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FULLY BOUNDED G-RINGS

RICHARD RESCO, J. T. STAFFORD, AND R. B. WARFIELD, JR.

This paper contains a nullstellensatz for fully bounded G-rings
which yields at the same time a new proof of the Amitsur-Small nullstel-
lensatz for division rings. The result is applied to the study of fully
bounded rings R for which the polynomial ring R[x] is primitive.

The main result of this paper is a nullstellensatz for fully bounded
G-rings (defined below) which yields at the same time a new proof of the
Amitsur-Small nullstellensatz [1] for division rings. While our main inter-
est is in Noetherian rings, the results of this paper apply somewhat more
generally. We recall that a ring is right bounded if every essential right
ideal contains a nonzero two-sided ideal. We call a ring fully bounded (or,
an FB ring) if for every prime ideal P, R/P is left and right Goldie and
left and right bounded. Examples of such rings are fully bounded
Noetherian (FBN) rings, commutative rings, and rings satisfying a poly-
nomial identity (PI rings). A ring R is a G-ring if R is prime and the
intersection of the nonzero prime ideals of R is nonzero. It is worth
pointing out that with the usual convention on the empty intersection, any
simple Artinian ring is an FB G-ring.

The first result of the paper is that if R is an FB ring and n is a
positive integer, then there is a primitive ideal P in R[xl9...9xn] such
that P Π R = 0 if and only if R is a G-ring. This theorem is proved in §1.

The Amitsur-Small nullstellensatz says that if D is a division ring,
then for every positive integer n, every simple module over the polynomial
ring D[xl9 , JCΠ] is finite dimensional over D. This result for polynomi-
als in n variables is used to prove the above result on G-rings, but one can
also use the result on G-rings to prove the Amitsur-Small result for
polynomials in n 4- 1 variables. Thus one can give a simultaneous proof
of the two results, which yields a proof of the Amitsur-Small theorem
which has some advantages over the original proof. This is carried out in
§2.

The original purpose of this research was to find necessary and
sufficient conditions on a fully bounded ring R for the polynomial ring
R[x] to be primitive. The results here are not complete, but there are
several partial results in §3.
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In this paper, all modules will be right modules unless specified
otherwise. The annihilator of a right module M will be denoted by
r — ann(M). If R is a G-ring, then the intersection of the nonzero prime
ideals of R will be denoted by G(R).

1. G-rings and a nuUstellensatz. In this section we show that for fully
bounded G-rings, one can prove results analogous to the well-known
results in the commutative case (as developed, for example in [11]). In one
direction this turns out to be easy (Lemma 1 below) but in the other it
requires some new techniques.

LEMMA 1. If R is a G-ring which is right or left Goldie, then in the
polynomial ring S = R[xv..., xn] there is a primitive ideal P such that
p n R = o.

Proof. Let b be a regular element contained in G(R) (which exists by
Goldie's theorem). Let / = (1 — bxλ)S and let M be a maximal right
ideal containing /. Let P be the annihilator of the simple right module
S/M. We claim that P Π R = 0. Otherwise, if P Π R Φ 0 then P Π R is
prime, and so b e P Π R. It follows that b £ M, and hence that bxx e M.
Since 1 — bxλ e M, we have 1 e M, a contradiction.

REMARK. It is well known that for commutative rings the converse of
Lemma 1 is true, but in the non-commutative case it is only true under
substantial restrictions. For example, if A 2 is the second Weyl algebra and
D2 its quotient skew field, then it follows from [1] that D2[x, y] is
primitive although clearly D2[x]is not a G-ring.

LEMMA 2. // R is an FB ring and S is a simple R[xv..., xn]~module
which is faithful as an R-module, then SR (the module restricted to R) is
torsion-free injectiυe and of finite rank.

