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GEOMETRIC INTERSECTION FUNCTIONS
AND HAMILTONIAN FLOWS ON THE SPACE
OF MEASURED FOLIATIONS ON A SURFACE

ATHANASE PAPADOPOULOS

We define and study some flows on the space of measured foliations
on a closed surface, and we relate these flows to the piecewise-linear
symplectic geometry of that space, defined by W. Thurston.

1. Introduction, statement of results, and notations.

1.1. The main object of this paper is to define and study some flows
on the space of measured foliations on a closed surface (or equivalently on
the space of measured geodesic laminations on a closed hyperbolic surface).
We interpret these flows in terms of the symplectic geometry of these
spaces.

The interest in studying properties of these spaces, classically denoted
by Jί^ and JIS£ respectively, has its origin in Thurston's work on
diffeomorphisms of surfaces and their action on Teichmϋller space. Up to
now, the notions of geodesic lamination and measured foliation have
turned out to be essential tools in at least the following three areas:

—deformations of hyperbolic structures on surfaces (see for example
the work of Kerckhoff [Ke] and Thurston [Th 2]),

—the study of the mapping class group (see the work of Thurston
described in [FLP] or in [Ca]),

—deformations of Kleinian groups, where geodesic laminations inter-
fere via pleated surfaces in hyperbolic 3-manifolds (see the work of
Thurston [Th 1]).

Besides these applications, it follows from Thurston's work that the
space of measured foliations has a rich geometry and deserves to be
studied for itself. (It is understood from now on that the assertions that
are made about the measured foliations space are equally valid for the
measured geodesic laminations space.) Many features of the geometry of
Jί& can be nicely described using the theory of train tracks on surfaces.
These objects, introduced by Thurston in [Th 1], can be used to define a
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PL atlas for the space Jt&', such that with respect to this atlas, the
mapping class group of the surface, acting on JHF, acts piecewise
linearly.

This PL structure has been so far utilized in several ways to prove
theorems about the mapping class group. Just to give a few examples we
mention, besides Thurston's work, work by John McCarthy [McC], Bob
Penner [Pe] and the author [Pa 1].

Besides being a natural PL manifold, Thurston has shown that the
space Jί& carries in some sense a natural symplectic structure, which we
now describe.

Recall that a symplectic structure, in the usual sense, is a closed
nondegenerate differential 2-form on a differentiable manifold.

The space of measured foliations does not have a tangent space in the
usual sense because the natural change of coordinate transformations are
only piecewise smooth. Nevertheless, we can define a symplectic structure
on this space in the following sense:

On each local parameters space associated to a maximal train track
(cf. definition in §1.2 below), there is a non-degenerate closed 2-form
which has an invariance property with respect to the coordinate change
maps which we now describe: Recall, first, that the domain of each such
map φ is a convex cell of dimension 6g — 6 and that φ is piecewise linear.
The form is invariant, in the usual sense, when φ is restricted to the subset
of its domain obtained by deleting the set of points in each neighborhood
of which φ is not linear. This set of "defects" is a union of codimension-1
subcells. The invariance property follows from the fact that the symplectic
structure behaves well with respect to certain natural operations on the
train track (shifts and collapses).

We will recall at the beginning of §4 the definition of the symplectic
form in coordinates.

This symplectic structure on Jί3F has been used by W. Floyd in the
study of boundary curves of incompressible surfaces in 3-manifolds (see

Using this structure, we obtained in [Pa 4] a quick proof of a theorem
which is primarily due to Katok [Ka], which asserts that the number of
linearly independent transverse measures for any foliation of a closed
surface of genus g is at most 3g — 3. For another proof, we refer the
reader to [Le].

We go on describing how one can make use of this structure:
Recall that a symplectic structure on a differentiable manifold estab-

lishes a duality between vectorfields and differential 1-forms. Vectorfields
dual to differentials of functions are called hamiltonian vectorfields.
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Even though the space of measured foliations does not possess a
tangent bundle in the usual sense, we showed in [Pa 4] that it makes sense
to talk about hamiltonian flows which admit in some precise sense tangent
vectorfields which are dual to differentials of intersection functions /(γ, •),
where γ is a simple closed curve on the surface. Such a flow is defined on
the complement of the codimension-1 submanifold of Jί & defined by the
equation ι(γ, •) = 0 (this equation characterizes the set of points around
which there is no natural coordinate system in which the function /(γ, •)
is smooth). One can describe the flowline through a point & in Jί
satisfying ι(γ, &) Φ 0 by cutting the surface which is equipped with a
foliation representing the class J*", along a curve isotopic to γ and
transverse to the foliation, and regluing after a twist. This is described in
detail in [Pa 4], and we shall recall the exact definitions as well as the
main constructions in §4 below since we will make use of them.

1.2. We proceed in §4 in the investigation of the symplectic geometry
of JίlF in the following ways:

We first remark that if we consider, instead of the intersection
function ι(γ, •), the square of this function, we can also describe its dual
flow, with respect to the symplectic structure, and this flow is defined on
the whole space JίίF. Indeed, the flow which is initially defined on the
open set JίlF— {/(γ, •) = 0} is seen to extend by the identity on the set
{/(γ, ) = 0).

As a matter of fact, the function ί(γ, ) 2, unlike the function /(γ, •)>
is differentiable at each point of the set {/(γ, •) = 0} (since this is the
square of a Lipschitz function which takes the value 0 at such points) and
the differential at such points is zero. This explains the fact that the dual
vectorfield vanishes on this set.

We then generalize this study by associating to each measured folia-
tion a flow defined on JίSF. It turns out that the adequate function on
JiϊF to consider, associated to a measured foliation ^, is Σ * = 1 / ( ^ , )2>
where 9l9...99k are the components of ^ (to be defined below). This
function defines, via the symplectic structure on Jί^, a flow on this
space which has a qualitative interpretation as a "twist along the mea-
sured foliation 9", which generalizes the discrete twist corresponding to
the case where 9 is in the class of a simple closed curve.

Of course, the flows are equally well defined on the space Jί & and
on the space Jί££. But the description as twist deformations on the
surface uses measured foliations rather than laminations.

With this in mind, we give in §2 necessary and sufficient conditions
for two elements of JίlF to admit representatives by transverse measured
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foliations, and in §3 we characterize, for a given measured foliation ^, the
set of points for which there exist train track neighborhoods on which the
function /(S7, •) is linear. These sections will be used in §4 in the proof of
the main theorem; they may be of independent interest.

