /ue follows y^^e, hence juz. Together with
(1) and (2) this yields x e

(4)

Proof. Let ĵ —w. Select j|w with juf and y—•/; cf. (E2). Let m := 711.
Then mu/. Let 7' and m' denote the pseudo-parallels of j , m, respec-
tively, through the point j>. Then any two of the lines e, j \ m\ and also
of the lines /, j \ m\ intersect uniquely in a point of the pseudo-plane.
Therefore, / , m' e Jί{b\ cf. (3). Also, j'um'. Therefore j'@m' by 8.1.
Thus, y e Jί^\

Clearly, (4) implies &' c ^Γ^7>. Therefore ^ c ^Γ ( 8 ) by 8.2.

8.4. DEFINITION. Let z e ^ and g ^J? such that g|z. An automor-
phism T of (^, oSP, I) is called a transυection whose center is z and whose
axis is g if XT = Jc and >>τ = j for any point x of g and any line y
through z.

8.5. Let z\g and a, b, z\h such that α, buz and hug. There is at most one
transυection τ having axis g and center z such that άτ = b.

Proof. Suppose, τx and τ2 satisfy the above properties. We apply 8.3
with z instead of u. The automorphism f := lyr^λ of (^, JSP, |) fixes each
point and each line of Jf^. 8.3 implies that f is the identity on the set

8.6. Le/ z|g and a,b,z\h such that a, buz and hug. There is a
transυection τ of (0, JSP, |) (cf. 8.4) whose center is z and whose axis is g
such that άr = b. τ is unique. Moreover, if yug then yτug for any line
y e Jέf and if x>—»g then x' — g, where XT = x', for any point x ^ 3P.

Proof. 8.5 states the uniqueness.
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In order to construct τ we may assume g = w, since our notion of the
pseudo-plane may be introduced with respect to an arbitrary element
g e S , Then α , k ^ and h e Jδf'.

Secondly, we may assumeJι\u. Namely, let W denote the pseudo-
parallel of h through u\ let a\ b' be the feet of the pseudo-orthogonals of
h' through ά^b, respectively. If τ is a transvection with center z and axis
u such that a'τ = b' then clearly r will also fulfill άτ = b. Let m := bh.
Select v such that υ\m; v+—*h\ vuh; cf. (E2). Then vua, u and υ—u. Thus,
v e &' and r\a9v for some r with ruA. α:= w ( r , w ) G f 0 Π i Let

i S ? S f . r: = T^ιTvuaT^u

ι

aTbu; cf. §6 and 7.5. We regard r as a mapping -S?

induces an automorphism of (^,JS?, D; cf. 6.3. Let r also denote this
automorphism. We contend that T satisfies our requirements. 7.5 implies

(1) H~aHil is the restriction of T to the pseudo-plane (&',&', |).
From this we conclude

(2) yr = y for any j £ oSί" with j | z ,
(3) y pseudo-parallel yr for any y ^3?',
(4) αr = έ.
Since uT~u

ι = y, yΓt;wα = w, I I Γ ^ = Z> and bTbu = w one obtains
(5) UΊ = w.
The statements (3) and (5) imply
(6) jcr = x for each point x of the line u.
Finally, we want to prove
(7) yr = y for each line y through the point z.
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(If y is an affine line or if y = u then this is clear; cf. (2) and (5). For an
arbitrary y however the arguments are not at all obvious.) Let y\z. We
have h = uz = bm. Hence mz = bu e ^ and yum. Let e\y, m and
/ := yTς}. The identity

support(em 6M) = support(ez)

together with e,z\y yields y' = em. Furthermore, y\ b, v\m. Hence,
y" := y'bυ e 5 and >>"|m. Thus, by the above observation,

support(yι w) = support( J/'&IWM) = support(j/6w) = y.

In other words, y" = ̂ Γ^"1. We have proved

yTι7u%ua=y"Tvua = support(/'w<α) = support(/toι;wα)

= support(/faiα) = / η , W Λ = yT^Tbua.

This means that j>τ = 7.
The additional assertion of 8.6 is clear from (1).

9. Coordinates. If R is a commutative ring with 1 then Π(ϋ) =
will denote the projective plane over R, Π'(R) =

) will denote the affine plane over i?, viewed as a
substructure of Π(i?), where i?[0,0,1] is the line of infinity.

9.1. There is a commutative ring R with 1 and an embedding £ of the

pseudo-plane {£P\J£\\) {viewed as an incidence-structure) into the affine

plane Π'(/?), and an element k e R* (group of units) with the following

properties.

(i) 9>'ξ = 9>\R). i?[0,l,0], Λ[l,0,0] e SP'ί, uξ = Λ(0,0,l).
(ii) Z)o:= {R(a,β): a,β e 7? β«J α2 + A:̂ 2 e i?*} w 0 commutative

group, where multiplication is given by

R{a,β) • i?(γ,δ) = i?(αγ - ^ δ , α δ + βy).

Let m: JSP'(/?) X JS?'(iί) -^ Do denote the mapping

(R[a,β9ε]9 R[y,S,v]) -> Λ(fcαγ + ^ δ , α δ - βy).

Then m w αw angle measure of the affine plane H'(R). The mapping

c.@^D0, w(g,Λ) -> m(gξ,hξ)9 whereg9h*Ξ&'9

is well defined (i.e. does not depend on the choice of g, h). t is a monomor-

phism of the group 2 into the group Do. Call Ω e l ) o regular if any two

lines Σ, Γ of Π r(i?) with m(Σ, Γ) = Ω intersect in exactly one point of

ΐl'(R). Let Do* denote the set of these regular angles Ω. Then 2*ι = Do*.