Proof. If such a simple module exists and P is its annihilator, then
P Π R = 0. Thus 0 is a prime ideal of R and R is a prime left and right
Goldie ring. Suppose that SR has a nonzero torsion submodule, and let C
be a nonzero torsion cyclic submodule of SR. Then there is an induced
homomorphism C 0 R[xv..., xn] -» S, which must be an epimorphism,
since S is simple. As an i?-module, C ® R[xv..., xn] is a direct sum of
copies of C. The hypothesis on R implies that C has a nonzero annihila-
tor ideal, and this ideal will therefore annihilate C Θ R[xv..., xn]R and
SR. Since this impossible, we conclude that SR is torsion-free.
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Since S is a torsion-free module over the prime Goldie ring R, to
prove that SR is injective it is sufficient to prove that it is divisible. Let b
be a regular element of R. As R is left bounded, there is a nonzero ideal J
of R contained in Rb. Now SJ is a fully invariant i?-submodule of S and
hence an R[xl9..., X J-submodule. Since S is simple over the polynomial
ring, we conclude that S = SJ Q Sb. Thus S is divisible, and hence
injective, as an i?-module.

Finally, we show that M has finite rank as an JR-module. If Q is the
Goldie quotient ring of R, then by the results of the previous two
paragraphs, S = S <8>Λ Q, and the latter is a simple Q[xλ,..., xj-module.
According to the Amitsur-Small nullstellensatz, this module is finite
dimensional, so S is torsion-free of finite rank. (Of course, in the one
variable case we use a simple division algorithm, and the Amitsur-Small
theorem is not involved.)

Note that only for the last step did we use the full strength of the
hypotheses. Thus if R is an FB ring and S an extension of R generated by
elements which centralize R, then a simple S-module which is faithful as
an i?-module is torsion-free and injective as an i?-module, though not
necessarily finite dimensional. For an illustrative infinite dimensional
example see [9, Theorem 3].

LEMMA 3. Let R be a prime, left and right Goldie ring, M a torsion-free
injective R-module of finite rank, and L a finitely generated submodule of M.
Then every nonzero prime ideal P of R is the annihilator of a finitely
generated subfactor of M/L.

Proof. In this proof, we shall use M{n) to denote the direct sum of a n
copies of M. Since P is a prime ideal, it is an easy application of the
Schreier refinement theorem to show that we may replace M and L by
M{n) and L(/ϊ) for any positive integer n. Since M is a torsion-free
injective i?-module, it follows that M is a module over the right quotient
ring Q of R, and so for suitable n and k, M(n) = Q(R)(k). Thus we may
assume that M = Q(R){k) and M D R{k). Since R is left Goldie, there is
a regular element b of R such that bL c R(k\ If a is a regular element of
R contained in P, then abL c aR

(k) c P<*> c i?(/c). Thus

L c {abYlP^ c (ab)-ιR^ c Q(R)(k) = M.
If A = {ab)~ιR{k) and B = {ab)"ιP{k\ then A/B is the required subfac-
tor.

THEOREM 4. // R is an FB ring, then there is a primitive ideal P of
R[xv..., xn] such that P Π R = 0 if and only if R is a G-ring.
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Proof, It is immediate from Lemma 1 that if R is a G-ring then such
an ideal P exists. Conversely, suppose that S is simple R[xv..., xj-mod-
ule which is faithful as an R-module. By Lemma 2, SR is torsion free
injective of finite rank. Let L be a finitely generated essential 7?-submod-
ule, and note that L generates S as an R[xv..., xj-module. For each ι,
1 < i < n, the action of xt on S is an 2?-endomorphism at. Since for each
index i, the factor (L + at{L))/L is finitely generated and torsion as an
/?-module, the right boundedness of R implies that there is a nonzero
ideal / of R such that α,(L)/ c L for all i, 1 < i < n. Since each αf. is a
right /?-homomorphism, it follows immediately that if β is a monomial in
the α/s of degree m, then β(L)Im c L. Since 5 is generated as an
i?-module by the submodules β(L), we conclude that for any finitely
generated i?-submodule N of M, there is an integer j with NIj c L.
From Lemma 3 we infer that every nonzero prime ideal of R contains /.
Thus R is a G-ring.

Recall that a ring is Jacobson if every prime ideal is the intersection
of primitive ideals.

COROLLARY 4.1. Let R be an FB ring which is a Jacobson ring, and let

S be a simple right module over the ring R[xv...,xn]. Then there is a

maximal ideal M of R such that SM = 0, and as an R-module, S is finitely

generated and semi-simple.