1.3. We now fix some notations and conventions that are used
throughtout the rest of the paper. We refer to the book by Fathi,
Laudenbach and Poenaru [FLP] and to Chapters 8 and 9 of Thurston's
notes [Th 1] for the background material.

S denotes a closed oriented surface of genus > 2, equipped, when it
is necessary, with a hyperbolic metric.

S? is the set of isotopy classes of connected simple closed curves on S,
non-homotopic to a point.

Recall that Jί3F is the set of equivalence classes of measured
foliations on S with generalized saddle singularities (three prongs or
more), where the equivalence relation is generated by isotopy and
Whitehead moves (i.e. collapsing saddle connections), and MS? is the set
of measured geodesic laminations on S.

The spaces Jt& and JίS£ both inject in the space Rζ of positive
functions on Sf\ they have the same image. This allows us to talk about a
measured foliation and a measured lamination to be in the same class.

When we will consider geometric measured foliations (i.e. not up to
equivalence) it will be convenient for us to distinguish between a total
measured foliation (i.e. whose support is S) and a partial measured
foliation (whose support is a subsurface of S). Remark that with this
convention, a geodesic lamination is not a partial foliation since its
support has empty interior.

We shall also distinguish between two kinds of partial foliations:
—partial foliations with singularities, which are total measured folia-

tions for a subsurface with boundary, in the usual sense described in
[FLP], expose 11.

—partial foliations with cusps, where the singular points are all on the
boundary of the support and are of the type described in Figure 1.

A partial foliation, in either sense, gives a well-defined element of

A measured geodesic lamination has a finite (and bounded) number
of minimal sublaminations, which we will call its components. In a
component each half-leaf is dense. The components of a measured lamina-
tion are also elements of JtS? and we thus have an intrinsic notion of
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FIGURE 1 FIGURE 2

components for elements of JίSP'. We can also recover the components of
an element in Jί& by taking a geometric (total or partial) representative
and spreading along all cycles of singular leaves. The connected foliated
components that we get are either annuli foliated by circles or components
in which every leaf is dense. We call them respectively annular or minimal
components; they define elements of Jί^ which are the components of
the equivalence class of the foliation we started with.

Recall that a train track T on S is a closed 1-submanifold with
switches (Fig. 2) s.t. the components of S — T do not include a disk with at
most 2 cusps or an annulus with no cusps. A system of weights on T is the
assignment of a nonnegative number to each branch of T s.t. at each
switch the total mass on each side is the same.

A train track with weights gives a well-defined element of Jl!F (or
). The set of weights on a given train track T defines a convex cell in
'. When this cell is the closure of an open set in Jt&', the train track

is said to be maximal. Recall that this holds if and only if all the
components of M — τ are disks with 3 cusps and r is recurrent (i.e. T
carries a system of strictly positive weights). The reader can refer to [Pa 2],
Prop. ΠI.l for a proof of this (otherwise well-known) fact.

We shall be using the following notions of transversality:
Transversality between two total foliations on S is defined in the

usual way: the singular sets coincide, at each singular point the number of
prongs is the same for each foliation, and in the complement of the
singular set the leaves are mutually transverse.

We shall say that a partial foliation with singularities, ^, is transverse
to a total foliation J^ if the singular set of & is contained in the singular
set of J^, and in the complement of the singular sets, ^ and J^ meet
transversely. Possible local models at the singularities of ^ are given in
Figure 3 (there are no non-allowed configurations). The shaded regions
indicate the support of ^.
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FIGURE 3

If ^ is a partial foliation with cusps and !F is a total foliation, we
define S? to be transverse to & if the support of ^ does not intersect the
set of singular points of & and if the leaves meet transversely (transversal-
ity makes sense even at the cusps; see Fig. 4).

FIGURE 4

In the same way, a train track T is said to be transverse to a total
foliation J^ if T does not meet the set of singular points of J^, and is
transverse to the leaves.

For the definition and basic properties of the geometric intersection
function i( , •) defined on Jt&Y. Jί^ we refer to Rees [Re], §1.

A last word about notation: SuppJ^ will denote the support of J^
and 3 Supp J^ the boundary of Supp J*\

2. Transverse foliations.
Let γ and λ be 2 measured geodesic laminations on S. In this section,

we prove the following 2 propositions:

PROPOSITION 1. The following 3 properties are equivalent:

(i) For each j = 1,. . . , n, we have i(yj9 λ) Φ 0, where γ l 9 . . . , yn are

the components of γ.

(ii) Each half-leaf of γ has nonempty transverse intersection with λ.

(iii) There exists a total measured foliation £6\ in the class of λ, and a

partial measured foliation with singularities ^ , in the class of γ, such that &
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is transverse to JS? (in the sense given in §1.3). We can assume furthermore
that the following 2 technical conditions hold: the connected components of
Supp^ are in one-to-one correspondence with the components of & as a
foliation and at each singularity of JSf there is (locally) at most one
component of Supp^ (i.e. configurations of the types (b) and (d) in Figure
3 are not allowed).

PROPOSITION 2. The following 4 properties are equivalent:
(iv) There exists a total measured foliation JSP, in the class of λ, and a

total measured foliation ̂ , in the class of γ, such that & is transverse to ££.
(v) For every element C ^S?,we have ι'(C, γ) + i(C, λ) > 0. Further-

more, no component of S-(Suppy U Suppλ) has infinite cusps.
(vi) Each component of S — (Suppγ U Suppλ) is compact and simply

connected.
(vii) For each element γ' of Jt££, we have i(y\ γ) + z(γ', λ) > 0.

REMARK. Some of the above implications are straightforward; (ii) =>
(iii) and (vii) => (iv) use the techniques of train track approximations and
some related constructions.

For completeness we provide proofs for all of them.
It will be useful to have in mind the interpretation of the intersection

function of 2 transverse measured laminations as the total mass of the
2-dimensional measure on S which is given locally as the product of the 2
transverse measures (cf. Thurston [Th 1], §9.3).

Proof of (i) => (ii). If some half-leaf of γ does not cross λ transversely,
the closure of this half-leaf would be a component of γ having zero
intersection number with λ.

Proof of (ii) =» (iii). We begin by taking train track approximations of
γ and λ (cf. Thurston [Th 2], §8.9).

