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REGULARITY OF CAPILLARY SURFACES OVER

DOMAINS WITH CORNERS: BORDERLINE CASE

LUEN-FAI TAM

Consider the solutions of capillary surface equation with contact
angle boundary condition over domains with corners. It is known that if
the corner angle 2a satisfies 0 < 2a < π and a + γ > π/2 where
0 < γ < π/2 is the contact angle, then solutions are regular. It is also
known that no regularity holds in case α + γ < τr/2. In this paper we
show that solutions are still regular for the borderline case α + γ = π/2
at the corner.

It was proved by Concus and Finn in [1] that the behavior of a
capillary surface near a corner over a wedge can change discontinuously.
They proved that if the contact angle is γ > 0 and the interior angle at the
corner is 2α, then all solutions for which α + γ > π/2 are bounded near
the corner, while all solutions are unbounded if α + γ < π/2. Later in [9],
Simon went further and investigated the regularity near the corner.

Let Ω be a domain contained in BR = {x e R2||-t| < R) for some
R > 0, such that 3Ω consists of a circular arc of dBR and two smooth
Jordan arcs intersecting at the origin. Each arc makes an angle a with the
positive x^axis, so that the interior angle at the origin is 2a. See Figure 1.
Let u be a bounded function satisfying

H(x,u(x)) inΩ
Du

(0.1) Tu

= cosγ on Γ = (9Ω - {0}) Π BR

where H(x^t) is a locally bounded function in Ω XR, π/2 > γ > 0 is a
constant angle and v is the unit outward normal of Γ. If u is smooth in
(Ω -{0}) and if π/2 > a > m/2 - γ, then Simon [9] proved that u
actually extends to be a C1 function in Ω. It is known that no regularity
holds if a + γ < π/2. Our aim is to examine the borderline case a 4- γ =
π/2. In this case, one cannot expect Du to be continuous or even
bounded in Ω, as one can easily construct counterexamples. Note also that
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FIGURE 1

if 2 a > 7r, then there are examples which show that u may be discontinu-
ous at the corner, see [5]. In this paper we want to prove the following
theorem:

THEOREM. Let u e C2(Ω -{0}) Γ) L°°(2) be a solution of (0.1). //
a + γ = ττ/2, then u and (Tu, — 1/ yl + \Du\2) extend to be continuous
functions in Ω with values in R and R3 respectively.

Since H(x, t) is locally bounded in Ω XR and u ^ L°°(Ω), so we may
assume that u satisfies:

ίdiv Tu = H in Ω
\ Tu - v = cos γ on Γ

for some bounded continuous function H = H(x) in Ω.

1. Continuity of u at the corner. Let (0, a) e R2 X R = R3 be any
point lying in the closure of the graph of u over Ω.

Define v(x) = u(x) — a.

(1.1)

THEOREM 1.1. Under the above assumptions, we have

v\x) _ _ , . . * . _ _ _ /j ,.2\ r- D2lim — = — oo where x = (x1,.*2) R2
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Note that if x is close enough to the origin, we have xι > 0.
Therefore without loss of generality, we may assume that JC1 > 0 for all
x e Ω.

Proof. Suppose that (1.1) is not true, then there exists a real number
M and a sequence of points Xj e Ω such that limy ̂ ^ Xj = 0 and

(1.2) #
Xj

We want to get a contradiction from this. For this purpose we need
several lemmas.

With minor modifications, the proofs of Lemma 1.2-1.6 in the
following can be found in the literature. So we shall not prove them, but
only give the references. We state them here for the convenience of the
reader.

Let ε̂  = x], then l i m ^ ^ ε , = 0. Define Vj(x) = v(εjx)/εj. Then
ϋj(x) satisfies:

ίdiv7b, = εΉ in Q, = { x e R2|ε.jc e Ω),
(1.3) { , \

[Tvj Vj = cosγ on 1} = { x e R2|εyoc e Γ) ,

where Vj is the unit outward normal of Γ,. Notice that Vj G C2(Ωy — {0})
ΠL^Q^.) for ally.