Proof. Let M = R Π (r — ann S). Theorem 4 implies that R/M is a
G-ring. Since M is also the intersection of primitive ideals, this is only
possible if M itself is primitive. As R is FB, M must be maximal, and
R/M must be simple Artinian. Lemma 2 now implies that S is finitely
generated as an /{-module.

In the case in which R is a division ring, this, of course, is the
Amitsur-Small nullstellensatz.

We close this section by remarking that despite the above results, we
know remarkably little about noncommutative G-rings, even if they are
fully bounded and Noetherian. For example, if R is a right Noetherian
G-ring which satisfies a polynomial identity, then it is known that R is
one-dimensional and has finite spectrum, as in the commutative case [2,
Theorem 5.1]. However, while there are Noetherian G-rings of arbitrary
classical Krull dimension (for example, among primitive factors rings of
enveloping algebras of simple Lie algebras, or see [12, 4.7(iii)], we know of
no example of a fully bounded Noetherian G-ring which has Krull
dimension greater than one.
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2. On the Amitsur-Small mdlsteUensatz. We may regard the Amitsur-
Small nullstellensatz as a sequence of statements as follows:

(an) If D is a division ring then every simple module over the ring
D[xv..., xn] is finite dimensional as a D-module.

We may similarly restate Theorem 4 as a sequence of results:
(γw) If R is an FB ring and / a primitive ideal of R[xv..., x j , then

R/I Π R is a G-ring.

We first remark that aλ is trivial since it is just the division algorithm.
In proving Theorem 4, we showed that an implies yn. In this section we
will use the result yn on G-rings to prove ctn+v Thus, in addition to
showing that the two forms of the nullstellensatz are equivalent, we will
have given a new proof of the Amitsur-Small nullstellensatz. (This proof,
while not shorter than the original one, has the advantage of being more
conceptual.)

LEMMA 5. If R is a left and right principal ideal ring and # is the set of
elements in R which are regular modulo all nonzero prime ideals of R, then ^
is a left and right Ore set, and the localization of R at *% is a fully bounded
ring.

Proof. To show ^ is a right Ore set, we let r e R and c e <£ and we
must find c' e # with re' e cR. So let U = {s <Ξ R: rs (= cR). For each
nonzero prime ideal P of R, ^ ( P ) , (the elements regular modulo P), is an
Ore set (cf. [6]). Hence U Π <#(P)Φ 0 . Since U is a right ideal, U = aR
for some a e R. Now if ab e #(P), then a e C(P), s o α G Π # ( P ) =
#\ This shows that ^ is a right Ore set, and similarly ^ is a left Ore set.
If RV1 denotes the localization of R at #, then it is clear that Rtf'1 is a
principal ideal ring, and hence of Krull dimension one. Therefore, to show
that R&'1 is fully bounded, we need only show that a maximal right
ideal is bounded.

Thus, let M be a maximal right ideal, and let z be a generator of M,
where we may assume that z e M Π R. Since z is not a unit in R^~ι,
there is a nonzero prime P such that z £ ^(P)- Now if it were true that
zR^'1 + P^~ι = Rtf-1, then by clearing denominators we would have
zr -\- p = c for some r e i?, p E: P and c ^ #. This would imply (by
reduction modulo P) that z e #(P) , which is false. Since Af is maximal
and M = zi?^7"1, it follows that the ideal PV~ι is contained in M.

We now show that yn implies an+ι. It obviously suffices to show that
if M is a maximal right ideal of D[xv..., xn], then M Π D[x J ^ 0 for
every A:, 1 < k < n 4- 1. In D[JCΛ], let # be the set of elements which are
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regular modulo every nonzero prime ideal of D[xk]9 and let Rk =
D[xkγβ~ι. Since D[xk] has infinitely many centrally generated prime
ideals, Rk is a fully bounded principal ideal domain with an infinite
number of prime ideals. Hence the only G-ideals of Rk are the maximal
ideals. If Sk = D[xι,...,xn+1]

(#-1 and Mk = MV'\ then Sk is a poly-
nomial ring in n variables over Rk, and Mk is either a maximal right ideal
of Sk or all of Sk. In either case, since Rk is not a G-ring, MkC\ RkΦ 0.
Clearing denominators, we have M Π D[xk] Φ 0, as required.