Furthermore, ui = i?(0,1).
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(iii) Every non-unit of R is a zero-divisor.
(iv) Let a G ̂ ' and g G ^ be such that a ~ g. Then άξ distant g£.

("distant" is defined in Part I.) Let g,h e Sef and g@h. Then gξ distant
Λ£ (definition of @ see §8). Let α , f t € ^ andaub. Then άξ distant bξ.
If a, b e &\ g\a, bfor some g and άξ distant bξ then aub.

Proof. First, let us recollect

(1) If y\a and ί E ^ ' then y e &\

The main result of 9.1 will be obtained from 5.5 of [8]. We apply this
theorem to the pseudo-plane. In [8], the technical denotion "α fern g" for
a point a G 3Pf and a line g e «£?' means: Each point x G &' of g has a
unique joining line j ; to a; and w(g, >>) G «®*; i.e. g, 7 define a regular
angle.

(2) "a fern g" if and only if a~g, for any a G ̂ ' and g G Jδ?r.

/V00/. Suppose that "<3 fern g" holds. Let h denote the pseudo-or-
thogonal of g through a. Let c be the foot. The assumption together with
(1) yields auc and w(g, h) G ® * . 2.9 implies Aug. Hence a—g. Con-
versely, let us assume α~g. Let Jc e ^ ' with x|g. Then αux. Therefore,
^ |β, x for just one y e JS?'; cf. (1). Furthermore jug. 3.4 yields w(g, y) G

(E) Given g G Jg?'. Then "α fern g" for some α G &>'.

Proof. Let h\u,g. Then gΛ—w. Select α such that α|Λ and αugΛ and
a—<u; cf. 2.4(ii). Then α G 0>' and α—g, hence "a fern g"; cf. (2).

Now we have proved that the pseudo-plane fulfills all of the require-
ments of 5.5 in [8]. This theorem yields the main assertion of 9.1, together
with (i) and (ii), after an easy conversion into projective terms. This
conversion is carried out in the following small type section.

5.5 of [8] provides an embedding f of (&>',£", |) into a structure 3V(A, R), where A is an
algebra over the commutative ring R such that A = R + Rω for some ω e A with
k := - ω 2 e r The point set of Jί?(A,R) is A. A line is a set a + /to, where α e A and
b ^ A* (group of units of A). Incidence is given by inclusion. The angle-measure of a pair
of lines is M(a + Rb,c + Rd):= R+b'1*! e A*/R*. The mapping λM: A*/R* -+ Do,
R*(a + βω) -* R(a,β) is an isomorphism (Do is defined in the theorem). R*(a + βω)
€ Λ*/Λ* is regular if and only if 0 e R*; cf. [8], 2.1. Let λ denote the following
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embedding of 3V(A, R) into Π'(

ε + ηω ^ R(ε,η,ϊ)

(γ + 8ω) + R(a + βω) -> R[-β,a,-aδ + βy].

Then (M(g, h))λM = m(gλ,Λλ) for any two lines g, h of Jf(A,R) (m is defined in
9.1(ii)). Let ξ := ?λ. Now we obtain 9.1 together with (i) and (ϋ) from Theorem 5.5 of [8].

Proof of (iii). Suppose μ G R \ Λ*. We have gξ = Λ[0,1,0] for some
g ^Se1 and <3ξ = Λ(μ,0,l) for some a ^&'; cf. (i). A line h^Se'
through a will never satisfy A—«w; namely, suppose the contrary. Then (2)
implies "fi fern A". From 5.5 and 5.2 of [8] we obtain Λ(λμ,0,l) =
i?(l,0,1) for some λ G R; a contradiction. Consequently, wu« fails to
hold. Hence j\a9 u for some y Φ g. Let yξ = R[v, χ,0]. Then ^ # 0 and
μv = 0.

Proof of (iv). Pick α G ^ ' and %^Sef such that α—«g. We want to
prove <2£ distant g£. Let h be the pseudo-orthogonal of g through <2. Let
b denote the foot. Then "a fern g" by (2). 5.5 of [8] implies that άξ and bξ
have a unique joining line (in the affine plane Π'(i?)), hence also in
Π(i?) and that g£ and hξ intersect uniquely in Π'(i?), hence also in
U(R). Due to (iii) this yields άξ distant bξ and gξ distant hξ; cf. 1.2.
Thus άξ distant gξ; cf. 1.3.

Let g, A G JSP' and g@h. We want to prove gξ distant A£. We can
assume a*—-Ά and β|g for some 5 G ^ ' . Then <2£ distant Aξ by the first
statement of (iv). In particular, gξ distant hξ.

Let g.h^Se1 and α|g, A for some a e ^ | / . If guA then g@A (cf.
8.1), hence gξ distant hξ according to the above proof.

Let α , k ^ and aub. We assert άξ distant bξ. Let g\a, b. Select
h\b such that Aug. Then a~h and A e JS?', hence άξ distant hξ; cf. first
statement of (iv). In particular, άξ distant hξ.