Let Ω., = Um^^Ω^ = {x e R 2 | |x 2 | < (tanα)^1}.
As shown in [9] (see also [3] and [10]), noting that EjH tend to zero

everywhere in Ω^, and BJH are uniformly bounded, using the terminology
in [3] we have:

LEMMA 1.2. We can find a subsequence ofvj which converges locally to a
generalized solution v^ in Ω^ of

(1.4) &r(w)s[ \/l +\Dwf - c o s γ ( wdHx

where Hk is the k-dimensional Hausdorff measure in Rw, k < n. That is to
say, ifVoo = {(x,t)^QQ0XR\t< vjx)} is the subgraph of υ^ then for
any compact set K c R3, and for any Caccioppoli set (set of locally finite
perimeter) E9 such that sptίφj/ — φE) c K, we have
(1-5) Fκ\vx) < FK{E)

where

(1.6) FK(W)=(. \DΨίV\-cosyί ΨιvdH2,
J(Ωχ-R)nκ J(dΩxR)nκ
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and where φw denotes the characteristic function of W.

A sequence of functions fj is said to converge locally to a function /
in a domain D, if the characteristic functions of the subgraphs of fj
converge almost everywhere to the characteristic function of the subgraph
of / in D X R.

Note that v^ may take the value oo or - oo.
Define

(1.7) *

(1.8) N

As in [3] (see also [9,10]), we know that P minimizes

(1.9) G(A)=ί | Z ) φ J - c o s γ [ φ^H,

for Caccioppoli set ^ c Ω ^ . That is, for any compact set K c R2, and
any Caccioppoli set with sptίφ^ — φp) c K, we have

(1.10) GK{P) EE / |Z>φ P | - cosγf ΨpdHλ < GK{A).

Similarly, N minimizes

(1.11) G'(A)=[ \DφA\+cosy[ φAdHι.

We want to know the structure of P and N, and we have:

LEMMA 1.3. If L c ί200 minimizes G(A) defined in (1.9), then L equals
to Ω^, 0 or some AOAB bounded by ΘΩ^ and xι = a for some a > 0. (See
Figure 2.)

The proof of the lemma is similar to the proof of Theorem 2.4 for the
case a + γ > π/2 in [10]. In that case, the conclusion is that L = Ω^ or
0 . In our case, it is possible to have L = AOAB described in the lemma
because 2α + 2γ = π. We shall omit the proof. Similarly we have:

LEMMA 1.4. If L minimizes G\A) defined by (1.11), then L equals to
Ω^, 0 or Ω^ — AOAB for some AOAB described in Lemma 1.3.

Since P minimizes G(A) and N minimizes G\A), we conclude that
(1.12) P = Ω^, 0 or AOAB which is bounded by ΘΩ^ and xι = a

for some a > 0.
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FIGURE 2

(1.13) N = Ω^, 0 or Ω^ - AOA'B' for some AOA'B' which is
bounded by ΘΩ^ and xι = a' for some a' > 0.

It is not hard to see from the proof of Lemma 3.1 in [11] that the
following estimates are trae. (See also [3].) Let Vj be the subgraph of υr

LEMMA 1.5. There exists rQ > 0, C > 0 not depending onj such that for
all IGR, the following is true:

if \V/rφ, t)\ > 0 for allr>0 then |J^r(0,01 > O 3 for
(1.14) all 0 '< r <> r0, where Cr(x0, ί0) = {(x[ t) e R3| \x - xo\

< r and |/ - /0| < r} and ^ ( 0 , /) - Cr(0, /) - ^ .

LEMMA 1.6. For any 0 < rx < τ2 < oo, /Â r̂  eJc/5/ positive integer jQ

and positive numbers rx and Cx such that for all j >j0 and (x, /) e Ω7 Π
{JC e R2|τx < xι < τ 2}, the following are true:

^ 1^ r(*> 01 > 0 /or α// r > 0, /Λe« \Vj r(x, 1)1 ̂  Qr 3 ,

> 0, ίAeπ \VJr{x9t)\> Cxr
3 for

allθ<r<rl9

where VM(x91) - Cr(x, /) Π ^ απrf ^ ( x , /) - Cr(x, t) - F;..
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Notice that even though we do not have a similar result as (1.15) at
the corner (because of the fact that a + γ = π/2), we still have (1.14)
since cos γ > 0, as one can see from the proof of Lemma 3.1 in [11].

Using the above lemmas, we can prove:

LEMMA 1.7. P = {x e S200|U00(X) = oo} is empty.

Proof. If P Φ 0 , then by Lemma 1.3, P = Ω^ or some AOAB which
is bounded by ΘΩ^ and x1 = a for some a > 0. In any case, there is
r > 0 such that

(1.17) \V^,(090)\ = \Cr(090)-Vj=0 forall0<r<r.

By Lemma 1.5 and the fact that (0,0) e R3 lies in the closure of the
graph of Vj and that ϋj is regular in Ω7 — {0}, we have:

I Vj'XO, 0) I > 0 for all r > 0, and so

I V/tr(0,0) I > O 3 for all 0 < r < r0.

