REGULARITY OF CAPILLARY SURFACES OVER DOMAINS WITH CORNERS: BORDERLINE CASE

LUEN-FAI TAM

Abstract

Consider the solutions of capillary surface equation with contact angle boundary condition over domains with corners. It is known that if the corner angle 2α satisfies $0<2 \alpha<\pi$ and $\alpha+\gamma>\pi / 2$ where $0<\gamma \leq \pi / 2$ is the contact angle, then solutions are regular. It is also known that no regularity holds in case $\alpha+\gamma<\pi / 2$. In this paper we show that solutions are still regular for the borderline case $\alpha+\gamma=\pi / 2$ at the corner.

It was proved by Concus and Finn in [1] that the behavior of a capillary surface near a corner over a wedge can change discontinuously. They proved that if the contact angle is $\gamma>0$ and the interior angle at the corner is 2α, then all solutions for which $\alpha+\gamma \geq \pi / 2$ are bounded near the corner, while all solutions are unbounded if $\alpha+\gamma<\pi / 2$. Later in [9], Simon went further and investigated the regularity near the corner.

Let Ω be a domain contained in $B_{R}=\left\{x \in \mathbf{R}^{2}| | x \mid<R\right\}$ for some $R>0$, such that $\partial \Omega$ consists of a circular arc of ∂B_{R} and two smooth Jordan arcs intersecting at the origin. Each arc makes an angle α with the positive x^{1}-axis, so that the interior angle at the origin is 2α. See Figure 1 . Let u be a bounded function satisfying

$$
\begin{cases}\operatorname{div} T u=H(x, u(x)) & \text { in } \Omega \tag{0.1}\\ T u=\frac{D u}{\sqrt{1+|D u|^{2}}} & \\ T u \cdot \nu=\cos \gamma & \text { on } \Gamma=(\partial \Omega-\{0\}) \cap B_{R}\end{cases}
$$

where $H(x, t)$ is a locally bounded function in $\bar{\Omega} \times \mathbf{R}, \pi / 2>\gamma>0$ is a constant angle and ν is the unit outward normal of Γ. If u is smooth in ($\bar{\Omega}-\{0\}$) and if $\pi / 2>\alpha>\pi / 2-\gamma$, then Simon [9] proved that u actually extends to be a C^{1} function in $\bar{\Omega}$. It is known that no regularity holds if $\alpha+\gamma<\pi / 2$. Our aim is to examine the borderline case $\alpha+\gamma=$ $\pi / 2$. In this case, one cannot expect $D u$ to be continuous or even bounded in $\bar{\Omega}$, as one can easily construct counterexamples. Note also that

Figure 1
if $2 \alpha>\pi$, then there are examples which show that u may be discontinuous at the corner, see [5]. In this paper we want to prove the following theorem:

Theorem. Let $u \in C^{2}(\bar{\Omega}-\{0\}) \cap L^{\infty}(\Omega)$ be a solution of (0.1). If $\alpha+\gamma=\pi / 2$, then u and $\left(T u,-1 / \sqrt{1+|D u|^{2}}\right)$ extend to be continuous functions in $\bar{\Omega}$ with values in \mathbf{R} and \mathbf{R}^{3} respectively.

Since $H(x, t)$ is locally bounded in $\bar{\Omega} \times \mathbf{R}$ and $u \in L^{\infty}(\Omega)$, so we may assume that u satisfies:

$$
\begin{cases}\operatorname{div} T u=H & \text { in } \Omega \tag{0.2}\\ T u \cdot \nu=\cos \gamma & \text { on } \Gamma\end{cases}
$$

for some bounded continuous function $H=H(x)$ in Ω.

1. Continuity of u at the corner. Let $(0, a) \in \mathbf{R}^{2} \times \mathbf{R}=\mathbf{R}^{3}$ be any point lying in the closure of the graph of u over Ω.

Define $v(x)=u(x)-a$.
Theorem 1.1. Under the above assumptions, we have

$$
\begin{equation*}
\lim _{\substack{x \rightarrow 0 \\ x \in \Omega}} \frac{v(x)}{x^{1}}=-\infty \quad \text { where } x=\left(x^{1}, x^{2}\right) \in \mathbf{R}^{2} \tag{1.1}
\end{equation*}
$$

Note that if x is close enough to the origin, we have $x^{1}>0$. Therefore without loss of generality, we may assume that $x^{1}>0$ for all $x \in \Omega$.

Proof. Suppose that (1.1) is not true, then there exists a real number M and a sequence of points $x_{j} \in \Omega$ such that $\lim _{j \rightarrow \infty} x_{j}=0$ and

$$
\begin{equation*}
\frac{v\left(x_{j}\right)}{x_{j}^{1}} \geq M \tag{1.2}
\end{equation*}
$$

We want to get a contradiction from this. For this purpose we need several lemmas.

With minor modifications, the proofs of Lemma 1.2-1.6 in the following can be found in the literature. So we shall not prove them, but only give the references. We state them here for the convenience of the reader.

