REGULARITY OF CAPILLARY SURFACES OVER DOMAINS WITH CORNERS: BORDERLINE CASE

LUEN-FAI TAM

Consider the solutions of capillary surface equation with contact angle boundary condition over domains with corners. It is known that if the corner angle 2α satisfies $0 < 2\alpha < \pi$ and $\alpha + \gamma > \pi/2$ where $0 < \gamma \leq \pi/2$ is the contact angle, then solutions are regular. It is also known that no regularity holds in case $\alpha + \gamma < \pi/2$. In this paper we show that solutions are still regular for the borderline case $\alpha + \gamma = \pi/2$ at the corner.

It was proved by Concus and Finn in [1] that the behavior of a capillary surface near a corner over a wedge can change discontinuously. They proved that if the contact angle is $\gamma > 0$ and the interior angle at the corner is 2α , then all solutions for which $\alpha + \gamma \ge \pi/2$ are bounded near the corner, while all solutions are unbounded if $\alpha + \gamma < \pi/2$. Later in [9], Simon went further and investigated the regularity near the corner.

Let Ω be a domain contained in $B_R = \{x \in \mathbb{R}^2 | |x| < R\}$ for some R > 0, such that $\partial \Omega$ consists of a circular arc of ∂B_R and two smooth Jordan arcs intersecting at the origin. Each arc makes an angle α with the positive x^1 -axis, so that the interior angle at the origin is 2α . See Figure 1. Let u be a bounded function satisfying

(0.1)
$$\begin{cases} \operatorname{div} Tu = H(x, u(x)) & \text{in } \Omega \\ Tu = \frac{Du}{\sqrt{1 + |Du|^2}} \\ Tu \cdot \nu = \cos \gamma & \text{on } \Gamma = (\partial \Omega - \{0\}) \cap B_R \end{cases}$$

where H(x, t) is a locally bounded function in $\overline{\Omega} \times \mathbf{R}$, $\pi/2 > \gamma > 0$ is a constant angle and ν is the unit outward normal of Γ . If u is smooth in $(\overline{\Omega} - \{0\})$ and if $\pi/2 > \alpha > \pi/2 - \gamma$, then Simon [9] proved that u actually extends to be a C^1 function in $\overline{\Omega}$. It is known that no regularity holds if $\alpha + \gamma < \pi/2$. Our aim is to examine the borderline case $\alpha + \gamma = \pi/2$. In this case, one cannot expect Du to be continuous or even bounded in $\overline{\Omega}$, as one can easily construct counterexamples. Note also that

FIGURE 1

if $2\alpha > \pi$, then there are examples which show that u may be discontinuous at the corner, see [5]. In this paper we want to prove the following theorem:

THEOREM. Let $u \in C^2(\overline{\Omega} - \{0\}) \cap L^{\infty}(\Omega)$ be a solution of (0.1). If $\alpha + \gamma = \pi/2$, then u and $(Tu, -1/\sqrt{1 + |Du|^2})$ extend to be continuous functions in $\overline{\Omega}$ with values in **R** and **R**³ respectively.

Since H(x, t) is locally bounded in $\overline{\Omega} \times \mathbf{R}$ and $u \in L^{\infty}(\Omega)$, so we may assume that u satisfies:

(0.2)
$$\begin{cases} \operatorname{div} Tu = H & \operatorname{in} \Omega\\ Tu \cdot \nu = \cos \gamma & \operatorname{on} \Gamma \end{cases}$$

for some bounded continuous function H = H(x) in Ω .

1. Continuity of *u* at the corner. Let $(0, a) \in \mathbb{R}^2 \times \mathbb{R} = \mathbb{R}^3$ be any point lying in the closure of the graph of *u* over Ω .

Define v(x) = u(x) - a.

THEOREM 1.1. Under the above assumptions, we have

(1.1)
$$\lim_{\substack{x \to 0 \\ x \in \Omega}} \frac{v(x)}{x^1} = -\infty \quad \text{where } x = (x^1, x^2) \in \mathbf{R}^2.$$

Note that if x is close enough to the origin, we have $x^1 > 0$. Therefore without loss of generality, we may assume that $x^1 > 0$ for all $x \in \Omega$.

Proof. Suppose that (1.1) is not true, then there exists a real number M and a sequence of points $x_i \in \Omega$ such that $\lim_{i \to \infty} x_i = 0$ and

(1.2)
$$\frac{v(x_j)}{x_j^1} \ge M.$$

We want to get a contradiction from this. For this purpose we need several lemmas.