3. Primitivity of R[x]. As was noted in the introduction, the original
purpose of this research was to determine those fully bounded Noetherian
rings for which the polynomial ring R[x] is primitive. The existence of
such R, other than division rings, was first observed by Hodges [7], who
proved that if R is a noncommutative discrete valuation ring whose
quotient division ring Q is transcendental over its center, then Q itself is a
simple faithful /ϊ[x]-module. This example, together with Theorem 4,
suggests that if R is a prime FB ring with quotient ring Q, then R[x]
should be primitive iff R is a G-ring and Q[x] is primitive. While the
necessity of these conditions follows immediately from the developments
of §1, we can prove their sufficiency (Theorem 8) only under the addi-
tional, assumption that the center of Q is algebraic over the quotient field
of the center of R.

The first proposition of this section, which will play a key role in the
proof of Theorem 8, can be viewed as a generalization of the well-known
characterization of commutative G-rings [11, Theorem 19].

PROPOSITION 6. Let R be an FB G-ring, let b be a regular element
contained in G(R) and let @= {bn: n>0}. Then & is a left and right Ore
set in i?, and the localization of Rat £8 equals the full quotient ring Q(R) of
R. Conversely, if R is a right bounded prime right Goldie ring containing a
regular element b such that every element of Q(R) is of the form ab~n, then
R is a G-ring.

Proof. To show that 38 is right Ore, we must show that if r e R and
if U = {u e R: ru e bR}, then U Π <% is nonempty. Since bR is an
essential right ideal in i?, U is an essential right ideal of R and, since R is
right bounded, U must contain a nonzero two-sided ideal V of R. If
V Π SS is empty, then V is contained in an ideal P maximal with respect
to the property that P Π 3S = 0, and such an ideal is clearly prime. This
contradicts the choice of Z>, and establishes our claim. A symmetric
argument shows that Si is also left Ore.
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Let R3#ι denote the localization of R at 38. Since R38~ι is both
bounded and simple, it is Artinian, and hence equals Q(R)

To prove the converse (which, by the way, is not of importance in the
applications) note that bR is essential R and thus contains a nonzero
ideal /. We show that every prime ideal contains /. If P ~t> I then
J + P > P s o / Π #(P) Φ 0 . Thus bR Π # ( P ) Φ 0 , and so b e %(P).
This, as usual, is contradictory. (If z is a regular element in P then z is
invertible in Q(R) so for some α e i?, zαZ>"w = 1. Thus z# = Z>", where
zatΞP and Z>" £ P.)

If R is a prime Goldie ring with quotient ring g, then it is well-known
[10, p. 241] that Q[x] is primitive iff the matrix ring Mm(Q) is transcen-
dental over its center, for some positive integer m. If / = G(R), then in
every known example of a G-ring for which Mm(Q) is transcendental over
its center, there is already a regular transcendental element in the subset
Mm(I) of Mm(Q). We conjecture that this is always the case. The next
lemma shows that this is sufficient to solve the general problem raised in
this section.

LEMMA 7. Let R be an FB G-ring, with full quotient ring Q, and let

I = G(R). Suppose there exists a positive integer m such that Mm(I)
contains a regular element which is transcendental over the center of Q. Then
R[x] is primitive.

Proof. Since both being an FB G-ring and being a primitive ring are
Morita invariants, we may assume, upon replacing R by Mm(R) if
necessary, that / itself contains a regular element which is transcendental
over the center of Q. Let b e / be such an element, and consider the
polynomial / = 1 - bx. Since b is transcendental over the center of Q,
fQ[x] = (x - b~ι)Q[x] is an unbounded right ideal of Q[x], hence is
contained in an unbounded maximal right ideal M of Q[x] (one obtains
M by looking at a composition series for Q[x]/fQ[x], see [1, p. 357]). Let
N be a maximal right ideal of R[x] which contains M Π R[x]. If
NQ[χ] = Q[χ\ Λen in view of Proposition 6, we have nbι = 1 for some
integer i e Z and some n e N. Multiplying this relation by a sufficiently
large positive power of />, we obtain bJ e N for some j > 1. In as much
as 1 — bjxj is a multiple of /, this implies that 1 e N, which is absurd.
Thus NQ[x] is a proper right ideal of Q[x], and we must have NQ[x] = M.
Let J = r — axm(R[x]/N). In as much as JQ[x] is an ideal of Q[x]
contained in M, the choice of M forces JQ[x] = 0, whence / = 0.
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THEOREM 8. Let R be a prime FB ring and let Q be the quotient ring of

R. If the center of Q is algebraic over the quotient field of the center of R,

the R[x] is primitive iffR is a G-ring and Q[x] is primitive.