Let $\varepsilon_{j}=x_{j}^{1}$, then $\lim _{j \rightarrow \infty} \varepsilon_{j}=0$. Define $v_{j}(x)=v\left(\varepsilon_{j} x\right) / \varepsilon_{j}$. Then $v_{j}(x)$ satisfies:

$$
\begin{cases}\operatorname{div} T v_{j}=\varepsilon_{j} H & \text { in } \Omega_{j}=\left\{x \in \mathbf{R}^{2} \mid \varepsilon_{j} x \in \Omega\right\} \tag{1.3}\\ T v_{j} \cdot \nu_{j}=\cos \gamma & \text { on } \Gamma_{j}=\left\{x \in \mathbf{R}^{2} \mid \varepsilon_{j} x \in \Gamma\right\}\end{cases}
$$

where ν_{j} is the unit outward normal of Γ_{j}. Notice that $v_{j} \in C^{2}\left(\bar{\Omega}_{j}-\{0\}\right)$ $\cap L^{\infty}\left(\Omega_{j}\right)$ for all j.

Let $\Omega_{\infty}=\lim _{j \rightarrow \infty} \Omega_{j}=\left\{x \in \mathbf{R}^{2} \| x^{2} \mid<(\tan \alpha) x^{1}\right\}$.
As shown in [9] (see also [3] and [10]), noting that $\varepsilon_{j} H$ tend to zero everywhere in Ω_{∞}, and $\varepsilon_{j} H$ are uniformly bounded, using the terminology in [3] we have:

Lemma 1.2. We can find a subsequence of v_{j} which converges locally to a generalized solution v_{∞} in Ω_{∞} of

$$
\begin{equation*}
\mathscr{F}(w) \equiv \int_{\Omega_{\infty}} \sqrt{1+|D w|^{2}}-\cos \gamma \int_{\partial \Omega_{\infty}} w d H_{1} \tag{1.4}
\end{equation*}
$$

where H_{k} is the k-dimensional Hausdorff measure in $\mathbf{R}^{n}, k \leq n$. That is to say, if $V_{\infty}=\left\{(x, t) \in \Omega_{\infty} \times \mathbf{R} \mid t<v_{\infty}(x)\right\}$ is the subgraph of v_{∞}, then for any compact set $K \subset \mathbf{R}^{3}$, and for any Caccioppoli set (set of locally finite perimeter) E, such that $\operatorname{spt}\left(\varphi_{V_{\infty}}-\varphi_{E}\right) \subset K$, we have

$$
\begin{equation*}
F_{K}^{\infty}\left(V_{\infty}\right) \leq F_{K}(E) \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{K}(W) \equiv \int_{\left(\Omega_{\infty}^{\prime} \times \mathbf{R}\right) \cap K}\left|D \varphi_{W}\right|-\cos \gamma \int_{\left(\partial \Omega_{\infty} \times \mathbf{R}\right) \cap K} \varphi_{W} d H_{2} \tag{1.6}
\end{equation*}
$$

and where φ_{W} denotes the characteristic function of W.
A sequence of functions f_{j} is said to converge locally to a function f in a domain D, if the characteristic functions of the subgraphs of f_{j} converge almost everywhere to the characteristic function of the subgraph of f in $D \times \mathbf{R}$.

Note that v_{∞} may take the value ∞ or $-\infty$.
Define

$$
\begin{gather*}
P=\left\{x \in \Omega_{\infty} \mid v_{\infty}(x)=\infty\right\} \tag{1.7}\\
N=\left\{x \in \Omega_{\infty} \mid v_{\infty}(x)=-\infty\right\} \tag{1.8}
\end{gather*}
$$

As in [3] (see also [9, 10]), we know that P minimizes

$$
\begin{equation*}
G(A) \equiv \int_{\Omega_{\infty}}\left|D \varphi_{A}\right|-\cos \gamma \int_{\partial \Omega_{\infty} \cap K} \varphi_{A} d H_{1} \tag{1.9}
\end{equation*}
$$

for Caccioppoli set $A \subset \Omega_{\infty}$. That is, for any compact set $K \subset \mathbf{R}^{2}$, and any Caccioppoli set with $\operatorname{spt}\left(\varphi_{A}-\varphi_{P}\right) \subset K$, we have

$$
\begin{equation*}
G_{K}(P) \equiv \int_{\Omega_{\infty} \cap K}\left|D \varphi_{P}\right|-\cos \gamma \int_{\partial \Omega_{\infty} \cap K} \varphi_{P} d H_{1} \leq G_{K}(A) \tag{1.10}
\end{equation*}
$$

Similarly, N minimizes

$$
\begin{equation*}
G^{\prime}(A) \equiv \int_{\Omega_{\infty}}\left|D \varphi_{A}\right|+\cos \gamma \int_{\partial \Omega_{\infty}} \varphi_{A} d H_{1} \tag{1.11}
\end{equation*}
$$

We want to know the structure of P and N, and we have:
Lemma 1.3. If $L \subset \Omega_{\infty}$ minimizes $G(A)$ defined in (1.9), then L equals to $\Omega_{\infty}, \varnothing$ or some $\triangle O A B$ bounded by $\partial \Omega_{\infty}$ and $x^{1}=a$ for some $a>0$. (See Figure 2.)