With minor modifications, the proofs of Lemma 1.2-1.6 in the following can be found in the literature. So we shall not prove them, but only give the references. We state them here for the convenience of the reader.

Let $\varepsilon_j = x_j^1$, then $\lim_{j \to \infty} \varepsilon_j = 0$. Define $v_j(x) = v(\varepsilon_j x)/\varepsilon_j$. Then $v_j(x)$ satisfies:

(1.3)
$$\begin{cases} \operatorname{div} Tv_j = \varepsilon_j H & \text{in } \Omega_j = \left\{ x \in \mathbf{R}^2 | \varepsilon_j x \in \Omega \right\}, \\ Tv_j \cdot v_j = \cos \gamma & \text{on } \Gamma_j = \left\{ x \in \mathbf{R}^2 | \varepsilon_j x \in \Gamma \right\}, \end{cases}$$

where ν_j is the unit outward normal of Γ_j . Notice that $v_j \in C^2(\overline{\Omega}_j - \{0\}) \cap L^{\infty}(\Omega_j)$ for all j.

Let $\hat{\Omega}_{\infty} = \lim_{j \to \infty} \Omega_j = \{ x \in \mathbf{R}^2 | |x^2| < (\tan \alpha) x^1 \}.$

As shown in [9] (see also [3] and [10]), noting that $\varepsilon_j H$ tend to zero everywhere in Ω_{∞} , and $\varepsilon_j H$ are uniformly bounded, using the terminology in [3] we have:

LEMMA 1.2. We can find a subsequence of v_j which converges locally to a generalized solution v_{∞} in Ω_{∞} of

(1.4)
$$\mathscr{F}(w) \equiv \int_{\Omega_{\infty}} \sqrt{1 + |Dw|^2} - \cos\gamma \int_{\partial \Omega_{\infty}} w \, dH_1$$

where H_k is the k-dimensional Hausdorff measure in \mathbb{R}^n , $k \leq n$. That is to say, if $V_{\infty} = \{(x, t) \in \Omega_{\infty} \times \mathbb{R} | t < v_{\infty}(x)\}$ is the subgraph of v_{∞} , then for any compact set $K \subset \mathbb{R}^3$, and for any Caccioppoli set (set of locally finite perimeter) E, such that $\operatorname{spt}(\varphi_{V_{\infty}} - \varphi_E) \subset K$, we have

(1.5)
$$F_K(V_\infty) \le F_K(E)$$

where

(1.6)
$$F_K(W) \equiv \int_{(\Omega_{\infty} \times \mathbf{R}) \cap K} |D\varphi_W| - \cos\gamma \int_{(\partial \Omega_{\infty} \times \mathbf{R}) \cap K} \varphi_W dH_2,$$

and where φ_W denotes the characteristic function of W.

A sequence of functions f_j is said to converge locally to a function f in a domain D, if the characteristic functions of the subgraphs of f_j converge almost everywhere to the characteristic function of the subgraph of f in $D \times \mathbf{R}$.

Note that v_{∞} may take the value ∞ or $-\infty$. Define

(1.7)
$$P = \left\{ x \in \Omega_{\infty} | v_{\infty}(x) = \infty \right\}$$

(1.8)
$$N = \left\{ x \in \Omega_{\infty} | v_{\infty}(x) = -\infty \right\}$$

As in [3] (see also [9, 10]), we know that P minimizes

(1.9)
$$G(A) \equiv \int_{\Omega_{\infty}} |D\varphi_A| - \cos \gamma \int_{\partial \Omega_{\infty} \cap K} \varphi_A \, dH_1$$

for Caccioppoli set $A \subset \Omega_{\infty}$. That is, for any compact set $K \subset \mathbb{R}^2$, and any Caccioppoli set with spt $(\varphi_A - \varphi_P) \subset K$, we have

(1.10)
$$G_K(P) \equiv \int_{\Omega_{\infty} \cap K} |D\varphi_P| - \cos \gamma \int_{\partial \Omega_{\infty} \cap K} \varphi_P dH_1 \le G_K(A).$$

Similarly, N minimizes

(1.11)
$$G'(A) \equiv \int_{\Omega_{\infty}} |D\varphi_A| + \cos \gamma \int_{\partial \Omega_{\infty}} \varphi_A \, dH_1.$$

We want to know the structure of P and N, and we have:

LEMMA 1.3. If $L \subset \Omega_{\infty}$ minimizes G(A) defined in (1.9), then L equals to Ω_{∞} , \emptyset or some $\triangle OAB$ bounded by $\partial \Omega_{\infty}$ and $x^1 = a$ for some a > 0. (See Figure 2.)