Proof. The necessity of the two conditions follows from Theorem 4
and Lemma 2, respectively. To prove their sufficiency we shall argue by
contradiction that R satisfies the hypotheses of Lemma 7.

Let L denote the center of Q, let / = G(R) and suppose that for
every m > 0, every regular element of Mm(I) is algebraic over L. Let C
be the center of R with quotient field K. Then given any regular element
b e Mm(I) there exist a positive integer j and elements c0, cl9..., Cj ̂  C
with Cj Φ 0 such that

c0 + cλb + +CjbJ = 0.

Since b is not a zero-divisor, the usual minimal degree argument shows
that we may assume that c0 Φ 0. It follows that c0 e Mm(I) Π C, and so
Q = R ®c QCQ 1 ] by Proposition 6. Thus, if q is any element of Mm(Q),
then we can write q = rc'o, where r e Mm(I) and i e Z. If q is a unit in
Mm(Q), moreover, then r is necessarily regular. Since r is algebraic over
L by our assumption on Mm(I) and since q is a central multiple of r, it
follows that every unit q is algebraic over L.

We have also assumed that Q[x] is primitive, however, so we know
that there exists some integer / such that M^Q) is not algebraic over L.
To obtain the desired contradiction, therefore, it suffices to observe that if
D is a division ring for which there exists a positive integer i such that
Mt{D) is transcendental over its center k, then there also exists an
(apparently unrelated) integer j such that Mj(D) contains a unit which is
transcendental over k. This is well known. (For example, by [10, p. 241]
the polynomial ring D[x] is primitive. If S is a simple D[x]-module, then
S is finite dimensional over D, say dim(SD) =j, and so EndD[x](S)
embeds in Mj(D). If S is also faithful, on the other hand, then k[x]
embeds in EndD [ x ](S). As this endomorphism ring is a division ring, k(x)
embeds in My(D) and the image of Λ: is a transcendental unit in Afy(D).)

To indicate not only the limitations of Theorem 8, but also the
independent utility of Lemma 7, we shall now construct, for any pair of
commutative fields K c L, an FB G-rings whose center is K and whose
quotient ring has center L.

EXAMPLE. Let K be a commutative field and let L be an arbitrary
extension field of K. Let X = {xt \ - oo < i < oo} be a countable set of
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commuting indeterminates indexed by Z, and form the rational function
fields F = K(X), E = L(X). Let a: E -> E denote the L-automorphism
of E defined by σ(xi) = xi+v and let T = E[[s; σ]] be the ring of twisted
power series over E. Let / = sT be the unique nonzero prime ideal of Γ,
and define a subring RQT by R = F+I. Then it is easy to verify (using
the fact that T and R have an ideal in common) that (i) Q(R) = Q(T)
and Q(R) has center L; (ii) i? has center K; and (iii) 2? is an FB
G-domain.

In closing we remark that the ring R constructed above is Noetherian
iff the extension L/K is finite dimensional. Thus, Theorem 8 does apply
to the FBN case of this construction. Indeed, we know of no example of
an FBN G-ring R for which the center of the quotient ring of R is not
algebraic over the quotient field of the center of R. (Examples for FB
rings which are not G-rings are in [4].)

4. Polynomials over hereditary rings. In this section we take a
slightly different approach to that of the last section and consider the case
when R is a prime hereditary FBN ring, with quotient ring Q. In this case
we completely solve the problem of the primitivity of R[x] by proving
that R[x] is primitive if and only if R is a G-ring and Q[x] is primitive.
Some partial results in this direction were obtained in [8]. This is an
additional section, added in proof. We only became aware of [8] after the
first version of this paper (which consisted of the first three sections of the
present paper) was accepted for publication. The results of this section
were proved by combining the ideas of [8] with those of the earlier
sections.

The following facts will be used frequently in this section, without
specific reference:

(9.1) If R is a Dedekind prime ring and P a maximal ideal of JR, then
P is localizable [6].