The proof of the lemma is similar to the proof of Theorem 2.4 for the case $\alpha+\gamma>\pi / 2$ in [10]. In that case, the conclusion is that $L=\Omega_{\infty}$ or \varnothing. In our case, it is possible to have $L=\triangle O A B$ described in the lemma because $2 \alpha+2 \gamma=\pi$. We shall omit the proof. Similarly we have:

Lemma 1.4. If L minimizes $G^{\prime}(A)$ defined by (1.11), then L equals to $\Omega_{\infty}, \varnothing$ or $\Omega_{\infty}-\triangle O A B$ for some $\triangle O A B$ described in Lemma 1.3.

Since P minimizes $G(A)$ and N minimizes $G^{\prime}(A)$, we conclude that
(1.12) $P=\Omega_{\infty}, \varnothing$ or $\triangle O A B$ which is bounded by $\partial \Omega_{\infty}$ and $x^{1}=a$ for some $a>0$.

Figure 2
(1.13) $N=\Omega_{\infty}, \varnothing$ or $\Omega_{\infty}-\triangle O A^{\prime} B^{\prime}$ for some $\triangle O A^{\prime} B^{\prime}$ which is bounded by $\partial \Omega_{\infty}$ and $x^{1}=a^{\prime}$ for some $a^{\prime}>0$.

It is not hard to see from the proof of Lemma 3.1 in [11] that the following estimates are true. (See also [3].) Let V_{j} be the subgraph of v_{j}.

Lemma 1.5. There exists $r_{0}>0, C>0$ not depending on j such that for all $t \in \mathbf{R}$, the following is true:

$$
\begin{align*}
& \text { if }\left|V_{j, r}^{\prime}(0, t)\right|>0 \text { for all } r>0 \text { then }\left|V_{j, r}^{\prime}(0, t)\right| \geq C r^{3} \text { for } \\
& \text { all } 0<r \leq r_{0} \text {, where } C_{r}\left(x_{0}, t_{0}\right)=\left\{(x, t) \in \mathbf{R}^{3}| | x-x_{0} \mid\right. \tag{1.14}\\
& \left.<r \text { and }\left|t-t_{0}\right|<r\right\} \text { and } V_{j, r}^{\prime}(0, t)=C_{r}(0, t)-V_{j} \text {. }
\end{align*}
$$

Lemma 1.6. For any $0<\tau_{1}<\tau_{2}<\infty$, there exist positive integer j_{0} and positive numbers r_{1} and C_{1} such that for all $j \geq j_{0}$ and $(x, t) \in \Omega_{j} \cap$ $\left\{x \in \mathbf{R}^{2} \mid \tau_{1} \leq x^{1} \leq \tau_{2}\right\}$, the following are true:

$$
\begin{align*}
& \text { if }\left|V_{j, r}(x, t)\right|>0 \text { for all } r>0 \text {, then }\left|V_{j, r}(x, t)\right| \geq C_{1} r^{3}, \tag{1.15}\\
& \text { for all } 0<r \leq r_{1} \text {; }
\end{align*}
$$

$$
\begin{align*}
& \text { if } V_{j, r}^{\prime}(x, t)>0 \text { for all } r>0 \text {, then }\left|V_{j, r}^{\prime}(x, t)\right| \geq C_{1} r^{3} \text { for } \tag{1.16}\\
& \text { all } 0<r \leq r_{1} \text {, }
\end{align*}
$$

where $V_{j, r}(x, t)=C_{r}(x, t) \cap V_{j}$ and $V_{j, r}^{\prime}(x, t)=C_{r}(x, t)-V_{j}$.

Notice that even though we do not have a similar result as (1.15) at the corner (because of the fact that $\alpha+\gamma=\pi / 2$), we still have (1.14) since $\cos \gamma>0$, as one can see from the proof of Lemma 3.1 in [11].

Using the above lemmas, we can prove:
Lemma 1.7. $P=\left\{x \in \Omega_{\infty} \mid v_{\infty}(x)=\infty\right\}$ is empty.
Proof. If $P \neq \varnothing$, then by Lemma 1.3, $P=\Omega_{\infty}$ or some $\triangle O A B$ which is bounded by $\partial \Omega_{\infty}$ and $x^{1}=a$ for some $a>0$. In any case, there is $\bar{r}>0$ such that

$$
\begin{equation*}
\left|V_{\infty, r}^{\prime}(0,0)\right|=\left|C_{r}(0,0)-V_{\infty}\right|=0 \quad \text { for all } 0<r \leq \bar{r} . \tag{1.17}
\end{equation*}
$$

By Lemma 1.5 and the fact that $(0,0) \in \mathbf{R}^{3}$ lies in the closure of the graph of v_{j} and that v_{j} is regular in $\bar{\Omega}_{j}-\{0\}$, we have:

$$
\begin{aligned}
& \left|V_{j, r}^{\prime}(0,0)\right|>0 \quad \text { for all } r>0, \text { and so } \\
& \left|V_{j, r}^{\prime}(0,0)\right| \geq C r^{3} \quad \text { for all } 0<r \leq r_{0} .
\end{aligned}
$$

In particular, if we take $r=\min \left(\bar{r}, r_{0}\right)>0$, then

$$
\left|V_{j, r}^{\prime}(0,0)\right| \geq C r^{3} .
$$

Let $j \rightarrow \infty$, noting that $\varphi_{V_{j}}$ converges to $\varphi_{\nu_{\infty}}$ almost everywhere in $\Omega_{\infty} \times \mathbf{R}$, we have

$$
\left|V_{\infty, r}^{\prime}(0,0)\right| \geq C r^{3}>0 .
$$

This contradicts (1.17). Therefore P must be empty and the lemma is proved.