The proof of the lemma is similar to the proof of Theorem 2.4 for the case $\alpha + \gamma > \pi/2$ in [10]. In that case, the conclusion is that $L = \Omega_{\infty}$ or \emptyset . In our case, it is possible to have $L = \triangle OAB$ described in the lemma because $2\alpha + 2\gamma = \pi$. We shall omit the proof. Similarly we have:

LEMMA 1.4. If L minimizes G'(A) defined by (1.11), then L equals to Ω_{∞} , \emptyset or $\Omega_{\infty} - \triangle OAB$ for some $\triangle OAB$ described in Lemma 1.3.

Since P minimizes G(A) and N minimizes G'(A), we conclude that (1.12) $P = \Omega_{\infty}$, \emptyset or $\triangle OAB$ which is bounded by $\partial \Omega_{\infty}$ and $x^1 = a$ for some a > 0.

FIGURE 2

(1.13) $N = \Omega_{\infty}$, \emptyset or $\Omega_{\infty} - \triangle OA'B'$ for some $\triangle OA'B'$ which is bounded by $\partial \Omega_{\infty}$ and $x^1 = a'$ for some a' > 0.

It is not hard to see from the proof of Lemma 3.1 in [11] that the following estimates are true. (See also [3].) Let V_i be the subgraph of v_i .

LEMMA 1.5. There exists $r_0 > 0$, C > 0 not depending on j such that for all $t \in \mathbf{R}$, the following is true:

(1.14) if
$$|V'_{j,r}(0,t)| > 0$$
 for all $r > 0$ then $|V'_{j,r}(0,t)| \ge Cr^3$ for
 $all \ 0 < r \le r_0$, where $C_r(x_0,t_0) = \{(x,t) \in \mathbb{R}^3 | |x-x_0| < r \text{ and } |t-t_0| < r\}$ and $V'_{j,r}(0,t) = C_r(0,t) - V_j$.

LEMMA 1.6. For any $0 < \tau_1 < \tau_2 < \infty$, there exist positive integer j_0 and positive numbers r_1 and C_1 such that for all $j \ge j_0$ and $(x, t) \in \Omega_j \cap \{x \in \mathbf{R}^2 | \tau_1 \le x^1 \le \tau_2\}$, the following are true:

(1.15) if $|V_{j,r}(x,t)| > 0$ for all r > 0, then $|V_{j,r}(x,t)| \ge C_1 r^3$, for all $0 < r \le r_1$;

(1.16) if
$$V'_{j,r}(x,t) > 0$$
 for all $r > 0$, then $|V'_{j,r}(x,t)| \ge C_1 r^3$ for
all $0 < r \le r_1$,

where $V_{j,r}(x,t) = C_r(x,t) \cap V_j$ and $V'_{j,r}(x,t) = C_r(x,t) - V_j$.

Notice that even though we do not have a similar result as (1.15) at the corner (because of the fact that $\alpha + \gamma = \pi/2$), we still have (1.14) since $\cos \gamma > 0$, as one can see from the proof of Lemma 3.1 in [11].

Using the above lemmas, we can prove:

LEMMA 1.7. $P = \{x \in \Omega_{\infty} | v_{\infty}(x) = \infty\}$ is empty.

Proof. If $P \neq \emptyset$, then by Lemma 1.3, $P = \Omega_{\infty}$ or some $\triangle OAB$ which is bounded by $\partial \Omega_{\infty}$ and $x^1 = a$ for some a > 0. In any case, there is $\bar{r} > 0$ such that

(1.17)
$$|V'_{\infty,r}(0,0)| = |C_r(0,0) - V_{\infty}| = 0$$
 for all $0 < r \le \bar{r}$.

By Lemma 1.5 and the fact that $(0,0) \in \mathbb{R}^3$ lies in the closure of the graph of v_i and that v_i is regular in $\overline{\Omega}_i - \{0\}$, we have:

$$|V'_{j,r}(0,0)| > 0$$
 for all $r > 0$, and so
 $|V'_{j,r}(0,0)| \ge Cr^3$ for all $0 < r \le r_0$.

In particular, if we take $r = \min(\bar{r}, r_0) > 0$, then

 $\left|V_{j,r}'(0,0)\right| \geq Cr^3.$

Let $j \to \infty$, noting that φ_{V_j} converges to $\varphi_{V_{\infty}}$ almost everywhere in $\Omega_{\infty} \times \mathbf{R}$, we have

$$|V'_{\infty,r}(0,0)| \ge Cr^3 > 0.$$

This contradicts (1.17). Therefore P must be empty and the lemma is proved. \Box

LEMMA 1.8. If
$$N = \{ x \in \Omega_{\infty} | v_{\infty} = -\infty \}$$
, then $N = \Omega_{\infty}$.