Conversely, let us assume a, h e &\ g\a9 b and άξ distant bξ. Then
aub, since A|α, 6 implies A e JS?7 and gξ, hξlάξ, bξ, hence gξ = hξ and

REMARK. Let Ω = R[al9 a2,a3] GL<P'(R) and ω = R(ωvω2) <Ξ Do.
Then the line Γ:= i?[α 1ω 1-α 2ω 2,α 2ω 1 + A:α1ω2,0] satisfies m(Ω, Γ) =
R(ωl9ω2).

9.2. Le/ g|r andj\s and r9 A, ,S|M {hence rhs e. S). Suppose guu. There
is a unique d G S with d\gr, rhs. Furthermore,

ghj G 5 <=> d\js.
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u

Proof. We have a := ghj = (gr)(rhs)(sj). If d\gr9 rhs, sj for some d,

(E3) yields a e S. Conversely let us assume a e S. guw implies w—*gr

(cf. 2.2), hence rhsngr. Let J|rfo, gr. Then d\sj by 4.1.

9.3. (Algebraical description of pseudo-semi-rotations). Let y

l 9 .y2,1) and ωi = i?*(co1? ω2).

Then

ωx kω2 —kω2y2

- « 2 ω1

0 0

for every g e Jέf' w//Λ gξ = i?[g1? g2 ? g3J // ω G ̂ " /Λ̂ « ωx e i?*;

transformation given by the matrix is bijective.

Proof. Let j denote the pseudo-orthogonal of g through y. Then

jξ = i?[g2, -fcgx, γ], where γ = ky2gλ - ^ g 2 . The foot q is

^ = R{-yg2 - kgιg3,ygι - g2g3,kgf + g2

2).

Obviously the line Σ obtained by multiplication of g£ with the above

matrix is incident with qξ and satisfies m(g£, Σ) = R(ωl9 ω2).
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If ω e & then ωu <Ξ S. Thus ωu is a regular angle of (&\ «£?', |).
Hence, (ωu)t = i?(-/:(02,ω1) is a regular angle of H'(R); cf. 9.1 (ii).
This means that ωx e i?*.

A|tι. = ΛΓ,9.4. Le/ g, A, 7 e J2?'
Γ , Σ , Ω e i?3*. Then

ghje S~det(Γ,Σ,Ω) = 0.

Proof. Let r\u,g; s\u,j and ί:= rÂ . Let d\gr, t\ cf. 9.2. Let Γ =

[gvSngsl 2 = [A1?A2,0], Ω = [jl9j2,j3]. We have

(fa)i = Λ(A2Λ - ΛiΛ» ΛiΛ + k~lh2Ji)

and J = gHuhs. 9.3 yields d£ = i?Λ, where

gih2Jι - gihJi + gιh2j2 + HxKh^^ik " Λ ^ ) ] .

Moreover, (js)ξ = RΘ, where θ = (kjj3, j2j3, kj? + j*)- Hence, Λ0 =
(fc/j2 + y |) det(Γ, Σ, Ω). Since kj\ 4- j | is a unit, the following statements
are equivalent: d\js\ Aθ = 0; det(Γ, Σ, Ω) = 0. Now, 9.2 yields the asser-
tion.

9.5. Let g, A, j G oSf7' am/ g, A|c anJ guA. Let gξ = i?Σ, Af = i?Ω,
yί = ΛΓ, where Σ,Ω, Γ e Λ3*. Thenj\c <=> det(Σ,Ω, Γ) = 0.

Proof. Let r|g, w and s\h,u. Select >̂ |A such that yns and j — ^ cf.
(E2). Then y e ^ ' as >>~w. From ^—-5 and j | « follows ĵ uw. Let ί/|̂ , u
and e:= du. s^-^y and >>|d implies sd^S, hence a:= se &&. Let
if := /ίpϊΛ. if is a bijective pseudo-semi-rotation; cf. 7.3. Moreover,

= d\u. From 9.3 we obtain a linear bijective mapping ψ: i?3* -> i?3*
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such that (gH)ξ = Λ(Σψ), (hH)ζ = i?(Ωψ), (jH)ξ = i?(Γψ). 9.3 yields

(1) gH - hH jH G S<* det(Σψ,Ωψ,Γψ) = 0 <=* det(Σ,Ω,Γ) = 0.

We can view H as an automoφhism of the incidence structure (^, J§?, |);
cf. 7.5. Since c is the only intersection of g and h, cH will be the only
intersection of gH and hH. Therefore, 4.1 implies

(2) j\c <*jH\cH *> gH hH jH e S.

(1) and (2) together yield that j\c holds if and only if det(Σ, Ω, Γ) = 0.

h

9.6. There is a unique extension of £ to an embedding of (έP, ££", |) /

I).

denote this extension. If c G Jέfr, Λ, ό|

distant 6ξ.

Proof. Let c G ̂ . According to 7.4 we may select lines g, Λ G JS?'
such that g, Λ|c and g@h. Let gξ = RΣ and λ£ = i?Ω. 9.1 (iv) implies
gξ distant hξ. Thus, gξ and Λ̂  intersect in just one point R(Σ X Ω) of
U(R). Let j GJ? ' and yξ = ΛΓ. By 9.5 the following statements are
equivalent.

j\c; det(Σ,Ω,Γ) = 0; jξIR(Σ X Ω).

Hence we can define cξ:= R(Σ X Ω), and there is no other choice.