Lemma 1.8. If $N=\left\{x \in \Omega_{\infty} \mid v_{\infty}=-\infty\right\}$, then $N=\Omega_{\infty}$.
Proof. By (1.13) and Lemma 1.7, if $N \neq \Omega_{\infty}$, then there exists $\tau>0$ such that v_{∞} is finite almost everywhere in $\left\{x \in \Omega_{\infty} \mid 0<x^{1}<\tau\right\}$. We claim that there is a positive integer j_{0} such that

$$
\begin{equation*}
\sup _{j \geq j_{0}} \sup _{\substack{x \in \Omega_{j} \\ \tau / 4<x^{1}<3 \tau / 4}}\left|v_{j}(x)\right|<\infty . \tag{1.18}
\end{equation*}
$$

Let j_{0}, r_{1}, and C_{1} be the constants in Lemma 1.6 corresponding to $\tau_{1}=\tau / 4$, and $\tau_{2}=3 \tau / 4$.

Since each v_{j} is bounded in Ω_{j}, if (1.18) is not true, then we can find a subsequence of v_{j}, which we also call v_{j}, and $\bar{x}_{j} \in \Omega_{j}, \tau / 4<\bar{x}_{j}<3 \tau / 4$, such that

$$
\lim _{j \rightarrow \infty}\left|v_{j}\left(\bar{x}_{j}\right)\right|=\infty
$$

Passing to a subsequence if necessary, we may assume that $\lim _{j \rightarrow \infty} \bar{x}_{j}$ $=z=\left(z^{1}, z^{2}\right)$ which is in $\bar{\Omega}_{\infty}$, with $\tau / 4 \leq z^{1} \leq 3 \tau / 4$, and such that

$$
\begin{align*}
& \lim _{j \rightarrow \infty} v_{j}\left(\bar{x}_{j}\right)=\infty, \text { or } \\
& \lim _{j \rightarrow \infty} v_{j}\left(\bar{x}_{j}\right)=-\infty \tag{1.19}
\end{align*}
$$

Suppose that $\lim _{j \rightarrow \infty} v_{j}\left(\bar{x}_{j}\right)=\infty$. Then for any $t>0$, if j is large enough, we have

$$
\left|V_{j, r}\left(\bar{x}_{j}, t\right)\right|>0 \quad \text { for all } r>0
$$

Hence by (1.15), if j is large enough, we have

$$
\left|V_{j, r}\left(\bar{x}_{j}, t\right)\right| \geq C_{1} r^{3} \quad \text { for all } 0<r \leq r_{1}
$$

Let $j \rightarrow \infty$, we get

$$
\left|V_{\infty, r}(z, t)\right| \geq C_{1} r^{3} \quad \text { for all } 0<r \leq r_{1}
$$

Since t can be arbitrarily large, this contradicts the fact that $P=\varnothing$.
Suppose that $\lim _{j \rightarrow \infty} v_{j}\left(\bar{x}_{j}\right)=-\infty$, then for any $t<0$, if j is large enough, we have

$$
\left|V_{j, r}^{\prime}\left(\bar{x}_{j}, t\right)\right|>0 \quad \text { for all } r>0
$$

By (1.16), we have

$$
\left|V_{j, r}^{\prime}\left(\bar{x}_{j}, t\right)\right| \geq C_{1} r^{3} \quad \text { for all } 0<r \leq r_{1}
$$

Take $\bar{r}=\min \left(\frac{1}{4} \tau, r_{1}\right)>0$ and let $j \rightarrow \infty$, we get

$$
\left|V_{\infty, \bar{r}}^{\prime}(z, t)\right| \geq C_{1} \bar{r}^{3} \quad \text { for all } t<0
$$

Since t can be arbitrarily small, this contradicts the fact that v_{∞} is finite almost everywhere in $\left\{x \in \Omega_{\infty} \mid 0<x^{1}<\tau\right\}$.

In any case, we have a contradiction. Therefore (1.18) is true.
By Theorem 3 in [7], v_{∞} is regular in $D=\left\{x \in \Omega_{\infty} \mid \tau / 4<x^{1}<\right.$ $3 r / 4\}$ after modification by a set of measure zero. By the results of [6], we have

$$
\left\{\begin{array}{l}
\lim _{j \rightarrow \infty} v_{j}(x)=v(x) \tag{1.20}\\
\lim _{j \rightarrow \infty} D v_{j}(x)=D v(x)
\end{array}\right.
$$

for $x \in D$. Integrating $\operatorname{div} T v_{j}=\varepsilon_{j} H$ over $D_{j}=\left\{x \in \Omega_{j} \mid 0<x^{1}<\tau / 2\right\}$, using (1.3) and let $\eta=(-1,0,0)$, we have, for j large enough:

$$
\int_{\Gamma_{j} \cap\left\{0<x^{1}<\tau / 2\right\}} T v_{j} \cdot \nu_{j} d H_{1}=\int_{D_{j}} \varepsilon_{j} H d x+\int_{D_{j} \cap\left\{x^{1}=\tau / 2\right\}} T v_{j} \cdot \eta d H_{1} .
$$