In particular, if we take r = min(r, r0) > 0, then

Let j -> oo, noting that ψv converges to ψv^ almost everywhere in
X R, we have

This contradicts (1.17). Therefore P must be empty and the lemma is
proved. D

LEMMA 1.8. IfN = {x e Ω J i ^ = - oo}, then N = Ω^.

Proof. By (1.13) and Lemma 1.7, if N Φ Ω^, then there exists T > 0
such that v^ is finite almost everywhere in {x G Ω O O | 0 < X 1 < T } . We
claim that there is a positive integer j 0 such that

(1.18) sup sup | ^ ( Λ : ) | < oo.

T/4<JC1<3T/4

Let y0, rl9 and Cλ be the constants in Lemma 1.6 corresponding to
τx = τ/4, and τ2 = 3τ/4.

Since each ϋj is bounded in Ωy, if (1.18) is not true, then we can find a
subsequence of υJ9 which we also call υj9 and Xj e Ωy, τ/4 < Xj < 3τ/4,
such that

lim Ie; (3c ) I = oo.
j-*oo
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Passing to a subsequence if necessary, we may assume that limy _> ̂  Xj
= z = (z1, z 2) which is in Ω^, with τ/4 < z1 < 3τ/4, and such that

lim VJ(XJ) = oo, or

(i-i9) y;°° , _ .
lim ϋ. ίx. ) = -oo.

j-*oo J J

Suppose that lim^^i^jt,-) = oo. Then for any t > 0, if y is large
enough, we have

• 0 for all r > 0.

Hence by (1.15), if j is large enough, we have

\Vjr{xj,t)\> Cxr
3 for all 0 < r < rv

Let j -> oo, we get

\V^ r{z,t)\> Cxr
3 for all 0 < r < rx.

Since t can be arbitrarily large, this contradicts the fact that P = 0 .
Suppose that lirn^.,^ Uj(xj) = — oo, then for any t < 0, if j is large

enough, we have

Vj[r(xj,t)\> 0 for all r> 0.

By (1.16), we have

\Vj\r{xj, t) I > Cxr
3 for all 0 < r < rx.

Take r = min(^τ, rx) > 0 and let j -> oo, we get

\V£9f(z,t)\ >Cxf
3 for all / < 0.

Since / can be arbitrarily small, this contradicts the fact that v^ is
finite almost everywhere in { x G ί 2 o o | 0 < j c 1 < τ } .

In any case, we have a contradiction. Therefore (1.18) is true.
By Theorem 3 in [7], v^ is regular in ΰ = {jceί2 0 0 |τ/4 < JC1 <

3r/4} after modification by a set of measure zero. By the results of [6], we
have

ί lim Vj(x) = v(x)

lim Dϋj(x) = Dv(x)

for x <Ξ D. Integrating άiwTvj = EJH over D y = { X G Ω ; . | 0 < X 1 < τ/2},
using (1.3) and let η = (— 1,0,0), we have, for j large enough:

[
TJn{0<x1<r/2)

ί TvrηdHv
JDjn{x1=τ/2}
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Since Tθj Vj = cosγ on Tp and limy ^ ^ ejH = 0, if we let j -» oo,
we get

cosγ Jξφo^ n(θ < x1 < 1

But

cosγ H^dQ. n{θ < x1 < §}) = Jf

Since IΓϋ^ τj| < 1, we conclude that Tυ^ η = 1 /^-almost everywhere
on /) Π {A:1 = τ/2}. This contradicts the fact that v^ is regular in D.
Hence we must have N = Ω_. D"oo*

REMARK. We may simplify the proof by using the fact that V^ is a
cone with vertex at the origin. But in the next section we shall use a
similar argument, so we do it this way.

Conclusion of the proof of Theorem 1.1. Using the fact that N = Ω^
and using (1.15) and similar method of proof of (1.18), we can conclude
that

lim sup Vj(x) = - o o .

l<xι<3/2

In particular, we have

lim Urn vjll, - f = — 0 0 .

This contradicts (1.2), and the proof of Theorem 1.1 is complete. D

Now we can prove the continuity of u.

THEOREM 1.9. u extends to be a continuous function in Ω.

Proof. If this is not true, then there exist real numbers b > α, such
that (0, a) and (0,6) are both in the closure of the graph of u. Let
v = u — a. By Theorem 1.1, we have

hm — ^ = - 0 0 .