Recall that an ε-approximation τε(γ) of γ is obtained by first
constructing a canonical foliation ^"(γ), by pieces of horocycles, on the
part of S where leaves of γ are no more than ε apart. The train track
τε(γ) is a realization of the image of γ by the map which collapses each
leaf of ^"(γ) to a point. In the same manner we have ε-train track
approximations τε(λ) of λ.

By compactness of the supports of the laminations, the angle, at a
point of intersection, made by a leaf of γ and a leaf of λ, is uniformly
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τ( γ) in dotted lines

τ ( λ ) in fat lines

FIGURE 5

bounded below by a strictly positive number. By taking ε sufficiently
small, we can therefore assume that τε(γ) and τε(λ) are transverse and
satisfy the following property: there is no imbedded disk in S whose
boundary consists of the union of a smooth arc in τ(γ) and a smooth arc
in τ(λ) (see Figure 5). (Remark: it is equivalent, by Euler characteristic, to
assume that there is no such disk, with its interior disjoint from τε(γ) and

We now delete the index ε and denote the train tracks by τ(γ) and
τ(λ).

Each of these train tracks is equipped with a system of strictly
positive weights, corresponding respectively to the classes in Jl££ of the
measured laminations γ and λ.

By thickening τ(λ) according to the weights it carries, we get a partial
measured foliation with cusps, JSP', in the same class as λ, which is
transverse to τ(γ) and such that there is no imbedded disk in S whose
boundary consists of the union of a smooth arc in τ(γ) and a smooth arc
in 3 Supp&'. (We shall call such a disk a bigon.)

The hypothesis (property (ii)) implies that each component of τ(γ)
intersects JS?'.

Claim: By performing a finite number of splittings on the train track
τ(γ), we can manage so that all of its switches are contained in Suppi?'
(keeping the above properties of τ(γ) and JS?')

The operation of splitting a train track is defined in Figure 6, in
which x and y denote the weights on the corresponding branches. Cases
(a), (b) or (c) in that figure occur respectively if and only if we have x > y,
x < y, or x = y.

In this way, each train track obtained from τ(γ) by a finite number of
splittings carries a system of strictly positive weights corresponding to the
class of γ.

Imagine now a partial measured foliation with cusps, representing the
class of γ, and obtained by slightly thickening τ(γ). The operation of
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x j

(a)

(b)

(c)

FIGURE 6

splitting the train track with weights corresponds to the operation of
opening a cusp, see Figure 7; in other words, we follow the leaf issuing
from the cusp. There are 2 (overlapping) cases for such a leaf: either it
ends at another cusp (and then we get rid of the 2 cusps by opening the
foliation along this leaf (this corresponds to a splitting of type (c)) or such
leaf eventually reaches SuppJS?'. Otherwise its closure would give a
component of γ with zero intersection number with λ. This implies the
claim.

FIGURE 7

We still denote by τ(γ) the new train track obtained.
Each component of τ(γ) — SuppJS?' is not a segment whose end-

points lie on 3 SuppJS?'.
Let Uι,...,UI denote the closures of the connected components of

S — Supp JS?'. These are compact surfaces with cusps.
Let ££" be the partial measured foliation obtained from JS?' by

pinching each component \Ji along the segments JJi Π τ(γ) (see the picture
in Figure 8). τ(γ) is now contained in SuppJS?".

The absence of bigons in the figure formed by τ(γ) and JS?' implies
that each component of S - SuppJSP", if it is contractible, has at least two
cusps.
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FIGURE 8

a spine for the surface
with boundary

a spine for the surface
with boundary with 2 cusps.

FIGURE 9

Let «£? be the total measured foliation obtained from ££" by collaps-
ing each component of S - SuppoS?" on a spine. (Remark: a spine for a
compact surface with boundary with cusps is obtained from a spine for a
surface with boundary and with no cusps by adding an edge for each cusp.
See Figure 9 for an example.)

Summing up, we have a total measured foliation «£? representing the
class of λ, transverse to a train track with weights τ(γ), representing the
class of γ.

Let <St be a partial measured foliations with cusps, in the class of γ,
transverse to JSP, obtained by thickening τ(γ).

By allowing modifications of Jδ? by Whitehead moves, we will replace
^ ' by a partial foliation with singularities, ^, in the same class, and
transverse to J2\

For each cusp of S?', we consider the family of arcs induced by leaves
of 3? on S — Supp^' "inside that cusp". The endpoints of each such arc
lie on ΘSupp^'. By the "stability lemma" of [FLP], expose 5, §11.4, the
obstruction to enlarge this family of arcs is the appearance of a singular
arc of JS? as a limit of arcs in the family (see Figure 10(a)). Let F be such
a maximal family.

We modify <£? by Whitehead moves so that along this limiting arc, «£?
has only one singular point (see Figure 10(b)). We then close up the cusp
by collapsing each arc in F to a point. The cusp is then replaced by a
singularity (see Figure 10(c)).

By performing this operation for each cusp of S?', we finally obtain a
partial foliation <S. (We have to take care of the fact that in performing
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(b)

FIGURE 10

the operation of closing a cusp, the partial foliation may already pass
through the singularity of ££ under consideration, but this is straightfor-
ward. We obtain local models analogous to those of Figure 3. An example
is shown in Figure 11).

FIGURE 11

Finally, the following remarks take care of the technical condition in
property (iii):

By performing enough splitting operations on the train track τ(γ), in
the construction above, we can assume that each connected component of
the support of 9' corresponds to a component of this foliation. We then
separate the corners of the partial foliation ^ by performing Whitehead
moves on JSf, as it is suggested by the 2 examples given in Figure 12.

Property (iii) is now verified.

FIGURE 12

Proof of (iii) => (i). For each component γy of γ, let ^ be the
corresponding component of (S. Then i(yJ9 λ) = i(&j9 «£?) is nonzero since
it is the total mass of Supp <&• with respect to the 2-dimensional measure
given locally as the product μx <8> μ2 where μλ and μ2 are the transverse
measures of the foliations ^ and ££ (this can be seen easily if the
component ^ is an annular component and by continuity in the general
case).
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Proof of (iv) => (v). If ^ and JS? are transverse total measured
foliations on S, they define a singular flat metric, given in the complement
of the singularities by ds2 = dμ\ + dμ\ where μλ and μ2 are the trans-
verse measures of the foliations ^ and JSP. Each element C e ^ has at
least one geodesic representative Co with respect to this metric (see for
instance Abikoff [Ab], Ch. 1). A geodesic Co is in particular a quasi-trans-
verse immersion with respect to each of the foliations & and ££ (see [FLP],
expose 5, §1.7 for the definition), and the 2 numbers i(C9 &) and i(C9 &)
are therefore given by /QMI and fCoμ2 respectively (see [FLP], expose 6,
§V.4). We conclude immediately that the two numbers cannot be simulta-
neously zero.