Since $T v_{j} \cdot \nu_{j}=\cos \gamma$ on Γ_{j}, and $\lim _{j \rightarrow \infty} \varepsilon_{j} H=0$, if we let $j \rightarrow \infty$, we get

$$
\cos \gamma \cdot H_{1}\left(\partial \Omega_{\infty} \cap\left\{0<x^{1}<\frac{\tau}{2}\right\}\right)=\int_{D \cap\left\{x^{1}=\tau / 2\right\}} T v_{\infty} \cdot \eta d H_{1} .
$$

But

$$
\cos \gamma \cdot H_{1}\left(\partial \Omega_{\infty} \cap\left\{0<x^{1}<\frac{\tau}{2}\right\}\right)=H_{1}\left(D \cap\left\{x^{1}=\frac{\tau}{2}\right\}\right) .
$$

Since $\left|T v_{\infty} \cdot \eta\right| \leq 1$, we conclude that $T v_{\infty} \cdot \eta=1 H_{1}$-almost everywhere on $D \cap\left\{x^{1}=\tau / 2\right\}$. This contradicts the fact that v_{∞} is regular in D. Hence we must have $N=\Omega_{\infty}$.

Remark. We may simplify the proof by using the fact that V_{∞} is a cone with vertex at the origin. But in the next section we shall use a similar argument, so we do it this way.

Conclusion of the proof of Theorem 1.1. Using the fact that $N=\Omega_{\infty}$ and using (1.15) and similar method of proof of (1.18), we can conclude that

$$
\lim _{j \rightarrow \infty} \sup _{\substack{x \in \Omega_{j} \\ 1 \leq x^{1} \leq 3 / 2}} v_{j}(x)=-\infty .
$$

In particular, we have

$$
\lim _{j \rightarrow \infty} \frac{v\left(x_{j}\right)}{x_{j}^{1}}=\lim _{j \rightarrow \infty} v_{j}\left(1, \frac{x_{j}^{2}}{x_{j}^{1}}\right)=-\infty .
$$

This contradicts (1.2), and the proof of Theorem 1.1 is complete.
Now we can prove the continuity of u.
Theorem 1.9. u extends to be a continuous function in $\bar{\Omega}$.
Proof. If this is not true, then there exist real numbers $b>a$, such that $(0, a)$ and $(0, b)$ are both in the closure of the graph of u. Let $v=u-a$. By Theorem 1.1, we have

$$
\lim _{\substack{x \rightarrow 0 \\ x \in \Omega}} \frac{v(x)}{x^{1}}=-\infty .
$$

In particular, there exists $r>0$, such that if $x \in \Omega$ and $|x|<r$, then $v(x) / x^{1}<0$. Therefore $u(x)<a$ for such x. Since $(0, b)$ also lies in the closure of the graph of u, we can always find $x \in \Omega$ with $0<|x|<r$ and $u(x)>a$. This leads to contradiction and the theorem follows.
2. Continuity of the normal. Let us proceed and examine the continuity of the normal of the graph of u over Ω. Since u is continuous at the origin, by adding a constant to u, we may assume that $u(0)=0 . u$ still satisfies (0.2). We want to prove:

$$
\lim _{\substack{x \rightarrow 0 \\ x \in \Omega}}\left(T u, \frac{-1}{\sqrt{1+|D u|^{2}}}\right)=(-1,0,0) .
$$

Since $u \in C^{2}(\bar{\Omega}-\{0\})$, it is sufficient to prove that for any sequence $x_{j} \in \Omega$, converging to 0 , we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left(T u\left(x_{j}\right), \frac{-1}{\sqrt{1+\left|D u\left(x_{j}\right)\right|^{2}}}\right)=(-1,0,0) \tag{2.1}
\end{equation*}
$$

First, we shall establish (2.1) for any sequence x_{j} tending to the origin non-tangentially to $\partial \Omega$. More precisely, we assume that there is ε with $0<\varepsilon<\tan \alpha$, such that $x_{j}=\left(x_{j}^{1}, x_{j}^{2}\right)$ lies between the straight lines $x^{2}= \pm(\tan \alpha-\varepsilon) x^{1}$.

Theorem 2.1. Let $x_{j}=\left(x_{j}^{1}, x_{j}^{2}\right) \in \Omega$ be a sequence of points approaching the origin such that $\left|x_{j}^{2}\right|<(\tan \alpha-\varepsilon) x_{j}^{1}$ for all j for some ε with $0<\varepsilon<\tan \alpha$. Then (2.1) holds.

Proof. If we can prove that for any subsequence of x_{j}, we can find a subsequence of the subsequence such that (2.1) is true for that subsequence, then we are done.

Since every subsequence of x_{j} also satisfies the assumptions of the theorem, so we may assume that the subsequence is $\left\{x_{j}\right\}$ itself.