Proof. By (1.13) and Lemma 1.7, if $N \neq \Omega_{\infty}$, then there exists $\tau > 0$ such that v_{∞} is finite almost everywhere in $\{x \in \Omega_{\infty} | 0 < x^1 < \tau\}$. We claim that there is a positive integer j_0 such that

(1.18)
$$\sup_{\substack{j \ge j_0 \\ \tau/4 < x^1 < 3\tau/4}} \sup_{\substack{v_j(x) \\ v_j(x) \\ \tau/4 < x^2 < 3\tau/4}} |v_j(x)| < \infty.$$

Let j_0 , r_1 , and C_1 be the constants in Lemma 1.6 corresponding to $\tau_1 = \tau/4$, and $\tau_2 = 3\tau/4$.

Since each v_j is bounded in Ω_j , if (1.18) is not true, then we can find a subsequence of v_j , which we also call v_j , and $\bar{x}_j \in \Omega_j$, $\tau/4 < \bar{x}_j < 3\tau/4$, such that

$$\lim_{j\to\infty} |v_j(\bar{x}_j)| = \infty.$$

Passing to a subsequence if necessary, we may assume that $\lim_{j\to\infty} \overline{x}_j = z = (z^1, z^2)$ which is in $\overline{\Omega}_{\infty}$, with $\tau/4 \le z^1 \le 3\tau/4$, and such that

(1.19)
$$\lim_{j \to \infty} v_j(\bar{x}_j) = \infty, \text{ or}$$
$$\lim_{j \to \infty} v_j(\bar{x}_j) = -\infty.$$

Suppose that $\lim_{j\to\infty} v_j(\bar{x}_j) = \infty$. Then for any t > 0, if j is large enough, we have

$$|V_{j,r}(\overline{x}_j,t)| > 0$$
 for all $r > 0$.

Hence by (1.15), if j is large enough, we have

$$\left|V_{j,r}(\bar{x}_j,t)\right| \ge C_1 r^3 \quad \text{for all } 0 < r \le r_1.$$

Let $j \to \infty$, we get

$$|V_{\infty,r}(z,t)| \ge C_1 r^3$$
 for all $0 < r \le r_1$.

Since t can be arbitrarily large, this contradicts the fact that $P = \emptyset$.

Suppose that $\lim_{j\to\infty} v_j(\bar{x}_j) = -\infty$, then for any t < 0, if j is large enough, we have

$$\left|V_{j,r}'(\bar{x}_{j},t)\right| > 0 \quad \text{for all } r > 0.$$

By (1.16), we have

$$\left| V_{j,r}'(\bar{x}_j, t) \right| \ge C_1 r^3 \quad \text{for all } 0 < r \le r_1.$$

Take $\bar{r} = \min(\frac{1}{4}\tau, r_1) > 0$ and let $j \to \infty$, we get

$$V'_{\infty,\bar{r}}(z,t) \ge C_1 \bar{r}^3$$
 for all $t < 0$.

Since t can be arbitrarily small, this contradicts the fact that v_{∞} is finite almost everywhere in $\{x \in \Omega_{\infty} | 0 < x^1 < \tau\}$.

In any case, we have a contradiction. Therefore (1.18) is true.

By Theorem 3 in [7], v_{∞} is regular in $D = \{x \in \Omega_{\infty} | \tau/4 < x^1 < 3r/4\}$ after modification by a set of measure zero. By the results of [6], we have

(1.20)
$$\begin{cases} \lim_{j \to \infty} v_j(x) = v(x) \\ \lim_{j \to \infty} Dv_j(x) = Dv(x) \end{cases}$$

for $x \in D$. Integrating div $Tv_j = \varepsilon_j H$ over $D_j = \{x \in \Omega_j | 0 < x^1 < \tau/2\}$, using (1.3) and let $\eta = (-1, 0, 0)$, we have, for j large enough:

$$\int_{\Gamma_j \cap \{0 < x^1 < \tau/2\}} Tv_j \cdot \nu_j dH_1 = \int_{D_j} \varepsilon_j H dx + \int_{D_j \cap \{x^1 = \tau/2\}} Tv_j \cdot \eta dH_1.$$

Since $Tv_j \cdot v_j = \cos \gamma$ on Γ_j , and $\lim_{j \to \infty} \varepsilon_j H = 0$, if we let $j \to \infty$, we get

$$\cos\gamma \cdot H_1\left(\partial\Omega_{\infty} \cap \left\{0 < x^1 < \frac{\tau}{2}\right\}\right) = \int_{D \cap \{x^1 = \tau/2\}} Tv_{\infty} \cdot \eta \, dH_1.$$