Proof of the last statement. Let υ\c9u. Select w such that w\v and

w\—\c, u; cf. 2.4. Then w G ̂ 7 and wuα, Z>. Let d\a9w and e\b,w. Then

J, e G o^7 and wξ distant c^; cf. 9.1(iv). In particular,

(1) w£ distant βξ;
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cf. 1.3. We have due (since J—b) and d, e G !£' and w G ̂ ' hence

d @ e by 8.1 and

(2) dζ distant eξ;

cf. 9.1(iv). (1) and (2) implies άξ distant eξ; cf. 1.3. In particular, άξ

distant bξ.

9.7. Finally, we want to attach coordinates to every line of the elliptic

plane.

Let j G Jδf.

Select r such that r\j and ruw (cf. (U)). Let h\u, r and /?:= hu.

Select g|w such that guh and g—Λ.

(i) There is a transvection r and a point <2 with the following

properties. a\h and ί/uw; ύ is the center and g is the axis of τ; ότ = ί>;

Pro6>/. Select / such that t\h and /uw and ί—w; cf. (E2). Then

There is a transvection T of ( ^ , JS?, |) with center ύ and axis g such that

rτ = t; cf. 8.6. Then jτ^Sef as yτ|ί and t G ̂ r . Let ό := A T " 1 . Then

α|/z and α—g by 8.7, hence

For the rest of this section we select T and a according to (i).
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(ii) There is an invertible matrix A such that

(*) (9τ)ξ=(}ξ)A9 and (**) (yτ)ξ = A'^yξ)

for every point y e @ and every line y G &'.

Proof. Observe that a point y G ̂ , where j>£ = i?(yl9 y2, y3), lies on
the line u if and only if y3 = 0.

Let gξ = Λ[gi,g2,0], 5f = Λί^, Λ2, fl3), ^ = i?(α l 9α2,0), Λ£ =
i?[α2, -al90]. Then λ@g by 8.1, hence hξ distant g£; cf. 9.1 (iv). Thus
we can assume axgx + a2g2 = 1. Let

/I 0 - 0 3 g /

A:= 0 1 - α 3 g 2

.0 0 1 ^
We apply 8.3 in order to prove (*) and (**). According to 8.3 it is enough
to prove (*) and (**) for y G J^{i) Π (P and y G ̂ Γ ( 0 Π Jδ?', respectively,
(we use the notations introduced in 8.3). We proceed by induction.

For i = 0 the assertion is easily verified.
Now let us step from i to i 4- 1.
Let y G Jί{iJrY) n ^ . If j) G J ^ ( 0 then there is nothing to prove.

Otherwise, y\xλ, x2 and xγ(u)x2 for some JCX, x2 G ̂ Γ ( / ) ΠJ^7'. Then x ^
distant x2ξ by 9.1(iv), and (Xjτ)ξ = ̂ ""^^.ξ) by our assumption. Also
0 = (yτ)ξ (XjT)ζ = ($r)ξ - A-^Xjξ) and 0 = yξ - Xjξ. Therefore

) y ( y ) (H)
Let y e ^Γ ( / + 1 ) ΠJS?'. We want to prove (**) and may assume

y\xλ9 x2 for some points xv x2 G C/Γ(/) with xλux2. From 9.6 follows Λ^
distant x2ξ. The assumption yields (Xjτ)ξ = (jcy-ξ)̂ 4. Finally, 0 = (XjT)ξ
- (^τ)ξ = (ΛyOi4 (^τ)€ and ϋy.{ - yξ = 0 for 7 = 1,2 implies ^ (yτ)ξ
= .yξ, hence

Now let ^ be a matrix such that (ii) holds. Since jr e oS?r, (yτ)ξ G
JSP'ί/ί) is well-defined, (yτ)ξ ^ - 1 is a line of Π(iϊ). We define
jξ:= (jτ)ξ - A~ι. Then for any j ) G ^ the following statements are
equivalent: yξljξ; 5>ξl(jr)ξ A'1; (M)Al(jr)t; (by (•)) (jτ)ξl(yτ) | ;

j | y . Hence the above definition extends ξ to an embedding of
f, I) into Π(iϊ). Clearly, the extension is unique. We summarize our

results.

PROPOSITION. There is an embedding ξ of (&, «Sf, |) into Π(i?). ξ is an
extension of the mapping £ of 9.1. // aub then άξ distant bξ for any
α , k Λ Ifa—j then άξ distant jξ for all a G & and] G J5P. If guh then
gξ distant Λξ, for all g, A G ^ ,
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Proof of the last three assertions. Let aub. Let j\a, b. If j G JS?' then

άξ distant bξ by 9.6. Otherwise jτ e oδ?' for some transvection τ accord-

ing to the previous construction. Then άτξ distant brξ, i.e. άξA distant

bξA, where A is a matrix as in (ii). Thus άξ distant bξ.

Let Λ— j . We want to prove άξ distant jξ. By the previous considera-

tion we may assume j G ££'. Select a point 6 such that b\j and ft*—u.

Then αu&, hence

(1) άξ distant ££

by our first statement. Let h\a, b. Since b G ̂ r and yuA 8.1 yields j@h,

hence

(2) y'£ distant A^

by 9.1(iv). (1) and (2) implies άξ distant y|; cf. 1.3.

Finally, let us assume guh. Let b\g, h and a|A such that aub. Then

α«— g and 5 | distant g^ by what we have proved. In particular, hξ distant

gί; cf. 1.3.

10. The bilinear form. We want to describe the polarity J?-> ^ ,

x »-> jc in terms of a bilinear form. Assumptions and notations of previous

sections are preserved; in particular, k G R* is the element introduced in

9.1.