Since $x_{j}^{1}>0$ for all j, if we set $\varepsilon_{j}=x_{j}^{1}$ and define

$$
u_{j}(x)=\frac{1}{\varepsilon_{j}} u\left(\varepsilon_{j} x\right)-\frac{1}{\varepsilon_{j}} u\left(x_{j}\right),
$$

then as in $\S 1, u_{j}$ satisfies:

$$
\begin{cases}\operatorname{div} T u_{j}=\varepsilon_{j} H & \text { in } \Omega_{j} \tag{2.2}\\ T u_{j} \cdot \nu_{j}=\cos \gamma & \text { on } \Gamma_{j} .\end{cases}
$$

Also if

$$
\bar{x}_{j}=\left(1, x_{j}^{2} / \varepsilon_{j}\right)=\left(1, x_{j}^{2} / x_{j}^{1}\right),
$$

then

$$
\begin{equation*}
u_{j}\left(\bar{x}_{j}\right)=0 . \tag{2.3}
\end{equation*}
$$

We may also assume that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \bar{x}_{j}=z=\left(1, z^{2}\right) \in \Omega_{\infty} \quad \text { with }\left|z^{2}\right| \leq \tan \alpha-\varepsilon . \tag{2.4}
\end{equation*}
$$

As in $\S 1$, we can find a subsequence of u_{j}, which we also call u_{j}, converging locally to a generalized solution u_{∞} of $\mathscr{F}(w)$ defined by (1.4). Let

$$
P=\left\{x \in \Omega_{\infty} \mid u_{\infty}(x)=+\infty\right\}
$$

and

$$
N=\left\{x \in \Omega_{\infty} \mid u_{\infty}(x)=-\infty\right\} .
$$

As in $\S 1$, we know that $P=\Omega_{\infty}, \varnothing$ or some $\triangle O A B$ bounded by $\partial \Omega_{\infty}$ and $x^{1}=a$ for some $a>0$; and $N=\Omega_{\infty}, \varnothing$ or $\Omega_{\infty}-\triangle O A^{\prime} B^{\prime}$ for some $\triangle O A^{\prime} B^{\prime}$ bounded by $\partial \Omega_{\infty}$, and $x^{1}=a^{\prime}$ for some $a^{\prime}>0$.

Note that Lemma 1.6 is still true for the subgraph U_{j} of u_{j}. That is to say for any $0<\tau_{1}<\tau_{2}<\infty$, there exist a positive integer j_{0} and positive numbers r_{1} and C_{1} not depending on j such that for $j \geq j_{0}$ and for any $(x, t) \in \bar{\Omega}_{j} \cap\left\{x \in R^{2} \mid \tau_{1}<x^{1}<\tau_{2}\right\},(1.15)$ and (1.16) are still true if we replace V_{j} by U_{j}.

Suppose that $\Omega_{\infty}-(P \cup N) \neq \varnothing$, because of the structures of P and N, there exist $0<a<b<\infty$ such that u_{∞} is finite almost everywhere in $\left\{x \in \Omega_{\infty} \mid a<x^{1}<b\right\}$. Using (1.15) and (1.16) as in the proof of Lemma 1.8, we shall arrive at a contradiction.

Hence we must have $\Omega_{\infty}=P \cup N$.
Let U_{∞} be the subgraph of u_{∞}. Since $u_{j}\left(\bar{x}_{j}\right)=0$ so $\left(\bar{x}_{j}, 0\right)$ belongs to the boundary of U_{j}. Using (1.15), (1.16), the fact that $\lim _{j \rightarrow \infty} \bar{x}_{j}=z$, $u_{j} \in C^{2}(\bar{\Omega}-\{0\})$, and that φ_{U} converge to $\varphi_{U_{\infty}}$ almost everywhere in $\Omega_{\infty} \times \mathbf{R}$, we have:

$$
\begin{equation*}
\left|U_{\infty, r}(z, 0)\right| \geq C_{1} r^{3}, \quad \text { and } \quad\left|U_{\infty}^{\prime}, r(z, 0)\right| \geq C_{1} r^{3} \tag{2.5}
\end{equation*}
$$

for all $0<r \leq r_{1}$. Hence $P \neq \Omega_{\infty}$ and $N \neq \Omega_{\infty}$. Combining this with the fact that $\Omega_{\infty}=P \cup N$, we conclude that there is an $a>0$ such that if $O A B$ is the triangle bounded by $\partial \Omega_{\infty}$ and $x^{1}=a$, then $P=\triangle O A B$ and $N=\Omega_{\infty}-\triangle O A B$. So $U_{\infty}=\triangle O A B \times \mathbf{R}$.

In fact, we must have $a=1$. Otherwise, as $z=\left(1, z^{2}\right), a<1$ will give a contradiction to the first inequality of (2.5), while $a>1$ will give a contradiction to the second inequality of (2.5).

The inward normal of ∂U_{∞} at $(z, 0) \in \mathbf{R}^{3}$ is $(-1,0,0)$, and the inward normal of ∂U_{j} at $\left(\bar{x}_{j}, u\left(\bar{x}_{j}\right)\right)$ is $\left(T u_{j}\left(\bar{x}_{j}\right),-1 / \sqrt{1+\left|D u_{j}\left(\bar{x}_{j}\right)\right|^{2}}\right)$. Since $\lim _{j \rightarrow \infty}\left(\bar{x}_{j}, u_{j}\left(\bar{x}_{j}\right)\right)=(z, 0)$, so by Theorem 3 in [6], we have:

$$
\lim _{j \rightarrow \infty}\left(T u_{j}\left(\bar{x}_{j}\right), \frac{-1}{\sqrt{1+\left|D u_{j}\left(\bar{x}_{j}\right)\right|^{2}}}\right)=(-1,0,0) .
$$