To see that no component of S - (Suppγ U Suppλ) has infinite
cusps, we use the implication (iii) => (ii): ^ and JS? being both total
foliations, every half-leaf of γ intersects λ, and conversely. The picture of
the lifts of the laminations to the universal covering of S implies easily
that the complementary regions are compact.

Proof of (v) => (vi). If some component of S — (Suppγ U Suppλ)
were not simply connected, it would contain a simple closed curve which
is non-homotopic (in S) to a point and which does not meet the boundary
of the component; this curve would have zero intersection number with γ
and λ.

Proof of (vi) => (vii). If a component of S — (Suppλ U Suppγ) is
compact and simply connected, it cannot contain the support of any
element of JίSP. We conclude easily that each element of MS? must have
nonempty transverse intersection with γ or λ (or both), and hence
nonzero intersection number with (at least) one of them.

Proof of (vii) => (iv). Notice that (vii) => (i) and therefore (vii) => (iii).
Let S? be a partial measured foliation satisfying (iii). For every separatrix
of 3? which intersects Supp ̂ , consider the segment between the singular-
ity and the first hitting point on 9 Supp^. Extend the support of the
foliation over all these segments, as indicated in Figure 13, and get a new
partial foliation SP", in the same class, which has cusps and singularities.

FIGURE 13
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Remark that each infinite separatrix of ££ intersects Supp ̂ , because
otherwise its closure would be a measured foliation having zero intersec-
tion number with ^ and «£?.

Consider again the foliation <S. Notice that a compact leaf L joining
2 singularities can be disjoint from Supp ί̂ , but is necessarily contained in
an imbedded segment L' made up of a union of separatrices, with 31/ in
3 Supp^, as in Figure 14. (To prove this, consider separately the case
where L is contained in a closed curve made up of compact separatrices
and the case where it is not. In the first case, remark that JS? cannot
contain a closed union of separatrices which does not meet ^, for this
would give an element of Sf having zero intersection with & and JSP. In
the second case we are lead to argue as above with infinite separatrices.)

FIGURE 14

By allowing modifications of JS? by Whitehead moves, we may
therefore assume that at every singularity of JS?, the germ of each
separatrix is contained in Supp 9".

Consider now a component of M — Supp &"'. The boundary of such a
component has a certain number of singularities, of the type "cusp" or
"corner" (see Figure 15(a) and (b)).

The foliation J27 induces on this component a foliation transverse to
the boundary, with no other singularities than the cusps or corners on its
boundary. We conclude by Euler characteristic that such a component is a
disk with exactly two singularities on its boundary, and the foliation
induced by & on this disk is a "standard" foliation by segments (see
Figure 15(c)). By collapsing each of these segments to a point, we obtain
the desired total foliation on the surface.

corner

(b) (c)

FIGURE 15
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3. The intersection function.
In this section we prove the following:

PROPOSITION 3. Let γ and λ be two measured geodesic laminations s.t.
for every component γ of γ, we have z(γ, λ) Φ . Then there exists a local
coordinate chart given by a maximal train track, defining a neighborhood of
λ, s.t. in these coordinates the intersection function z(γ, •) is linear.

REMARKS. (1) The function i(γ, •) is equal to Σji(yJ9 •) where the γ '̂s
are the components of γ. In any neighborhood of a point x e Jf&
satisfying i(yj9 x) = 0, the function i(yj9 •) can never be linear since it is a
nonnegative function which is not identically zero near any point. From
this we can see that the proposition characterizes the set of points of Jt££
at the neighborhoods of which we can find local coordinates in which the
function ι(γ, •) is linear. (Using the fact that all the functions are
nonnegative, one can see that i(γ, •) is linear if and only if V/, i(yj9 •) is
linear.)

(2) If we take an arbitrary coordinate chart associated to a maximal
train track, the proposition implies that the function ι(γ, •) is piecewise
linear in these coordinates, in the neighborhood of each point of the set
defined by i(yJ9 •) = 0 for every j (use the fact that the change of
coordinates is piecewise linear, cf. Thurston [Th 1], Prop. 9.5.8). The
following related result was proved in [Pa 3]: for any element C e ^ , the
function /(C, •) is piecewise linear on the whole space Jt&, in any train
track coordinate chart.

Proof of Proposition 3. From Prop. 1 ((i) => (ϋ)), γ and λ meet
transversely. Furthermore, by the proof of ((ii) => (iii)) of that same
proposition, we can find a train track approximation τ(λ) of λ satisfying
the following properties:

(Tl) τ(λ) is transverse to γ.
(T2) there is no embedded disk in S whose boundary is the union of

an arc in a leaf of γ and a smooth arc in τ(λ).
By general position we can assume furthermore that
(T3) all the switches of τ(λ) are in the complement of Supp γ.

REMARK. Generically, the lamination λ is complete (i.e. every compo-
nent of S - λ is a disk with 3 (infinite) cusps, cf. [Th 1] Def. 8.7.5). In the
case of a complete λ, each region of S - τ(λ) is the interior of a compact
disk with 3 cusps, which implies that τ(λ) is maximal (recall that λ gives
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a system of strictly positive weights on τ(λ)). The considerations that
follow deal therefore with the case where the lamination λ is not com-
plete.

Consider a region V of S — τ(λ) which is not the interior of a disk
with 3 cusps, and let V be its natural completion. (V is not the closure of
V in S\ we do not identify pieces on the boundary). The lamination γ
induces on V a lamination of compact support, whose leaves are intervals
with endpoints on 3F. Call this induced lamination y^.

Suppose to begin with that there exists a leaft / of γ(p satisfying one
(or both) of the following two properties:

(PI) The endpoints of / are not joined on dV by an arc which has
only one cusp (remark that the case of an arc having no cusp is excluded
byT2).