(9.2) If R is a semilocal Dedekind prime ring then R is a principal
ideal ring. (If / is an essential right ideal and J is the Jacobson radical of
Λ, then the Dedekind property implies that //// = R/J, from which the
result follows.)

(9.3) If R is a principal ideal ring and / an ideal of R, say / = aR9

then a is normalizing element and / = Ra. (Otherwise an easy computa-
tion shows that a = gaf where g and / are elements of R and g is not a
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unit. We thus have R 3 gR D gaR 2 gafR = aR, and we note that
gR/gaR = R/aR, while R/gR Φ 0. This is impossible since all of these
modules have finite length.)

(9.4) Let JR be a semilocal prime principal ideal ring. Let / = aR, and
/ = bR be two semiprime ideals such that I Π J = J(R) and / 4- / = R.
Then, as a is a normal element, c€a = [an\ n > 0} is an Ore set in i?.
Further, Rj = RV;1.

The first part of the next lemma comes from the proof of [8, Theorem
3.5].

LEMMA 10. Let S be a semilocal Dedekind prime ring, with quotient
Artinian ring Q, and let F be the center of Q. Then

(i) For every maximal ideal P o/S, either F c SPorF Π J(S)P Φ 0.
(ii) If for every maximal ideal PofS.FQ SP, then F c S.

(iii) If for every maximal ideal PofSyFΠ J(SP) Φ 0, then F Π J(S)
Φ 0.

Proof, (i) Suppose that F £ SP. If / e F - SP9 then fSP is a frac-
tional Sp-ideal (i.e. it is closed under right and left multiplication by
elements of SP.) Since SP is a local principal ideal ring, this implies that
fSP = J(SP) for some integer m. As / £ Sp, we conclude that m < 0, and
so Z " 1 ^ c /(Sp), as required.

(ii) Part (ii) is trivial, since S = ΠSP.
(iii) Let P l 9 . . . ,P W be the maximal ideals of S. The proof is by

induction on n. Thus set T = Px Π CλPn^x and P = Pn. By induction,
there exists a nonzero element /, with / G F Π J(ST). NOW as S is a
principal ideal ring, P = pS for some normalizing element /?, and S r =
SV'1 by (9.4). Thus f = ρ~"t for some w > 0 and some / e S. Of course,
here ί e J(ST) Γ\ S = T. Choose such a representation for / with n as
small as possible.

Suppose first that n = 0. By hypothesis, there is an element g ^ F Γ)
J(SP). Let T = αS for some α G S . Then, again, SP = S^"1. Thus for
some integer /% α r g e S, and hence fg e S. Now clearly fr+ιg ^ F Γ\
J(ST) Π J(SP) = JP Π /(S), as required. Thus we may assume that n > 1.
In this case, if t e P, say ί = /J^ for some ίx e S, then / = p~nt = p~n+ιtι;
a contradiction. Thus t £ P. We now show that, in fact, t e ^ ( P ) . If not,
then tr e P for some r G S . Then, as / and p are normal, tSr = /? "/Sr =
pnSfr = S>7r = Sir c P. Thus r e P , and this shows that /
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We now calculate in the Artinian ring Q:

(l + /r 1 = (i+p-'ty1 = (P

n + t)-ιp\

Now, / e #(P) ΠΓand / G P Π ^(Γ), and so t + pn e ^(P) n
^(Γ), whence ί + / is a unit of S. Thus, (/?" 4- ί ) " l e S. But this
implies that (1 4- f)'1 e P. Further,

Finally, this says that (1 4- / ) " 2 / e PT c 7(5); as required.

PROPOSITION 11. Lef S be a semilocal Dedekind prime ring, with
quotient ring Q, and let F be the center of Q. Suppose that Q is transcenden-
tal over F. Then there exists an element d e J(S) such that d is transcen-
dental over F.