But

$$\cos \gamma \cdot H_1\left(\partial \Omega_{\infty} \cap \left\{0 < x^1 < \frac{\tau}{2}\right\}\right) = H_1\left(D \cap \left\{x^1 = \frac{\tau}{2}\right\}\right).$$

Since $|Tv_{\infty} \cdot \eta| \leq 1$, we conclude that $Tv_{\infty} \cdot \eta = 1$ H_1 -almost everywhere on $D \cap \{x^1 = \tau/2\}$. This contradicts the fact that v_{∞} is regular in D. Hence we must have $N = \Omega_{\infty}$.

REMARK. We may simplify the proof by using the fact that V_{∞} is a cone with vertex at the origin. But in the next section we shall use a similar argument, so we do it this way.

Conclusion of the proof of Theorem 1.1. Using the fact that $N = \Omega_{\infty}$ and using (1.15) and similar method of proof of (1.18), we can conclude that

$$\lim_{j\to\infty} \sup_{\substack{x\in\Omega_j\\1\leq x^1\leq 3/2}} v_j(x) = -\infty.$$

In particular, we have

$$\lim_{j\to\infty} \frac{v(x_j)}{x_j^1} = \lim_{j\to\infty} v_j \left(1, \frac{x_j^2}{x_j^1}\right) = -\infty.$$

This contradicts (1.2), and the proof of Theorem 1.1 is complete. \Box

Now we can prove the continuity of u.

THEOREM 1.9. *u* extends to be a continuous function in $\overline{\Omega}$.

Proof. If this is not true, then there exist real numbers b > a, such that (0, a) and (0, b) are both in the closure of the graph of u. Let v = u - a. By Theorem 1.1, we have

$$\lim_{\substack{x\to 0\\x\in\Omega}}\frac{v(x)}{x^1}=-\infty.$$

476

In particular, there exists r > 0, such that if $x \in \Omega$ and |x| < r, then $v(x)/x^1 < 0$. Therefore u(x) < a for such x. Since (0, b) also lies in the closure of the graph of u, we can always find $x \in \Omega$ with 0 < |x| < r and u(x) > a. This leads to contradiction and the theorem follows. \Box

2. Continuity of the normal. Let us proceed and examine the continuity of the normal of the graph of u over Ω . Since u is continuous at the origin, by adding a constant to u, we may assume that u(0) = 0. u still satisfies (0.2). We want to prove:

$$\lim_{\substack{x\to 0\\x\in\Omega}}\left(Tu,\,\frac{-1}{\sqrt{1+|Du|^2}}\right)=(-1,0,0).$$

Since $u \in C^2(\overline{\Omega} - \{0\})$, it is sufficient to prove that for any sequence $x_i \in \Omega$, converging to 0, we have

(2.1)
$$\lim_{j\to\infty}\left(Tu(x_j),\frac{-1}{\sqrt{1+|Du(x_j)|^2}}\right)=(-1,0,0).$$

First, we shall establish (2.1) for any sequence x_j tending to the origin non-tangentially to $\partial\Omega$. More precisely, we assume that there is ε with $0 < \varepsilon < \tan \alpha$, such that $x_j = (x_j^1, x_j^2)$ lies between the straight lines $x^2 = \pm (\tan \alpha - \varepsilon)x^1$.

THEOREM 2.1. Let $x_j = (x_j^1, x_j^2) \in \Omega$ be a sequence of points approaching the origin such that $|x_j^2| < (\tan \alpha - \varepsilon) x_j^1$ for all j for some ε with $0 < \varepsilon < \tan \alpha$. Then (2.1) holds.

Proof. If we can prove that for any subsequence of x_j , we can find a subsequence of the subsequence such that (2.1) is true for that subsequence, then we are done.

Since every subsequence of x_j also satisfies the assumptions of the theorem, so we may assume that the subsequence is $\{x_i\}$ itself.