10.1. Let χGJSfr with Λ>—-W β/?ί/ x£ = i?[x l 9 x 2, JC3]. Then xξ =

R(kxλ, x 2 , /JC3) for some I G i?*.

Proof. Let /|w, x. Then j £ = i?[x2? ~ ^ i , 0 ] and y£Ix£. Choose z|x

with z—^ and zu^. This implies zuu and z—w, hence z£ = /i[z l5 z 2,1];

cf. 9.1 (iii). Obviously, yξ distant z£. Thus the unique point of intersec-

tion is

xξ = R(kxl9x2, -x2z2 - kxxz^) = R(kx1,x2,lx3),

where /:= -x^ 1 (x 2 z 2 4- kx^). Moreover, x G &\ hence Jĉ  G 0>\R\

This is equivalent to lx3 G i?*.

A

u y

x
A

X
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10.2. Let ge<?' with g~u; gξ = R[gv g2, g3], g£ = R(kgl, g2, /g3).

Let H = HUa be a pseudo-semi-rotation with center u, h := gH, hξ =

R[hv h2, h3]. Then hξ = R(khv h2, lh3).

St

Proof. Let a\g,u. Then h\ag and #g—u. Let r\h,u, hence a = αr.

Choose s ^ S with s|/* and s^-r and sur. This choice implies suu and

s~«. Let t\u, s and c:= α/. st~—u and c|w implies ^uc. Let b\c, st. From

s,r,ag\h follows (st)cg = 5τ(αg) G S; cf. (E3). Furthermore, 5ίuc and

b\st, c. Hence g\b by 4.1. Therefore, a, b\g, hence aξ, bξlgξ. The rest is a

simple calculation involving coordinates. We have

gt = R[gi, 82,83]* aξ = R[-g2,kgl,0};

hξ = R[hl9h29h3]9 rξ^Ri-h^kh^O].

Let

sξ = R[sl9s29s3]9 hence /^ = /?[-5 2 , fo l 5 0];

6ξ = R[bl9b29b3], hence c^ = i ? [ - 6 2 , ^ 1 ? 0 ] .

Then stξ = i?( — ^5^3, — 52^3, A:̂ χ2 + J | ) , and sί£I6£ means that

(1) {ksιbι + ^ 26 2)5 3 -(A:^2 + sf)63 = 0.

Likewise, αg|/ϊ implies

(2) (khlgl + h2g2)g3 -{kgl + gj)h3 = 0.

From 9.1(ii) and ct = α = ar we have

(3) Λ*(fo1Z>1 + J 2^ 2, - ^ 2 + sjby)

= Λ ^ ^ g x + h2g2, -g2hx + gιh2).

In other words

(3') ks1b1 + s2b2 = λ(kg1hι + g2hz) and

— sφ2 + 52Z?1 = λ( — g2hx + gλh2) for some λ e i?*.
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(4) (fcgΛ + g2b2)(ksl + s2

2) = λ(khlSl + h2s2){kgl + g2

2).

In the next line, (1), (3') and (2) yield the first, the second and the third
equality:

(5) b3g3(ks? + si) = (ks^ + s2b2)s3g3

= λikg^ + g2h2)g3s3 = λh3s3(kgl + g2

2).

Finally, (4) and (5) imply

λ ( * * Λ + * 2 J 2 + lh3s3)(kgl + g | ) = (Λ:gΛ + g 2δ 2 + lb3g3){ksl + si).

The right side is zero because 6£Ig£ = R(kgv g2, /g3). Therefore, khλsλ +
Λ2^2 + /Λ353 = 0. We conclude hξ = rζ X sξ = ^(λ:/^, Λ2, /Λ3).

10.3. Letj\u9g9h and g,huu and g^-u. Let gξ = /?[gi,g2,g3]
= R[hl9 h2, h3], Ifgξ = R(kgl9 g2, lg3) then hξ = R(khl9 h2, lh3).

U
g
Π

Proof. Select s\h with suj and s^—j. Then j —«w and 5—«/, hence also
. Let y|w, 5 and w := w. We have sugj. Let m|5, g/' and n\u, m. There

are pseudo-semi-rotations mapping g to m and w t o w . Thus, by the
previous lemma, mξ = R[krnvm2,lm3] and wξ = R[kwvw2,lw3] (g,m,
w^>u implies g3, m3,w3 e /?*). Since wH = h for some pseudo-semi-ro-
tation H whose center is ft, 10.2 finally yields hξ = R(khv h2, lh3).

A
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10.4. There is an I e R* such that gξ = R(kgv g2, lg3) for every g E j ?
withgξ = R[gι,g2,g3].

Proof. Let J C J G S with xξ = #[0,1,0] and yξ = Λ[l,0,0]. Select
r\x with n—<w and ruw, and ί|j> with t*—u and ίuw. From 9.1 follows
rξ = i?[l, 0, α] and f£ = Λ[0,1, j8], where α, β G i?*. We have m\rx, ty for
some m. Moreover, m— w and muw. Let mξ = R(mv m2, m3) and / e i?*
with mξ = R(kmvm2Jm3); cf. 10.1. From 10.2 we conclude r£ =

:, 0, la) and f{ = Λ(0,1, /j8).