Ω
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In particular, there exists r > 0, such that if x e Ω and \x\ < r, then
v(x)/xι < 0. Therefore u(x) < a for such JC. Since (0, b) also lies in the
closure of the graph of w, we can always find x e β with 0 <\x\< r and
u(x) > a. This leads to contradiction and the theorem follows. G

2. Continuity of the normal. Let us proceed and examine the
continuity of the normal of the graph of u over Ω. Since u is continuous
at the origin, by adding a constant to u, we may assume that u(0) = 0. u
still satisfies (0.2). We want to prove:

Urn \Tu, " * - (-1,0,0).

Since u e C2(Ω — {0}), it is sufficient to prove that for any sequence
Xj G Ω, converging to 0, we have

J-+OO

(2.1) lim m / ^ l (-1,0,0).

First, we shall establish (2.1) for any sequence Xj tending to the origin
non-tangentially to 3Ω. More precisely, we assume that there is ε with
0 < ε < tanα, such that Xj = (xj, xj) lies between the straight lines
x2 = ±(tanα — ε)xι.

THEOREM 2.1. Let Xj = (jcj, xj) e Ω be a sequence of points approach-

ing the origin such that \xj\ < (tanα — ε)xj for all j for some ε with

0 < ε < tanα. Then (2.1) holds.

Proof. If we can prove that for any subsequence of xJy we can find a
subsequence of the subsequence such that (2.1) is true for that subse-
quence, then we are done.

Since every subsequence of Xj also satisfies the assumptions of the
theorem, so we may assume that the subsequence is {Xj} itself.

Since xj > 0 for all /, if we set Sj = xj and define

( \ l ( \ ι ί \
uj\x)- e

u\εjx) ε

u\xj)>

then as in §1, uj satisfies:

/ div Tu: = εfH in Ω.

(2.2) ί
I Tuj•* Pj, = cosγ o n l y .
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Also if

then

(2.3) Uj(xj) = 0.

We may also assume that

(2.4) lim x.: = z = (1, z 2 ) e Ω^ with | z 2 | < tanα - ε.
j-*oo

As in §1, we can find a subsequence of uj9 which we also call uJ9

converging locally to a generalized solution u^ of ^F(w) defined by (1.4).

Let

P = { x e O J i i J x ) - + *>}

and

N = {x e Ω J I I ^ J C ) = -oo} .

As in §1, we know that P = Ω^, 0 or some AOAB bounded by ΘΩ^

and x1 = a for some 0 > 0; and N = Ω^, 0 or β w - AOA'B' for some

AOA'B' bounded by θΩ^, and x1 = a' for some α' > 0.

Note that Lemma 1.6 is still true for the subgraph Uj of wy. That is to

say for any 0 < τx < τ2 < 00, there exist a positive integer j0 and positive

numbers rλ and Cx not depending on j such that for j > j0 and for any

(JC, t) ^ΩjΠ {x ^ R2\rι< x1 < τ2}, (1.15) and (1.16) are still true if we

replace Vj by U .

Suppose that Ω o o - ( P U Λ ^ ) ^ 0 , because of the structures of P

and N9 there exist 0 < a < b < 00 such that u^ is finite almost every-

where in { x G Ω^ I a < xι < b}. Using (1.15) and (1.16) as in the proof of

Lemma 1.8, we shall arrive at a contradiction.

Hence we must have Ω^ = P U N.

Let U^ be the subgraph of u^. Since UJ(XJ) = 0 so (xy,0) belongs to

the boundary of Uy Using (1.15), (1.16), the fact that l i m , . ^ 3c,. = z,

Uj e C2(Ω -{0}), and that φu converge to φ ^ almost everywhere in

Ω^ X R, we have:

(2.5) I t/^^z, 0) | > Cτr
3

9 and |C/^r(z,0) | > Cxr
3

for all 0 < r < rλ. Hence P Φ Ω^ and N Φ Ω^. Combining this with the

fact that Ω^ = P U N9 we conclude that there is an a > 0 such that if

Q/ίi? is the triangle bounded by ΘΩ^ and x1 = α, then P = AOAB and

?. So LL = ΔO^45 X R.
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In fact, we must have a = 1. Otherwise, as z = (1, z2), a < 1 will give
a contradiction to the first inequality of (2.5), while a > 1 will give a
contradiction to the second inequality of (2.5).