Since $x_i^1 > 0$ for all j, if we set $\varepsilon_i = x_i^1$ and define

$$u_j(x) = \frac{1}{\varepsilon_j}u(\varepsilon_j x) - \frac{1}{\varepsilon_j}u(x_j),$$

then as in §1, u_i satisfies:

(2.2)
$$\begin{cases} \operatorname{div} Tu_j = \varepsilon_j H & \operatorname{in} \Omega_j \\ Tu_j \cdot \nu_j = \cos \gamma & \operatorname{on} \Gamma_j. \end{cases}$$

Also if

$$\overline{x}_j = \left(1, \ x_j^2 / \varepsilon_j\right) = \left(1, \ x_j^2 / x_j^1\right),$$

then

$$(2.3) u_j(\bar{x}_j) = 0.$$

We may also assume that

(2.4) $\lim_{j\to\infty} \bar{x}_j = z = (1, z^2) \in \Omega_{\infty} \quad \text{with } |z^2| \le \tan \alpha - \varepsilon.$

As in §1, we can find a subsequence of u_j , which we also call u_j , converging locally to a generalized solution u_{∞} of $\mathscr{F}(w)$ defined by (1.4). Let

$$P = \left\{ x \in \Omega_{\infty} | u_{\infty}(x) = +\infty \right\}$$

and

$$N = \big\{ x \in \Omega_{\infty} \big| u_{\infty}(x) = -\infty \big\}.$$

As in §1, we know that $P = \Omega_{\infty}$, \emptyset or some $\triangle OAB$ bounded by $\partial \Omega_{\infty}$ and $x^1 = a$ for some a > 0; and $N = \Omega_{\infty}$, \emptyset or $\Omega_{\infty} - \triangle OA'B'$ for some $\triangle OA'B'$ bounded by $\partial \Omega_{\infty}$, and $x^1 = a'$ for some a' > 0.

Note that Lemma 1.6 is still true for the subgraph U_j of u_j . That is to say for any $0 < \tau_1 < \tau_2 < \infty$, there exist a positive integer j_0 and positive numbers r_1 and C_1 not depending on j such that for $j \ge j_0$ and for any $(x, t) \in \overline{\Omega}_j \cap \{x \in \mathbb{R}^2 | \tau_1 < x^1 < \tau_2\}$, (1.15) and (1.16) are still true if we replace V_j by U_j .

Suppose that $\Omega_{\infty} - (P \cup N) \neq \emptyset$, because of the structures of P and N, there exist $0 < a < b < \infty$ such that u_{∞} is finite almost everywhere in $\{x \in \Omega_{\infty} | a < x^1 < b\}$. Using (1.15) and (1.16) as in the proof of Lemma 1.8, we shall arrive at a contradiction.

Hence we must have $\Omega_{\infty} = P \cup N$.

Let U_{∞} be the subgraph of u_{∞} . Since $u_j(\bar{x}_j) = 0$ so $(\bar{x}_j, 0)$ belongs to the boundary of U_j . Using (1.15), (1.16), the fact that $\lim_{j \to \infty} \bar{x}_j = z$, $u_j \in C^2(\overline{\Omega} - \{0\})$, and that φ_U converge to $\varphi_{U_{\infty}}$ almost everywhere in $\Omega_{\infty} \times \mathbf{R}$, we have:

(2.5)
$$|U_{\infty,r}(z,0)| \ge C_1 r^3$$
, and $|U'_{\infty,r}(z,0)| \ge C_1 r^3$

for all $0 < r \le r_1$. Hence $P \ne \Omega_{\infty}$ and $N \ne \Omega_{\infty}$. Combining this with the fact that $\Omega_{\infty} = P \cup N$, we conclude that there is an a > 0 such that if *OAB* is the triangle bounded by $\partial \Omega_{\infty}$ and $x^1 = a$, then $P = \triangle OAB$ and $N = \Omega_{\infty} - \triangle OAB$. So $U_{\infty} = \triangle OAB \times \mathbf{R}$.

478

In fact, we must have a = 1. Otherwise, as $z = (1, z^2)$, a < 1 will give a contradiction to the first inequality of (2.5), while a > 1 will give a contradiction to the second inequality of (2.5).

The inward normal of ∂U_{∞} at $(z, 0) \in \mathbb{R}^3$ is (-1, 0, 0), and the inward normal of ∂U_j at $(\bar{x}_j, u(\bar{x}_j))$ is $(Tu_j(\bar{x}_j), -1/\sqrt{1+|Du_j(\bar{x}_j)|^2})$. Since $\lim_{j\to\infty}(\bar{x}_j, u_j(\bar{x}_j)) = (z, 0)$, so by Theorem 3 in [6], we have:

$$\lim_{j \to \infty} \left(Tu_j(\bar{x}_j), \frac{-1}{\sqrt{1 + |Du_j(\bar{x}_j)|^2}} \right) = (-1, 0, 0).$$

From the definitions of u_i and \bar{x}_i , we conclude that

$$\lim_{j \to \infty} \left(Tu(x_j), \frac{-1}{\sqrt{1 + |Du(x_j)|^2}} \right) = (-1, 0, 0). \square$$

Finally, we consider the case when x_j approaches the origin tangentially along $\partial \Omega_{\infty}$. We want to prove:

THEOREM 2.2. Under the above assumptions, (2.1) is still true, namely:

$$\lim_{j \to \infty} \left(Tu(x_j), \frac{-1}{\sqrt{1 + |Du(x_j)|^2}} \right) = (-1, 0, 0).$$

Proof. As in Theorem 2.1, it is sufficient to prove that (2.1) is true for a subsequence of x_i .