From the definitions of u_{j} and \bar{x}_{j}, we conclude that

$$
\lim _{j \rightarrow \infty}\left(T u\left(x_{j}\right), \frac{-1}{\sqrt{1+\left|D u\left(x_{j}\right)\right|^{2}}}\right)=(-1,0,0)
$$

Finally, we consider the case when x_{j} approaches the origin tangentially along $\partial \Omega_{\infty}$. We want to prove:

Theorem 2.2. Under the above assumptions, (2.1) is still true, namely:

$$
\lim _{j \rightarrow \infty}\left(T u\left(x_{j}\right), \frac{-1}{\sqrt{1+\left|D u\left(x_{j}\right)\right|^{2}}}\right)=(-1,0,0)
$$

Proof. As in Theorem 2.1, it is sufficient to prove that (2.1) is true for a subsequence of x_{j}.

Define u_{j} and \bar{x}_{j} as in Theorem 2.1. We also assume that $\lim _{j \rightarrow \infty} \bar{x}_{j}$ $=z=\left(1, z^{2}\right)$ which lies in $\bar{\Omega}_{\infty}$, with $z^{2}= \pm \tan \alpha$.

We can extract a subsequence of u_{j}, which we also denote by u_{j}, such that u_{j} converges locally to a generalized solution of $\mathscr{F}(w)$ in Ω_{∞}.

Using similar method as in Theorem 2.1, we can prove that the subgraph U_{∞} of u_{∞} is $\triangle O A B \times \mathbf{R}$ for some $\triangle O A B$ bounded by $\partial \Omega_{\infty}$ and $x^{1}=1$. Up to this point, the proof is exactly the same as the proof in Theorem 2.1. However, in this case $z \in \partial \Omega_{\infty}$ and we cannot apply the results of [6]. So we need some modifications. Before we proceed further, let us prove the following lemma.

Lemma 2.3. (a) For any $0<\tau_{1}<\tau_{2}<1$, we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \inf _{\substack{x \in \bar{\Omega}_{j} \\ \tau_{1}<x^{1}<\tau_{2}}} u_{j}(x)=\infty ; \quad \text { and } \tag{2.6}
\end{equation*}
$$

(b) For any $1<\tau_{3}<\tau_{4}<\infty$, we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \sup _{\substack{x \in \bar{\Omega}_{j} \\ \tau_{3}<x^{1}<\tau_{4}}} u_{j}(x)=-\infty \tag{2.7}
\end{equation*}
$$

Proof. We shall prove (a) only, because the proof of (b) is similar.
Suppose that (2.6) is not true. Since $u_{j} \in C^{2}\left(\bar{\Omega}_{j}-\{0\}\right)$, therefore we can find a real number M, a subsequence of u_{j} (which we also call u_{j}) and a sequence of points $y_{j} \in \Omega_{j}, \tau_{1}<y_{j}^{1}<\tau_{2}$ such that

$$
u_{j}\left(y_{j}\right) \leq M
$$

We may also assume that $\lim _{j \rightarrow \infty} y_{j}=y \in \bar{\Omega}_{\infty}$. Note that $\tau_{1} \leq y^{1} \leq \tau_{2}$. By (1.16) as before, we have

$$
\left|U_{j, r}^{\prime}\left(y_{j}, M\right)\right| \geq C_{1} r^{3}
$$

for all $0<r \leq r_{1}$ if j is large enough, where C_{1}, and r_{1} are positive constants not depending on j. Now let $j \rightarrow \infty$, we have

$$
\left|U_{\infty, r}^{\prime}(y, M)\right| \geq C_{1} r^{3} \quad \text { for all } 0<r \leq r_{1}
$$

This contradicts the fact that $U_{\infty}=\triangle O A B \times \mathbf{R}$ and that $0<\tau_{1}<\tau_{2}<1$, bearing in mind the definition of $\triangle O A B$. The lemma is then proved.

We now continue our proof of Theorem 2.2. By Lemma 2.3, since u_{j} is continuous in $\bar{\Omega}_{j}-\{0\}$, there exists j_{0} such that for every $j \geq j_{0}$ we can find $y_{j} \in \partial \Omega_{j}$ with $u_{j}\left(y_{j}\right)=0$ and $\lim _{j \rightarrow \infty} y_{j}=z$.

Let $Y_{j}=\left(y_{j}, u_{j}\left(y_{j}\right)\right)=\left(y_{j}, 0\right) \in \mathbf{R}^{3}$. By the results of [12], there exist $r_{2}>0, C_{2}>0$ and $1>\alpha>0$ not depending on j such that if $\eta_{j}(X)$ is the unit inward normal of ∂U_{j} at the point $X \in \partial U_{j} \cap \Omega_{j}$ we have

$$
\begin{equation*}
\left|\eta_{j}(X)-\eta_{j}(\bar{X})\right| \leq C_{2}|X-\bar{X}|^{\alpha} \tag{2.8}
\end{equation*}
$$

for any X, \bar{X} belong to $\partial U_{j} \cap \Omega_{j}$ and $B_{r_{2}}\left(Y_{j}\right)=\left\{X \in \mathbf{R}^{3}| | X-Y_{j} \mid<r_{2}\right\}$.
For any $r_{2} / 2>r>0$, use Lemma 2.3 again, we can find $z_{j} \in \Omega_{j}$ and ε with $\tan \alpha>\varepsilon>0$ not depending on j such that if j is large enough, we have

$$
\left\{\begin{array}{l}
\left|z_{j}^{2}\right|<(\tan \alpha-\varepsilon) z_{j}^{1} \tag{2.9}\\
u_{j}\left(z_{j}\right)=0 \\
\left|z_{j}-z\right|<r \\
\lim _{j \rightarrow \infty} z_{j}^{1}=1
\end{array}\right.
$$