(P2) / is not homotopic (relative to its boundary) to an arc (smooth or
not) in dV.

We take in V — y^y an arc /' satisfying, like /, one of the properties
(PI) or (P2). (To see that this is possible, recall that transversely the
lamination λ is either a discrete set of points or a Cantor set.) Without
loss of generality, we assume furthermore that the endpoints of /' are
distinct points on S (even though the endpoints of / can be the same
point on S).

We pinch the train track τ(λ) along the arc /', as is indicated in
Figure 16, taking care that the support of the operation does not meet the
support of γ. Note that the new train track carries λ.

Figure 17 is meant to illustrate the case where the endpoints of / are
the same point in S, i.e. where / is an isolated geodesic.

FIGURE 16

τ(λ)

FIGURE 17
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(a) (b)

FIGURE 18

By inspecting what are the components of the new train track
obtained in this manner, we see that condition (T2) that was satisfied by
τ(λ) is also satisfied by the new train track. Conditions (Tl) and (T3) are
also satisfied by construction.

If there is no leaf of γj y satisfying one of the 2 properties (PI) and
(P2) stated above, each leaf of γ(p bounds a cusp of Fon one of its sides,
as is indicated in Figure 18(a).

By compactness of γ(p, for each cusp c of V which is bounded by
some leaf of γ(p, there is an innermost leaf λ c having this property (see
Figure 18(a)).

Consider the surface V obtained from V by chopping all cusps
bounded by λc's (this is the shaded region in Figure 18(b)).

Using the fact that V is not a disk with 3 cusps, we can find a proper
arc /" in V whose endpoints lie on W — { λc<}, satisfying with respect to
V one of the 2 properties (PI) and (P2) stated above for /, and such that
the endpoints of /" are not realized by the same point on S.

We pinch V along /", and verify as in the previous case that the
properties (Tl) to (T3) that were satisfied by τ(λ) are also satisfied by the
train track we get.

In any case, the operation of pinching reduces (in some clear sense
upon which we do not insist) the complexity of the component V, so that
after a finite number of operations we end up with a train track τ*(λ)
which satisfies the properties (Tl) to (T3) that were satisfied by τ(λ) and
which is maximal.

Recall that by construction λ corresponds to a system of strictly
positive weights on τ*(λ), so that this lamination is at the interior of the
cell in JίtF parametrized by τ*(λ).

The function i(γ, •) is linear in the local coordinates defined by
τ*(λ). Indeed, if al9...9aN are the branches of T, and (xl9...,JC^) is a
system of weights on these branches, corresponding to a measured lamina-
tion v, the quantity z'(γ, v) is equal to Σ^=zlximtd^{ai), where meas refers
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to the transverse measure of the lamination v. (This can be first verified
for the case where v is a weighted simple closed curve, using in an
essential way the property that we denoted by (T2). The general case
follows by continuity.)

The proof of Proposition 3 is now complete.

4. Hamiltonίan flows on the space of measured foliations.

4.1. We begin by recalling Thurston's definition of the symplectic
structure of JίSP'.

Let T be a maximal train track and Eτ the convex cell of weights
associated to r. Recall that if τ has N branches, then ET sits in RN and is
defined by the inequations xt > 0 for / = 1,..., N and the equations of
conservation of mass at the switches of T.

For each point of Er, we can see the tangent space to Er at this point
as the subspace of RN generated by this cell, i.e. the set of all (not
necessarily positive) weights on the branches of T, satisfying the equations
of conservation of mass at the switches.

If X = (xv...,xN) and Y = (yl9..., yN) are two points in this
tangent space, we define their product (X9Y) to be Σs\(xigyjs - xjsyis)
where the sum is taken over the set of switches of T, and where for a given
switch 5, the indices is and j s refer to the branches of T that are
respectively on the right and on the left as we look inside the cusp. This is
well-defined since S is oriented.

It can be easily verified that we get in this way a non-degenerate
skew-symmetric product on the tangent space at each point of Eτ, that is,
a symplectic structure on Eτ.

The structure behaves with respect to coordinate changes in a way we
have already described in the introduction (§1.1).

4.2. We now recall the definition of the flow ( # / ) , G R that we
associated in [Pa 4] to each element γ of 5*\

This flow is defined on the subspace N(y) of J(fF defined by the
inequation z(γ, •) Φ 0 (the letter TV in N(y) stands for "Nonzero"). N(y)
is the set of points of JttF for which we can find train track neighbor-
hood coordinates in which the function i(γ, •) is smooth. This was proved
in [Pa 4] and is a particular case of Proposition 3 in §3 above. It was also
(easily) proved in [Pa 4] that the subset Z(γ) of Jί& defined by the
equation /(γ, •) = 0 is a codimension-1 PL-submanifold.

We describe the image H/(^) under the flow, for each point ^ in
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For each such point ^", we can find a representative by a geometric

total foliation on S and a representative of the isotopy class γ (we call

again J** and, respectively, γ these representatives) such that γ is trans-

verse to J^ and does not pass through the singularities. (This was proved

in [Pa 4], but is also a consequence of Proposition 1 in §2 above).

For each t e R, define a measured foliation H]{^) by cutting the

surface S along γ, and regluing back the two boundary components of the

resulting surface after a twist of strength /. The amount of twisting is

measured via the measure induced on γ by the transverse measure of the

foliation J^, and the sense of the twist (left or right) is determined by the

sign of t (respectively positive or negative). In Figure 19, a left-hand twist

is represented.

That the equivalence class of the measured foliation H^(^) is

independent of the particular representatives & and γ in their classes,

was proved in [Pa 4] and is also a consequence of a more general fact that

we will prove below (Lemma 6).

This defines a flow (///), e R on N(y).

measure ί

oriental of S ,• p> ^ ^^ψj^

reglue

FIGURE 19

4.3. The following theorem was proved in [Pa 4]:

THEOREM 4. The flow (H?) has a tangent vectorfield hΎ which is the

dual of the differential of the function z(γ, •) restricted to the open set N(y)

with respect to the symplectic structure ( , > restricted to this set. In other

words, we have at each point J*"e N(y):

REMARK. Again we insist upon the fact that Jί^ being not a smooth,

but a PL manifold, this theorem should be interpreted in the following

way: we can find in the neighborhood of each point of N(y) a coordinate

chart associated to a maximal train track, in which the function /(γ, •) is

smooth, and in which the flow is smooth and admits a tangent field which

is the dual, with respect to the symplectic product ( , ), to the differential

of the function. In fact that function /(γ, •) will be linear in these special

coordinates and the vectorfield will be constant.
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The general picture (i.e. in an arbitrary coordinate chart associated to
a maximal train track) is that of a continuous flow admitting a piecewise
constant tangent vectorfield.