Define u_j and \overline{x}_j as in Theorem 2.1. We also assume that $\lim_{j \to \infty} \overline{x}_j = z = (1, z^2)$ which lies in $\overline{\Omega}_{\infty}$, with $z^2 = \pm \tan \alpha$.

We can extract a subsequence of u_j , which we also denote by u_j , such that u_j converges locally to a generalized solution of $\mathscr{F}(w)$ in Ω_{∞} .

Using similar method as in Theorem 2.1, we can prove that the subgraph U_{∞} of u_{∞} is $\triangle OAB \times \mathbf{R}$ for some $\triangle OAB$ bounded by $\partial \Omega_{\infty}$ and $x^1 = 1$. Up to this point, the proof is exactly the same as the proof in Theorem 2.1. However, in this case $z \in \partial \Omega_{\infty}$ and we cannot apply the results of [6]. So we need some modifications. Before we proceed further, let us prove the following lemma.

LEMMA 2.3. (a) For any
$$0 < \tau_1 < \tau_2 < 1$$
, we have
(2.6)
$$\lim_{j \to \infty} \inf_{\substack{x \in \overline{\Omega}_j \\ \tau_1 < x^1 < \tau_2}} u_j(x) = \infty; \text{ and }$$

(b) For any
$$1 < \tau_3 < \tau_4 < \infty$$
, we have
(2.7)
$$\lim_{j \to \infty} \sup_{\substack{x \in \overline{\Omega}_j \\ \tau_3 < x^1 < \tau_4}} u_j(x) = -\infty.$$

Proof. We shall prove (a) only, because the proof of (b) is similar.

Suppose that (2.6) is not true. Since $u_j \in C^2(\overline{\Omega}_j - \{0\})$, therefore we can find a real number M, a subsequence of u_j (which we also call u_j) and a sequence of points $y_j \in \Omega_j$, $\tau_1 < y_j^1 < \tau_2$ such that

$$u_i(y_i) \leq M.$$

We may also assume that $\lim_{j\to\infty} y_j = y \in \overline{\Omega}_{\infty}$. Note that $\tau_1 \leq y^1 \leq \tau_2$. By (1.16) as before, we have

$$\left|U_{j,r}'(y_j,M)\right|\geq C_1r^3$$

for all $0 < r \le r_1$ if j is large enough, where C_1 , and r_1 are positive constants not depending on j. Now let $j \to \infty$, we have

$$\left| U'_{\infty,r}(y,M) \right| \ge C_1 r^3 \quad \text{for all } 0 < r \le r_1.$$

This contradicts the fact that $U_{\infty} = \triangle OAB \times \mathbf{R}$ and that $0 < \tau_1 < \tau_2 < 1$, bearing in mind the definition of $\triangle OAB$. The lemma is then proved.

We now continue our proof of Theorem 2.2. By Lemma 2.3, since u_j is continuous in $\overline{\Omega}_j - \{0\}$, there exists j_0 such that for every $j \ge j_0$ we can find $y_i \in \partial \Omega_j$ with $u_i(y_j) = 0$ and $\lim_{j \to \infty} y_j = z$.

Let $Y_j = (y_j, u_j(y_j)) = (y_j, 0) \in \mathbb{R}^3$. By the results of [12], there exist $r_2 > 0$, $C_2 > 0$ and $1 > \alpha > 0$ not depending on j such that if $\eta_j(X)$ is the unit inward normal of ∂U_j at the point $X \in \partial U_j \cap \Omega_j$ we have

(2.8)
$$\left|\eta_{j}(X) - \eta_{j}(\overline{X})\right| \leq C_{2} |X - \overline{X}|^{\alpha}$$

for any X, \overline{X} belong to $\partial U_j \cap \Omega_j$ and $B_{r_2}(Y_j) = \{ X \in \mathbb{R}^3 | |X - Y_j| < r_2 \}.$

For any $r_2/2 > r > 0$, use Lemma 2.3 again, we can find $z_j \in \Omega_j$ and ε with $\tan \alpha > \varepsilon > 0$ not depending on j such that if j is large enough, we have