We claim gξ = Λίfcgx, g2, /g3) for every g e J2f, where gξ =

g2, gal-
First, let us assume geJέ", i.e. guw. Let h\u, g. Then Λ| =

R[-g2>k8i>Q] L e t fk x.Λ and w|ίy, h. Then ι?| = Λ[gi,g2,αgi] and
wξ = R[gv g2,βg2l By 10.1, gξ = ΛίΛgx, g2, Z'g3) for some /' e Λ. Thus
βξ = R(kgl, g2, Γagx) and ̂  = R(kgv g2,1'βg2); cf. 10.3.

ty

y

u ,

\
\ΛΛ/

V

-t

v\
x Πj

On the other hand, v is the image of r under a pseudo-semi-rotation
with center u. Hence βξ = R(kgv g2,lagι); cf. 10.2. The same conclu-
sion, with t instead of r, yields wξ = R(kgv g2, //3g2). Using A:gx

2 + g\ G
i?* and α G Λ* we obtain /gx = /'g^ Likewise, lg2 = /rg2. Hence / = Γ.

Finally, let g be an arbitrary line e «S?. From 7.4 we get υ9 w G jSfr

and c G ̂ 2)/ with ι?,w|g; yuw; c|w; ĉ —y. From 9.1(iv) we obtain cξ
distant vξ. Hence vξ distant wξ. Thus, in Π(i?) the lines υξ9 wξ have just



378 FRIEDER KNUPPEL AND EDZARD SALOW

one point of intersection, namely gξ. Let vξ = R[υl9 υ2, v3] and wξ =

R[wl9w29w3]. Then vξ = R(kvι,v2,lv3) and wξ = R(kwl9w29 lw3) by the

previous special case. From υξ distant wξ and k, I e R* follows vξ

distant wξ. Hence

gξ = vξ X wξ

= /i[/(i72w3 - ϋ3w2), ^ / ( i ; ^ - UXW3)9 k(vιw2 - v2wλ)].

Finally,

gξ = vξx wξ

w3 — v3w2), kl(v3wλ — vxw3), kl{υψv2 — ϋ ^ ) ] .

10.5. We define a symmetric bilinear form

/ : R3 X i? 3 -> # , ( ( f l l , α 2 , α 3 ) , (/>!, b29 b3)) -> / α ^ + kla2b2 + ka3b3,

where k and / stem from 10.4.

PROPOSITION. Let a,b e

(a) β|ό if and only iff (A, B) = 0.
Qo)f(A9A)eR*.

Proof, (a) Let ^ = ( ^ , ^ 3 , ^ 3 ) and B = (bvb2,b3). Then Z>£ =

i?[/Z?1? klb2, kb3]; cf. 10.4. The following statements are equivalent. a\b;

ά\b; άξlbξ; f(A,B) = 0. (b) We have a^a and thus άξ distant aξ; cf.

the proposition in §9.7. This means that f(A9 A) e i?*; cf. part I.

10.6. f(A9A) e Λ* /or αn>; /ιoί#i/ iL4 0/ Π(i?); /.^.Π(i?,/) is an
elliptic plane in the sense of §1.

Proof. Let RA be a point of H{A) and let m be an arbitrary maximal

ideal of R. We want to prove

Let ~ denote the canonical homomorphisms

": R ->R:= R/m

~: R3 -> Λ3, Λ3* -

Let a denote the canonical homomorphism of Π(i?) onto the projective

plane Π( JR) over the field R:

a: RX-+RX

a: RY^RΫ,
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where RX is an arbitrary point and RY a line of Π(i?). First we will

show

(**) 0>ξa = 0>(R)a = 0>(R).

Proof of (**). Let RB G &>(Ά\ where B G i?3. We claim RB G ̂ ξα.

One can assume 5 = (ό1? b2,1) or 2? = (1,0,0) or B = (λ, 1,0) for some

bv b2 G i? or λ G /?, respectively. In the first case /?# G 9>\R) = ^ 'ξ c

^ ξ , hence RB = (i?5)α G &ξ*\ cf. 9.1(i). Let g, A G J2? be lines such

that g£ = i?[0,l,0] and Λ£= Λ[l,0,0]; cf. 9.1(i). In the second case

follows ΛB = Λ(l,0,0) = (gw)ίG^{, hence ( A J ^ α G ^ ζ α . Now we

consider the last case B = (λ,l,0). The line / : = R[l9 -λ,0] G ,£?(£)

joins the point w£ to the point RB, Furthermore, m(gξ, J) = i?(λ, 1) is a

regular angle, since (1,0), (λ, 1) constitute a i?-basis of R2. Thus m( A£, /)

= w ( A, y)i = m(/ι£, y{) for some y ê Sf" with y|w; cf^9.1(ϋ), S*t = Do*.

This implies yξ = /. Finally, RB = (ju)ξ G ̂ | since (/«){//, κ£. Thus we

have proved i?5 = (RB)a G ̂ | α in each of the three cases.

Now we deduce (*). From (**) follows that (iL4)α = RA = (άξ)a for

some α G 0>. Let αξ = i?5, where B G i?3. Then RA=RB and f(B,B)

G i?*; cf. 10.5. Thus, Z = jΰ5 for some μ G Λ \ m , and f(A,A) =

jΰ2 / ( £ , J5) # 0. This concludes the proof.

11. The group of motions. In this section we assume that (G,S)

satisfies all of our five axioms. For the first time we shall also use (M).