We recall the main point of the proof of Theorem 4 that we gave in
[Pa 4] since we will make use of it.

Sketch of proof of Theorem 4. For any point & in N(y), we find a
maximal train track T such that J^ corresponds to a system of strictly
positive weights on T and such that γ is represented by a curve imbedded
in T and meeting exactly two switches of T, as in one of the Figures 20(a)
or (b) (these figures are isomorphic, but they are not the same for our
purposes; we are making use of the orientation of S).

orientation on S.

(a)

(γ in dotted line)

FIGURE 20

Note that for a given measured foliation & carried by T, the 2
weights it assigns to the 2 branches bordering on γ are the same, and are
equal to /(γ, &).

Each of Figures 20(a) and (b) may be described by saying that the
branches of r bordering on γ arrive on this curve respectively "from the
left" and "from the right". In each case, half of the flowline passing
through the point &> is contained in the subspace of Jί& parametrized
by ({H t

Ύ(^)91 < 0} in case (a) and {H]{&\ t > 0} in case (b)).
Imagine now a natural fibered neighborhood Fof T (see Figure 21(a))

(the fibers are usually called the ties of the train track), and represent J*"
by a geometric measured foliation &(Ί) whose support is V and which is
transverse to the ties. The weight attributed by 3? to each edge of T is
equal to the total measure of any tie corresponding to that edge, with
respect to the transverse measure of

γ* is the central curve
^(τ) in dotted lines
the ties in fat lines

(b)

FIGURE 21
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The isotopy class of γ can be represented by a curve γ* which is
transverse to & and to the ties, and intersects in exactly one point each of
the ties corresponding to the 2 branches of r traced by γ, and only these.

From this picture we can see that the twist deformation along γ*
affects only the measure of the ties that γ* crosses. In other words, it only
affects the weights on the branches of τ that are traced by γ. In view of
the definition of the strength of the twist (recall that at time t, the total
amount of the twist is equal to /, with respect to the measure induced on
the curve γ*), it can be seen that the flowline passing through the point J^
that we are considering has a tangent vectorfield at each point, whose
components, in the coordinate system associated to T, are 1 on the two
branches traced by γ and 0 elsewhere.

The formula is then immediately seen to be true, using the explicit
form of the symplectic product.

4.4. We now associate to every element γ in the set S? a new flow,

The flow is first defined on the open set N(y) in much the same way
as the flow (Hy) defined above; the flowlines are the same but the
amount of twisting is different. For each J^e N(y)9 the flow through that
point is defined by cutting the surface along a curve in the class γ,
transverse to a foliation in the class J^, and regluing so that at time t, the
amount of twisting (measured on the curve, again with respect to the
transverse measure induced by the foliation) is equal to the product

The sign convention is the same as that for the flow Ht

y.
Remark that the action of the time-one map FJ is that of a Dehn

twist along γ.
The following theorem holds:

THEOREM 5. The flow (Ft

y)ί(ΞR that we have defined on N(y) has a
continuous extension to the whole space Ji&'. It possesses a tangent
vectorfield fΎ which is (up to a constant multiple) the dual of the differential
of the function J defined on Jί& by J(^) = z(γ, J^")2, with respect to the
symplectic structure ( , -) on Ji^.

The exact formula is, for every ̂ " e

REMARK. The same remark than the one following the statement of
Theorem 4 holds here. The flow Ft

Ί admits a tangent vectorfield in the
same sense as the flow Hy does. The general picture for / γ is that of a
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piecewise linear vectorfield, in the same way as Hy was a piecewise
constant vectorfield.

Proof of Theorem 5. One can see the continuity either directly from
the definition (since as & approaches Z(γ), the quantity ι(γ, &) tends to
zero), or else from the description-in-coordinates that we shall discuss
now.

For the proof of the duality formula, we investigate separately the
situations near the points in N(y) and near the points in the complemen-
tary set Z(γ).

For a point & in N(y), we use the same train track coordinate
system that was used in the proof of the duality formula of Theorem 4.

Referring to Figure 21, we denote by x the weight associated by & to
the branches of r bordering on γ. The quantity,/(&) is then equal to JC2,
and the differential dJ(&){•) is equal to the following 1-form defined on
the tangent space at J*" to the cell associated to T: If Y = (yv..., yN) is a
vector in this space (that is, a system of nonnecessarily nonnegative
weights on r satisfying the switch conditions), we have dJ(tF)(Y) =
2x ye, where ye is the coordinate of Y on any of the 2 branches
bordering on γ.

Again, as in the case of the flow Ht

Ύ

9 half of the flowline passing
through & (that is, { Ft

y, t < 0} or {F,γ, t > 0}) is contained in the subset
of Ji& parametrized by this chart, depending on whether we are in the
case of Figure 20(a) or 20(b).

In any case, the tangent vectorfield to the deformation is constant on
this half-flowline, in these coordinates, and has the following components:
/(γ, &) on the two branches of τ traced on T by γ, and 0 elsewhere. The
proof of this fact is the same as that of the corresponding fact for the flow
H?\ it amounts to seeing that under the effect of the twist, the weights on
the branches of r are unchanged except for the 2 branches traced by γ,
for which the rate of variation of the weight is exactly z(γ, IF).

Recall that / ( γ , ^ ) = x.
By referring to the explicit formula for the symplectic product, we

find that for Y as above, an element of the tangent space at J^, we have in
the coordinates associated to r. (/ γ (J^), Y) = -x - ye where ye has the
same meaning as above.

The duality formula is now verified for J ^ G N(y).
For a point in Z(γ), in view of what we said at the beginning of the

proof of the theorem, we must show that the differential of J vanishes at
this point.
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This is easily verified since J is the square of the Lipschitz function
*(y> *) which takes the value 0 at such a point. This completes the proof.

REMARKS (1) The function ι(γ, •) is Lipschitz in any train track
coordinate chart since it is piecewise linear (see [Pa 4]); Mary Rees proves
in [Re] that for any element Ĵ * in Jt&", the function /(J^, •) is Lipschitz
(with respect to the coordinate charts associated to pants decompositions,
but these are related to train track coordinate charts by piecewise linear
mappings, so the result holds also in the coordinates we are considering).