Let $Z_{j}=\left(z_{j}, u_{j}\left(z_{j}\right)\right)=\left(z_{j}, 0\right), \quad Z=(z, 0)$ and $\bar{X}_{j}=\left(\bar{x}_{j}, u_{j}\left(\bar{x}_{j}\right)\right)=$ $\left(\bar{x}_{j}, 0\right)$.

Then $\lim _{j \rightarrow \infty} Y_{j}=Z=\lim _{j \rightarrow \infty} \bar{X}_{j}$. If j is large enough, then we have

$$
\left|\bar{X}_{j}-\bar{Y}_{j}\right|<r_{2}
$$

and

$$
\left|Z_{j}-Y_{j}\right| \leq\left|Z_{j}-Z\right|+\left|Z-Y_{j}\right|<r+\frac{r_{2}}{2}<r_{2}
$$

By (2.8) we obtain

$$
\begin{equation*}
\left|\eta\left(Z_{j}\right)-\eta_{j}\left(\bar{X}_{j}\right)\right| \leq C_{2}\left|Z_{j}-\bar{X}_{j}\right|^{\alpha} \tag{2.10}
\end{equation*}
$$

Since $\lim _{j \rightarrow \infty} z_{j}^{1}=1$, and $\left|z_{j}^{2}\right|<(\tan \alpha-\varepsilon) z_{j}^{1}$, so by Theorem 3 of [6], for any subsequence \bar{Z}_{j} of Z_{j}, we can always find a subsequence \bar{Z}_{j}^{\prime} of \bar{Z}_{j} such that $\lim _{j \rightarrow \infty} \eta_{j}\left(\bar{Z}_{j}^{\prime}\right)=(-1,0,0)$.

Therefore $\lim _{j \rightarrow \infty} \eta_{j}\left(Z_{j}\right)=(-1,0,0)=\eta$.
Also, it is easy to see from (2.9) that

$$
\underset{j \rightarrow \infty}{\limsup }\left|Z_{j}-\bar{X}_{j}\right| \leq r
$$

Let $j \rightarrow \infty$ in (2.10), we then have

$$
\underset{j \rightarrow \infty}{\limsup }\left|\eta-\eta_{j}\left(\bar{X}_{j}\right)\right| \leq C_{2} r^{\alpha}
$$

Now let $r \rightarrow 0$, we conclude that $\lim _{j \rightarrow \infty}\left|\eta-\eta_{j}\left(\bar{X}_{j}\right)\right|=0$. The proof of Theorem 2.2 is then completed.

Combining Theorems 2.1 and 2.2, we get
THEOREM. The unit normal vector ($\left.T u,-1 / \sqrt{1+|D u|^{2}}\right)$ extends to be continuous on $\bar{\Omega}$. More precisely,

$$
\lim _{\substack{x \rightarrow 0 \\ x \in \bar{\Omega}-\{0\}}}\left(T u(x), \frac{-1}{\sqrt{1+|D u(x)|^{2}}}\right)=(-1,0,0)
$$

Acknowledgment. I wish to thank Robert Finn and Brian White for useful discussions.

References

[1] P. Concus and R. Finn, Capillary free surfaces in a gravitational field, Acta Math., 132 (1974), 207-223.
[2] R. Finn, Existence criteria for capillary free surfaces without gravity, Indiana Univ. Math. J., 32 (1983), 439-460.
[3] E. Giusti, Generalized solutions of mean curvature equations, Pacific J. Math., 88 (1980), 297-321.
[4] , Minimal surfaces and functions of bounded variation. Notes on pure mathematics. Australian National Univ., Canberra (1977).
[5] N. J. Korevaar, On the behavior of a capillary surface at a re-entrant corner, Pacific J. Math., 88 (1980), 379-385.
[6] U. Massari and L. Pepe, Sulle successioni convergenti di superfici a curvatura media assegnata, Rend. Sem. Mat. Padova, 53 (1975), 53-68.
[7] M. Miranda, Un principio di massimo forte per le frontiere minimali ecc., Rend. Sem. Mat. Padova, 45 (1971), 355-366.
[8] _, Superfici minime illimitate, Ann. Scuola Norm. Sup. Pisa, (4) 4 (1977), 313-322.
[9] L. Simon, Regularity of capillary surfaces over domains with corners, Pacific J. Math., 88 (1980), 363-377.
[10] L.-F. Tam. The behavior of capillary surfaces as gravity tends to zero, to appear in Comm. in Partial Differential Equations.
[11] __ Existence criteria for capillary free surfaces without gravity, to appear in Pacific J. Math.
[12] J. Taylor, Boundary regularity for solutions to various capillarity and free boundary problems, Comm. in Partial Differential Equations, 2 (1977), 323-357.

Received February 7, 1984.
Purdue University
West Lafayette, IN 47907