Proof. Let U be the set of maximal ideals P such that F c SP, and
let U = Π{P: P e l l ) . Similarly, let 93 be the set of maximal ideals P
such that F Π J(SP) Φ 0, and let V=Γ\{P: P e 35}. Note that U Π 95
= 0 , as i 7 is a field, and Lemma 10 implies that U U 93 = Maxsρec(S').
We assume for the moment that both U and 93 are nonempty. According
to Lemma 10 we may pick nonzero elements u and v with u e F Π Sυ

and v e F Π /(SK). Write C/ = αS. Observe that F is the center of Sa

and thus, as f is a field and a is not a unit in Sv, a must be
transcendental over F. Once again, Sv = S^J"1. Thus, vam e 5 for some
m. Finally, if rf = vam+ι

9 then

dey(sκ) ns n u= vn u = J(s).
But a s i ) G f and a is transcendental over JF, d is transcendental over F,
as required. (If either U or 93 is empty, then a condensed version of the
above proof will suffice to obtain the desired conclusion.)

COROLLARY 12. Let R be a prime Goldie ring that is equivalent to a
semilocal Dedekind prime ring S D R. Suppose further that the quotient
Artinian ring Q of R is transcendental over its center F. Then there exists
d e J(R) such that d is transcendental over F.

Proof. We have aSb c R for some regular elements a, b of R. Since
S is bounded and semilocal, for some integers n and m, aS 2 J(S)n a n d
Sb 2 / (S) m . Thus R 2 /(5) m + M . It follows easily that / ( S ) m + π c J(R).
By Proposition 11, there is an element d e J(S) which is transcendental
over F. Thus dm+n e / ( S ) w + Λ c /(i?) and certainly </w+" is transcen-
dental over F.
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THEOREM 13. Let R be a prime FB ring that is equivalent to a Dedekind
prime ring 5, with S D ϋ , and let Q be the Goldie quotient ring to R. Then
R[x] is primitive if and only ifR is a G-ring and Q[x] is primitive.

Proof. The necessity of the conditions follows from Theorem 4 and
Lemma 2. Conversely, suppose that the conditions hold. Since Q[x] is
primitive, there is an integer n such that the matrix ring Mn(Q) contains
an element that is transcendental over its center F. Replacing R by
Mn(R), we may suppose that the same is true for Q.

We aim to apply Corollary 12. Note that, as in the proof of Corollary
12, R contains a non-zero ideal V of S. Also, as R is a fully bounded
G-ring, J(R) Φ 0. Thus VJ(R)V is an ideal of S that, since it is radical as
an ideal of i?, is radical as an ideal of S. Hence J(S) Φ 0. Thus we may
apply Corollary 11 to conclude that J(R) contains an element transcen-
dental over F. Finally, Proposition 7 implies that R[x] is primitive.

In the special case of hereditary Noetherian prime (HNP) rings,
Theorem 13 can be strengthened as follows.

COROLLARY 14. Let R be a bounded HNP ring, with quotient Artinian
ring Q. Then R[x] is primitive if and only if R is a semilocal ring such that
Q[x] is primitive.

Proof. Since an HNP ring satisfies the restricted minimum condition,
an HNP ring is bounded if and only if it is FB, and is a G-ring if and only
if it is semilocal. Thus, again, the conditions are necessary by Lemma 2
and Theorem 4. Conversely, if A is a semilocal HNP ring, then R is
equivalent to a Dedekind prime ring by [13, Theorem 6.3]. Thus the result
follows from Theorem 12.

We remark that the hypothesis in Theorem 13 that R should be an
FB ring equivalent to a Dedekind prime ring S is considerably weaker
than demanding that R be a (semilocal) HNP ring. For example, let

V=k(xl9...9xn)[y]{y)

and

R = (k[Xl,...,xn]+yv
\ V

Then R is equivalent to the Dedekind prime ring S, yet is an FB ring of
(classical) Krull dimension n + 1. Note that R is, in fact, a G-ring, since
the intersection of the non-zero prime ideals is just

\yV yV\
V yVY
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As we remarked at the end of §1, we know very little about the
structure of FBN G-rings. Of course, such rings need not be equivalent to
Dedekind prime rings, since this fails even in the commutative case (see [5,
page 38]). However, it follows from [3, Prop. 2.5] that a bounded
Noetherian maximal order of Krull dimension one is a Dedekind prime
ring. Thus if every FBN G-ring does have Krull dimension one, it might
be possible to prove Corollary 13 for an arbitrary FBN ring R by pulling
the result down from some sort of integral closure of R.
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