(2) The function /(γ, •) is not differentiable near a point in Z(γ) in
any natural coordinate system, since if it were, it would have to be linear
near this point and we have already remarked in §3 that this is impossible.
The situation that we have here should be compared with the trivial fact
that the function x -> |JC| defined on R is not differentiable at 0, whereas
its square is.

(3) Another advantage of the flow Ft

Ί is that it preserves rays in
Jl&', whereas Ht

Ύ does not. The induced flow on ^Jt^ interpolates the
action of the Dehn twist along γ on this space.

4.5. We want to associate a flow {Ffr)t€ER to an arbitrary element J^
in Jt&', in a way that generalizes the flows Ft

Ί defined for elements γ in
ST.

We will need the following

LEMMA 6. Let !Fλ and J^2 be 2 equivalent total measured foliations on

S, and let &ι and &2 be {simultaneously) either:

1—equivalent total measured foliations transverse respectively to J ^

and &2.

2—equivalent partial measured foliations with singularities, transverse

respectively to &x and J^2, and satisfying the following 2 technical condi-

tions:

—For i = 1 and 2, the connected components of S u p p ^ are in

one-to-one correspondence with the components of^t as a foliation.

—For i = 1 and 2, each singularity of ^ meets, locally, at most one

component of Supp9/a

{Recall that these conditions appear in property (iii) of Proposition 1.)

Then we can get ^x from J^2 by using operations of the following types

—isotopy

— Whitehead moves which involve only separatrices that are contained

in the closure of the complement of S?/β
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Proof If ^ x and ^ 2 are total foliations, then this is given by
Proposition 2.7 of Masur [Ma], which asserts that in this case there is an
isotopy of the surface which takes J ^ to J^2 and &λ to ^ 2 .

Suppose now that <Sλ and ^ 2

 a r e n o t t o t a ^ foliations. By allowing
Whitehead moves on J ^ and J*"2 that do not involve separatrices of J^i
(resp. J^2) passing through S u p p ^ (resp. Supp^2), we shall construct 2
partial foliations 9[ and ^ 2 that are in the same equivalence class, whose
support is disjoint respectively from Supp J ^ and Supp J^, and such that
the following 3 properties hold for / = 1 and 2:

—the partial measured foliation Ŝ  IJS?/ satisfies all the properties of
8?, that are listed in the statement of the lemma.

—Every infinite separatrix of J^ has nonvoid transverse intersection
with Supp ̂ z U Supp ̂ /.

—Every cycle of finite separatrices of J^ has nonvoid transverse
intersection with Supp <Si U Supp SP/.

(Note that 9[ and ^ 2 may be the empty foliation.)
The foliations 9[ and ^ 2 will be constructed by thickening some

simple closed curves on S, that we now construct.
Consider an infinite separatrix Lλ of Fλ that does not cross Supp 9V

The closure of this separatrix is a compact subsurface Sλ of S with
negative Euler characteristic, whose interior is disjoint from Supp 9X. By
performing Whitehead moves on Fx which do not involve separatrices
that cross S?x, we can furthermore assume that the boundary of Sλ does
not have corners (recall the construction in Figure 12).

Let Cλ be a simple closed curve in the interior of Sl9 that is transverse
to the foliation induced by J*i on this surface, and that does not pass
through a singularity. (In particular, Cλ is not homotopic to a point on S.)

To the separatrix Lλ there corresponds in a precise way a separatrix
L2 of J^2 (recall that Whitehead moves do not affect infinite separatrices),
and the closure of L2 is a subsurface, which we desingularize as above
(using the operations of Figure 12), and which we call S2. As foliated
surfaces, Sλ and *S2 are equivalent, and by allowing Whitehead moves on
the foliation on S2 induced by J*"2, we can find a curve C2 which is
isotopic to Cx on 5, which is contained in the interior of 52, and which is
transverse to J^2 without passing through singular points (remark that the
theory of existence of transverse curves to a measured foliation works for
surfaces with boundary in exactly the same way as for closed surfaces,
studied in [FLP], expose 5, §11.6. It only involves simplification of
Whitney disks).

By thickening the curves Cλ and C2, we obtain 2 foliated annuli,
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equivalent as measured foliations of S (provided we choose the same total
transverse measure), and contained in the complement of ^ x and ^ 2 .

By iterating this process finitely many times, we end up with a pair of
foliations satisfying the first 2 of the 3 properties that we required from

Let Lλ be now a simple closed cycle of separatrices of J ^ that does
not intersect transversely the partial foliation (which we denote again by
^ x ) . Consider the subsurface S1 of S defined as the connected component
of S — Supp ̂  that contains Lv Sγ has as above, negative Euler
characteristic and is equipped with a foliation, induced by J^, which is
transverse to the boundary.

The boundary components of Sλ can be either closed leaves of ^ or
cycles of compact separatrices of ^\, and Lλ is not isotopic to a boundary
component of Sx since these curves have nonzero intersection number
with J^.

By allowing Whitehead moves of J ^ involving only separatrices
contained in Sv we can find a simple closed curve Cx in the interior of Sl9

which is transverse to J^, which has nonzero intersection number with L l 9

and which does not pass through singular points.
To the simple closed cycle Lλ of &x there corresponds exactly one

simple closed cycle L2 of J^2 in the same isotopy class, and to the surface
Sx there corresponds exactly one component S2 of S — Supp^2, that
contains L2. This uses the fact that the components of S u p p ^ and
Supp ^ 2 are in one-to-one correspondence with the components of &λ

and @2

 a s foliations. Sτ and S2 are isotopic subsurfaces of S.
Again we can find, by performing Whitehead moves on S^2 involving

only separatrices contained in the surface S2, a simple closed curve C2

isotopic to Cl9 transverse to J^2, which crosses L2 and does not pass
through a singular point.

By thickening C\ and C2, and repeating this construction as many
times as is needed, we end up with the required foliations ^LJ^ί and

By the proof of (vii) => (iv) in §2, we know that we can thicken
^ L J ^ ί and ^ 2 I I ^ 2 to get total measured foliations transverse respectively
to J ^ and J*"2, by allowing Whitehead moves on J^ and !F2 that
involve only separatrices in the complement of Supp (^LJ^ί) and
Supp(^ 2U^ 2) respectively.