11.1. Ifguh andg^-h then gugh.

Proof. Let a\g, h. Suppose that gugh does not hold. Then b\g, gh and

δ—a for some b Φ a\ cf. 2.6. In particular, buh. Let j\b, h. Then 6—hj\

and guy since g~Λ. Together with b, bh\g, j follows b = bh = 6Λy. (M)

yields b = Λ/. Thus, α, 6|g, A. Finally, guA implies the contradiction

a = b.

11.2. 2 G Λ*.

Proo/. Let g^Se such that gξ = 2?[0,l,0]I&£ = i?(0,0,l). Select j

such that j\u and jug and y~g. Then yug, A, where A := wg. Thus, jξ

distant g£, Λ{; cf. the proposition in §9.7. Therefore jξ = Λ[l, λ,0] for

some λ G Λ*. Let q := y .̂ Then

Λ(λ, l) = m(jξfgξ) = (w(y,g))ι = (w(g,ίf))ι = m(g{,^)i

cf. 9.1(ii). Thus, #£ = Λ[l, — λ,0], 11.1 implies juq, hence jξ distant qξ;

cf. 9.7. This means that λ + λ G Λ*.
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We have proved that Π(i?,/) is an elliptic plane over the ring R in
the sense of Part I and that 2 is a unit (10.6 and 11.2). In particular, the
reflection σΩ in any point Ω of Π(i?, /) is well-defined.

Every a e G induces an automorphism a of the elliptic plane

a: x -> P f o r x
y -> ya for y

&>, and

ά is called the motion induced by a. The mapping is a homomorphism of
the group G into the group of automoφhisms of (^, JSf, |), and the kernel
is the center CG of G. In 5.5 we have proved CG = 1. This yields

11.3. The mapping \G -> G w an isomorphism of the group G onto the
subgroup G of the group of automorphisms of (&>, J&91).

Let (&9S?) denote the group of motions of the elliptic plane Π(i?, / ) ;
cf. Part I. Hence 5*= {σΩ: Ω e &>(R)}, and ^ is the group generated by

If Ω is a point of Π(iί, /) and Γ is its polar line (cf. Part I) then we
define σΓ := σΩ. In particular, oaiί = σaξ for any α e ££.

11.4. Let g<E S and x<a&. Then (x*)£ = (*£)
= | σ r f /or eϋβry g.

The proof consists of four steps.

11.4(a). Let cug and c^g. Then (cg)£ = (c£)σgξ.

Proof. Let r\c, g. Select r' such that r'|g; r7ur and r r—r; cf. (E2).
Then cur'. Let cΊc, r' and α:= cc'. Then aug. Let Λ|fl, g. r7—r implies
c'ur. Together with cug follows cr— g. Furthermore, c'ug since c—g.
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Hence d':= c'8uc'; cf. 11.1. The proposition of §9.7 yields d'ξ distant

c'ξ. This implies

(1) σ^uσ^ i n ( ^ , ^ ) .

Let b := a8 and d:= c8. Then b = dd'\h. Hence άξ, g£, bξlhξ and

(2) ° * ° r f ° * G ^
by 1.15 and 1.10. The analogue conclusion applies to the lines cξ, g£, dξ

since they pass through the point fξ. Thus, oc^og^od^ = σΓ for some Une Γ
of U(R, / ) through fξ. The identity

together with (2) yields

(4) <V*σr<V£G^

r—r' implies fξ distant r'ξ\ cf. 9.7. In particular, Γ distant r'ξ\ cf. 1.3.
Thus

(5) σΓuσr,£ i n ( y , ^ ) .

Now we use (1), (4) and (5) in order to apply 2.10 to (^, Sf). (Note that
2.10 does not require (U)). 2.10 yields σΓ|σr,^, hence ΓIrr£; cf. the
proposition in 1.15. Thus we obtain

Γ, gξlfξpξ and fξ distant 7'ξ.

This implies Γ = gξ, hence σdξ = σc

σ|ξ. I.8(iv) yields dξ = (cξ)σg^. This is

the assertion.

11.4(b). (x^ξ = (xξ)σgξ for each pair JC, g with xng.

Proof. Let Λ|g, x. Select c such that c\x\ cuh and c —*h. Then J := ex

satisfies d\x; duh; d*-*h. Also cug and dug. From c|#; x|Λ; h\g\ cuh

and xug follows c>—«g. Likewise, ί/»-̂ g. 11.4(a) shows (cg)ξ = (c|)σg^

and (</*){ = (</£)σg€. Henc^^5)^, (Jc^)σg|l(c^)έ, (rf*){. Furthermore,

(c*)ί distant (rf*)ξ. Thus, (x*)ζ = (xξ)σgξ.

d
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11.4(c). (yg)ξ = (>>£)σg| for each y,g with yug.

Proof. Let x|g, y. Select x' such that x'\y and x'ux and x' —x. Then
x9 x'ug.^x, g and x\ g fulfill the requirements of 11.4(b). Furthermore, xξ
distant x'ζ. This yields the assertion.

Now we are ready to prove 11.4. Given g, x. Select y such that y\x
and yug; cf. (U). Let a\g, y. Select z such that z\a and z—g, y\ cf. 2.4(i).
Then xuz. Let y'\x9z. The two pairs y, g and >>', g satisfy the
assumptions of 11.4(c). Furthermore, j>uj>' since 7*—z. Hence yξ distant
y'ξ, and 11.4(c) implies (x*)ξ = (Jc£)σĝ .

11.5. There is a monomorphism σ: G -* @ such that

σ: g-» σgζ for every g,

and &{RJ) c Gσ.