(2.9)
$$\begin{cases} \left| z_{j}^{2} \right| < (\tan \alpha - \varepsilon) z_{j}^{1} \\ u_{j}(z_{j}) = 0 \\ \left| z_{j} - z \right| < r \\ \lim_{j \to \infty} z_{j}^{1} = 1. \end{cases}$$

480

Let $Z_j = (z_j, u_j(z_j)) = (z_j, 0)$, Z = (z, 0) and $\overline{X}_j = (\overline{x}_j, u_j(\overline{x}_j)) = (\overline{x}_j, 0)$. Then $\lim_{j \to \infty} Y_j = Z = \lim_{j \to \infty} \overline{X}_j$. If j is large enough, then we have $|\overline{X}_i - \overline{Y}_i| < r_2$

and

$$|Z_j - Y_j| \le |Z_j - Z| + |Z - Y_j| < r + \frac{r_2}{2} < r_2.$$

By (2.8) we obtain

(2.10)
$$\left|\eta(Z_j)-\eta_j(\overline{X}_j)\right| \leq C_2 |Z_j-\overline{X}_j|^{\alpha}.$$

Since $\lim_{j\to\infty} z_j^1 = 1$, and $|z_j^2| < (\tan \alpha - \varepsilon) z_j^1$, so by Theorem 3 of [6], for any subsequence \overline{Z}_j of Z_j , we can always find a subsequence \overline{Z}'_j of \overline{Z}_j such that $\lim_{j\to\infty} \eta_j(\overline{Z}'_j) = (-1, 0, 0)$.

Therefore $\lim_{j\to\infty} \eta_j(Z_j) = (-1, 0, 0) = \eta$. Also, it is easy to see from (2.9) that

$$\limsup_{j\to\infty}\left|Z_j-\overline{X}_j\right|\leq r.$$

Let $j \to \infty$ in (2.10), we then have

$$\limsup_{j\to\infty} \left|\eta - \eta_j(\overline{X}_j)\right| \leq C_2 r^{\alpha}.$$

Now let $r \to 0$, we conclude that $\lim_{j\to\infty} |\eta - \eta_j(\overline{X}_j)| = 0$. The proof of Theorem 2.2 is then completed.

Combining Theorems 2.1 and 2.2, we get

THEOREM. The unit normal vector $(Tu, -1/\sqrt{1 + |Du|^2})$ extends to be continuous on $\overline{\Omega}$. More precisely,

$$\lim_{\substack{x\to 0\\x\in \overline{\Omega}-\{0\}}} \left(Tu(x), \frac{-1}{\sqrt{1+|Du(x)|^2}} \right) = (-1,0,0).$$

Acknowledgment. I wish to thank Robert Finn and Brian White for useful discussions.

References

- P. Concus and R. Finn, Capillary free surfaces in a gravitational field, Acta Math., 132 (1974), 207-223.
- R. Finn, Existence criteria for capillary free surfaces without gravity, Indiana Univ. Math. J., 32 (1983), 439-460.

- [3] E. Giusti, Generalized solutions of mean curvature equations, Pacific J. Math., 88 (1980), 297-321.
- [4] _____, Minimal surfaces and functions of bounded variation. Notes on pure mathematics. Australian National Univ., Canberra (1977).
- [5] N. J. Korevaar, On the behavior of a capillary surface at a re-entrant corner, Pacific J. Math., 88 (1980), 379-385.
- [6] U. Massari and L. Pepe, Sulle successioni convergenti di superfici a curvatura media assegnata, Rend. Sem. Mat. Padova, 53 (1975), 53-68.
- [7] M. Miranda, Un principio di massimo forte per le frontiere minimali ecc., Rend. Sem. Mat. Padova, 45 (1971), 355-366.
- [8] ____, Superfici minime illimitate, Ann. Scuola Norm. Sup. Pisa, (4) 4 (1977), 313-322.
- [9] L. Simon, Regularity of capillary surfaces over domains with corners, Pacific J. Math., 88 (1980), 363–377.
- [10] L.-F. Tam. The behavior of capillary surfaces as gravity tends to zero, to appear in Comm. in Partial Differential Equations.
- [11] _____, Existence criteria for capillary free surfaces without gravity, to appear in Pacific J. Math.
- [12] J. Taylor, Boundary regularity for solutions to various capillarity and free boundary problems, Comm. in Partial Differential Equations, 2 (1977), 323-357.

Received February 7, 1984.

Purdue University West Lafayette, IN 47907