The inward normal of dU^ at (z, 0) e R3 is (--1,0,0), and the inward
normal of Wj at (xpu(Xj)) is (TUJ(XJ), - l / / l + |Dtty(jcy)|2). Since
limy _oo(3cy, Uj(xj)) = (z, 0), so by Theorem 3 in [6], we have:

- 1Km Tufa),

From the definitions of Uj and xj9 we conclude that

- 1
lim D

Finally, we consider the case when Xj approaches the origin tangen-
tially along ΘΩ .̂ We want to prove:

THEOREM 2.2. Under the above assumptions, (2.1) is still true, namely:

- 1
lim

y->oo
Tu(xj), (-1,0,0).

Proof. As in Theorem 2.1, it is sufficient to prove that (2.1) is true for
a subsequence of xJm

Define u and Xj as in Theorem 2.1. We also assume that limj^^Xj
= z = (1, z 2) which lies in Ω^, with z 2 = ± tanα.

We can extract a subsequence of ujy which we also denote by ujy such
that Uj converges locally to a generalized solution of J^( w) in Ω^.

Using similar method as in Theorem 2.1, we can prove that the
subgraph U^ of u^ is AOAB X R for some AOAB bounded by ΘΩ^ and
JC1 = 1. Up to this point, the proof is exactly the same as the proof in
Theorem 2.1. However, in this case z G ΘΩ^ and we cannot apply the
results of [6]. So we need some modifications. Before we proceed further,
let us prove the following lemma.

LEMMA 2.3. (a) For any 0 < rλ < τ2 < 1, we have

(2.6) lim inf Uj(x) = oo; and

τι<x1< τ2



480 LUEN-FAITAM

(b) For any 1 < τ3 < τ4 < oo, we have

(2.7) lim sup t / ( x ) = - o o .

Proof. We shall prove (a) only, because the proof of (b) is similar.
Suppose that (2.6) is not true. Since Uj e C2(Ωy - {0}), therefore we

can find a real number M, a subsequence of Uj (which we also call Uj)
and a sequence of points y} e Ωy, τx < j£ < τ2 such that

: M.

We may also assume that lim^^^ y}? = j e Ω .̂ Note that τx < j ; 1 < τ2.
By (1.16) as before, we have

for all 0 < r < rx if j is large enough, where Cv and rx are positive
constants not depending on j . Now let j -* oo, we have

\Uή r(y> M) I > Cxr
3 for all 0 < r < rx.

This contradicts the fact that U^ = AOAB X R and that 0 < τx < τ2 < 1,
bearing in mind the definition of AOAB. The lemma is then proved. D

We now continue our proof of Theorem 2.2. By Lemma 2.3, since uj

is continuous in Ωy — {0}, there exists j 0 such that for every j > j 0 we can
find y} e 3Ωy with Uj(yj) = 0 and lim,.^ y} = z.

Let Yj = (yp Uj(yj)) = (^,0) e R3. By the results of [12], there exist
r2 > 0, C2 > 0 and 1 > a > 0 not depending on j such that if ηj(X) is
the unit inward normal of dUj at the point X e dUj (Ί Ωy. we have

(2.8)

for any X, X belong to dUj Π Ωy and Bri(Yj) = { X e R3 | |^ - ϊ)| < r2}.
For any r^l > r > 0, use Lemma 2.3 again, we can find z} G Ωy and

ε with tanα > ε > 0 not depending on j such that if j is large enough, we
have

< (tanα - ε)z)

ρ - 9 ) ιχ;-*"<0r
lim z) = 1.
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tuAzλ) = (2,0), Z = (z,0) and X

481

Let Zj =

Then limy ^ ^ YJ; = Z = l i m ^ ^ Λ̂  . If 7 is large enough, then we have

Xj~Yj\<r2

and

\Zj-Yj\<\Zj-Z\+\Z-Yj\<r+j.<r2.

By (2.8) we obtain

(2.10) \η(Zj) - ηj(Xj) \ < C2\Zj - X,f.

Since lim^^^ z) = 1, and \zj\ < (tanα - ε)z), so by Theorem 3 of
[6], for any subsequence Z} of Zp we can always find a subsequence Zj of
Zj such that iim, ̂ ^ i\}(Zj) » (-1,0,0).

Therefore limy ^ ̂  ηy( Zy) = (-1,0,0) = ij.
Also, it is easy to see from (2.9) that

limsup|Zy - Xj\ < r.
7—00

Let j -» oo in (2.10), we then have

lim sup I η - η/(-X})| ̂  C2r
a.

Now let r -» 0, we conclude that l im^^lη — i
of Theorem 2.2 is then completed.

Combining Theorems 2.1 and 2.2, we get

Π

THEOREM. The unit normal vector (Tu, - 1 / /l + \Du\2) extends to be
continuous on Ω. More precisely,

lim
-{0}

Tu(x)9

_ 1
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