Proof. We want to extend the mapping σ: 5 -» ^ , g •-» σĝ , to a
homomoφhism of G into ^. Let α 1 ? . . . , #„ e 5. Let a := αx an and
γ := σaιξ σα .̂ Applying 11.4 « times we obtain

(*) άξ = άλ - - - άnξ = £γ; i.e. xai "a»ξ = (Jc^)γ for every x.

Suppose a = 1. We want to prove γ = id. From (*) follows that Ω = Ωγ
for every Ω e ^*£. γ is a linear mapping R3 -* i?3, and the points
R(0,0,1), #(1,0,0), i?(0,l,0), i?(l,l,l) are elements of 9ξ\ cf. 9.1(i)
and 9.7. Hence they are fixed points of γ. It follows that there is some
λ G R* such that Xy = XX for every X e Λ3. We obtain λ2 = 1 since γ
is an orthogonal mapping, and λ3 = 1 since detγ = 1. Thus λ = 1 and
γ = idΛ3. Now we have proved that σ can be extended to a homomor-
phism σ of G into ^, namely

σ: α = σaJ.

If α G kernel σ then γ = id, and (*) implies xά = x for every x e ^ .
Since the mapping is injective (cf. 11.3) we conclude a = 1. Thus we
have proved that σ is injective.
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Finally, let μ e J**(iϊ, / ) . We have uξ = i?(0,0,1) and g£ = R[091,0]
for some g; cf. 9.1(i). From 1.17(a) one obtains μ = σΩσg^σΓ? where Γ is a
line through ΐii with gξ distant Γ, and Ω is a point with Ω distant uξ. The
angle m(g£, Γ) is regular (cf. 9.1(ϋ)) since the lines Γ and gξ intersect in
just one point of the affine plane ΓΓ(1?) and since every non-unit of R is
a zero-divisor; cf. 9.1(ϋi) and [3], 2.3. 9.1(ϋ) yields Γ = jξ for some j e Jδf.
Also Ω = qξ for some q, since each affine point of Π(i?) is the ξ-image
of some point of (^, J27,1); cf. 9.1(i). We conclude μ = (tfg/)σ e Go.

Appendix: Fixed point theorems. Let (G,S) satisfy the system of
axioms introduced in §1 of Part II. We reformulate 4.1:

1. Let ab = cd and c, d\q. Ifaub then cud and q\a, b
2. Let a, b\d and aub and cud. Then cab = c implies ab = d\c.

Proof. Let g|c, d. Then h:= gab e S since g,a,b\d. Also Λ|d. 1.
implies Aug. Furthermore, cud. Hence c —h, and c = c ^ = cgh = ch

yields c = h\d; cf. (M). Therefore, g|A = c and g, Λ|J. Hence d = gh =
tf/>; cf. 2.2(b).

3. Lei a, b\d and aub and c*-^d. If cab = c then c = d.

Proof. (El) implies cua, b. Let g\a, c and λ|Z>, c. We have c|g, h and
cΛ = c^lg, h. Furthermore, gu/z by 2.9. Thus c = ca = c^, and c»—gα by
2.2. Therefore c = ga by (M). Likewise, c = hb. Thus c\a, b, and
yields c = d.

d *
4. Let a<-^>b and cna, b. If cab = c then ab = gh, where g\a, c and

h\b,c.

ag=bh
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Proof, a^b implies gaub. Let d\ga,b. Then end, since cna implies

c^-*ga. Furthermore, c = cab = cgah. We apply 2 (with ga, b, c, d instead

of a, b, c, d) and obtain gab = d|c. Thus, rf|c,Z> and Λ|c, Z> and cui .

Hence d = h, and finally ab = gh.

REFERENCES

[1] F. Bachmann, Aufbau der Geometrie aus dem Spiegelungsbegriff, 2. Auflage, Springer
1973.

[2] W. Benz, Ebene Geometrie ύber einem Ring, Math. Nachr., 59 (1974), 163-193.
[3] F. Knϋppel, Aquiforme Ebenen ϊiber kommutatiυen Ringen und singulάre PrάΉjelms-

levgruppen, Abh. Math. Sem. Univ. Hamburg, 53 (1983), 229-257.
[4] R. Lingenberg, Euklidische Pseudoebene ύber einer metrischen Ebene, Abh. Math.

Sem. Univ. Hamburg, 22 (1958), 114-130.
[5] A. Micali and Ph. Revoy, Modules quadraίiques, Bulletin de la Soc. Math, de France,

No. 63 (1979).
[6] J. Milnor and D. Husemoller, Symmetric Bilinear Forms, Springer 1973.
[7] E. Salow, Einbettung von Hjelmslev-Gruppen in orthogonale Gruppen ύber kommu-

tatiυen Ringen, Math. Z., 134 (1973), 143-170.
[8] , Verallgemeinerte Halbdrehungsebenen, Geom. Ded., 13 (1982), 67-85.
[9] E. M. Schroder, Modelle ebener metrischer Ringgeometrien, Abh. Math. Sem. Univ.

Hamburg, 48 (1979), 139-170.
[10] F. Veldkamp, Projectiυe planes over rings of stable rank 2, Geom. Ded., 11 (1981),

285-308.

Received November 14,1984 and in revised form June 25,1985. The first-named author is
indebted to the University of Toronto for support during a stay in 1983.

UNIVERSITY OF KIEL

OLSHAUSENSTRASSE 40-60

2300 KIEL 1, W. GERMANY