We are now reduced to the case where ^ and ^ 2 are total foliations
that was studied at the beginning of the proof.

The proof of Lemma 6 is now complete.
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4.6. We now associate to an arbitrary element Ή^JiίF, a flow
(F t ^) ί e R on the space Jί&.

We begin by defining the flow on the subspace N(&) of Jί& defined
by i(9J9 •) Φ 0 for every j = 1,...,/:, when &l9...99k are the compo-
nents of ^ .

Let J^ be an element of N(9) and let us describe the flowline
through <F.

Using Proposition 1, we represent ^ and ^ by 2 geometric measured
foliations that we will also denote by J^ and <99 satisfying property (iii) of
this proposition.

Let &l9..., S^ denote also the components of the geometric foliation
9.

Supp S? is equipped with a pair of transverse foliations, a "horizontal"
one induced by S?, and a "vertical" one induced by J*\ This defines a
geometric structure on Supp^— {singularities} in which one can talk of
angles, of straight lines, of horizontal lines and of vertical lines.

For each t e R, we define Ft^(βr) to be the geometric measured
foliation on S which coincides with & in the complement of Supp <99 and
which is given, for each / = 1,..., k, on Supp S?y by straight lines making
with the vertical lines an angle a defined by tanα = t i(&i9 &). Depend-
ing on the sign of ί, the angle is measured either in the clockwise or
counterclockwise direction. This makes use of the orientation on S. The
singular points of Ft^{^) are the same as those of &.

It follows from Lemma 6 that the equivalence class in Ji& of the
foliation Ft^{^) depends only on the classes of 9 and J^ and not on the
particular representatives that were chosen for the definition.

The flow which has been up to now defined on N(@), extends on the
whole space Jί&'. Indeed, as the intersection numbers of a sequence of
elements in N(&)9 with 9i9 approach zero, the angle of bending in the
geometric definition of the flow tends to zero, so that the flow extends on
JίlF by defining the image Ft

9{^) of an arbitrary element J ^ Ξ JttF to
be its time-/ image under the flow associated to the foliation obtained
from 9 by deleting the components Ŝ  which satisfy i{9j9^) = 0. In
particular, the flow is the identity on the set of points defined by
i(9j9 •) = 0 Y/ = 1,..., k or equivalently by the single equation i{&9 •) =
0.

Remark also that it follows from the definition that the flow F^
preserves rays in Jt& and therefore defines a flow on SPJί&.

For any ^, the flow F^ is continuous. The continuity comes from a
general principle which says that when 2 geometric measured foliations
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have the same singular set and are close together geometrically (i.e. in the
topology of the set of unoriented directions on S), their classes in Jί&
are close together in the topology of Jί^. This is described in [FLP],
expose 6, §V, and uses the existence (for each geometric measured
foliation) of a quasi-transverse immersed curve in each class in <9%
realizing the minimum of intersection number in their class.

If γ is an element of ^ , the flow Ft

Ί that we have just defined
coincides with the flow that we defined in §4.4.

To see this, we remark by going back to Figure 22(b) and using the
same notations as there, that the effect of the twist of strength / z(γ, &)
along the curve γ* is the same as the effect of taking a foliated annulus of
width 1, transverse to ̂ ~(τ), and bending the foliation induced by ^ " ( T )
on the annulus by an angle whose tangent is t z'(γ, !F\ measured in the
flat structure induced on the annulus by the 2 transverse foliations.

We saw (Theorem 5) that the flow Fy on JHF associated to an
element γ e Sf is the hamiltonian flow of the function ι(γ, ) 2 with
respect to the symplectic structure of that space. It can be easily verified
that the same thing holds if we take, instead of an element γ ^ ^ , an
element of the form λγ where A E R and γ ^ Sf. For this we compute in
the same train track coordinates used in the proof of Theorem 5. Using
the same notations as there, the function /(λγ, ) 2 is given by λ2x2, the
hamiltonian vectorfield is the one of the function λ2 z(γ, ) 2 We repre-
sent λ γ by a foliated annulus, transverse to ^(r) and whose total
width is λ. The hamiltonian flow acts by bending the vertical foliation by
an angle whose tangent is tλ2x/λ = tλx, which is therefore the action of
the flow Ft

λy.
Remark now that every component ̂ y of an element ^ e Jt <F can be

approximated by a sequence λπγπ of weighted elements of Sf and the
convergence of λnγn to Ŝ  is a necessary and sufficient condition for the
functions i(λnyn, ) 2 to converge to the function i(&j9 ) 2 .

Summing up, we have, for each Ή^JίϊF, a function on JίϊF
defined by Σ y /(S^ , )2> where the ̂ ' s are the component of ^. Each
function i(&J9 ) 2 is a limit of functions i(λnyn, ) 2 whose hamiltonian
flow on JllF is given by FλnΊn. If ^ is geometric, the support of each
curve in a sequence approximating <Si can be taken to be in Supp^ . The
flows associated to disjoint simple closed curves can easily be seen to
commute.

Recall now that the pairing between differentiable functions and
hamiltonian flows, defined by a symplectic structure, is continuous. We
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can therefore state:

THEOREM 7. For each element y&Jί^, the flow (Ft

9)tGR is the

hamiltonian flow associated to the function Σ ) = 1 / ( ^ , -)2 on Jί!F, where

&l9...,Φk are the components of &.

Remark that the flows F^J associated to the components ^ of ^
commute, by construction. Ft

9 is thus obtained by composing in any
order Ft\..., F*'.

Remarks similar to those following the statements of Theorems 4 and
5 hold. We make use of Proposition 3 and the fact that the function
j(9P, •) is Lipschitz (cf. [Re]) to find coordinate charts in which the flow is
the tangent flow to a vectorfield. We insist no more on these facts.

Concluding remarks, (1) geometric intersection functions are the most
natural globally defined functions on Jί!F\ it would be interesting to
study other kinds of functions on this space, in relation to the symplectic
structure.

(2) An apparently important problem is to study what relations can
there be between the symplectic structure on Jί3F and that on the
Teichmϋller space of the surface, studied by Scott Wolpert [Wo], and with
more general symplectic structures, on spaces of representations of the
fundamental group, studied by Bill Goldman (cf. [Go] and the bibliogra-
phy there).
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