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MODULAR INVARIANT THEORY AND
COHOMOLOGY ALGEBRAS

OF EXTRA-SPECIAL /^-GROUPS

PHAM ANH MINH

Let Wn be the group of all translations on the vector space Z£ ι.
Every element of Wn is considered as a linear transformation on ΊJι

p, i.e.
Wn is identified to a subgroup of GL(n,Zp). We have then a natural
action of Wn on E (x x ,..., xn 1) ® P (y } , . . . , yn 2). The purpose of this
paper is to determine a full system of invariants of Wn in this algebra.
Using this result, we determine the image ImRes(Λ,G), for every
maxima] elementary abelian ^-subgroup A of an extra-special p-group
G.

Introduction. Let G be a finite group and Zp be the prime field of p
elements. Let us write H*(G) = H*(G,Zp) (the mod/? cohomology
algebra of G).

If p = 2, the cohomology algebras of all extra-special /^-groups were
determined by Quillen [7]. We are interested in the case p > 2. So from
now on, we shall assume this condition through the paper. For the
extra-special /^-groups of order p3, their integral cohomology rings have
been computed by Lewis in [3], and their mod p cohomology algebras are
determined recently in Pham Anh Minh-Huynh Mύi [4] and Huynh Mύi
[6]. For an arbitrary extra-special /?-group, Tezuka and Yagita had
computed H*(G)/\fθ in [9]. As observed in [6], the ideal v̂O of the
nilpotents in this algebra is quite complicated, so it seems difficult to
determine their nilpotent elements.

Let A be a maximal elementary abelian /^-subgroup of an extra-spe-
cial />-group G. The inclusion map A «-> G induces the restriction homo-
morphism Res(Λ, G): H*(G) -> H*(A)W*(A\ where WG{A) =
NG(A)/CG(A), the quotient of the normalizer by the centralizer of A in
G. The purpose of this paper is to determine the image ImRes(yί,G) for
every A. We shall see that the nilideal of Im Res(Λ, G) is complicated, so
our results will be needed in the study of the ideal \/θ of H*(G).

This paper contains 3 sections. In §1, we consider maximal elemen-
tary abelian /^-subgroups of an extra-special p-group following Quillen [7]
and Tezuka-Yagita [9]. By means of the modular invariant theory devel-
oped by Huynh Mύi [5], we determine in §2 a full system for the
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invariants of WG(A) in H*(A). Using the results in §2, we determine
ImRes(^4,G) in §3. The main results of this paper are Theorem 2.4 and
Theorem 3.1.

I would like to acknowledge my sincere gratitude to Prof. Huynh Mύi
for his generous and inspiring guidance. I am also deeply grateful to Prof.
Ngδ The Phiet for many valuable discussions.

1. Extra-special / -̂groups and maximal elementary abelian /?-sub-
groups. Let G be a /7-group. As usual, let [G,G], Z(G) Φ(G) = Gp

[G, G] denote the commutator subgroup, the center and the Frattini group
of G respectively. G is called an extra-special /?-group if it satisfies the
following condition

(1.1) [ G , G ] - Φ ( G ) - Z ( G ) 3 Z , .

Equivalently, G is an extra-special p-grovφ if we have the group extension

(1.2) O^Z^G^F-^0

where V is a vector space of finite dimension over lp and i is an
isomorphism from *Lp onto the center of G. (For details or extra-special
p-groups see D. Gorenstein, Finite Groups, Harper & Row, New York,
1968, especially §5.5.)

As well known, the dimension of V s G/Z(G) is even. If dimF = 2,
G is isomorphic to one of the following groups

E = (a,b\a* = bp = [a,b]p = [a, [a,b]\ = [*> [«>*11 = 1>.

M = (a,b\ap2 = bp = 1, b~ι ab = )

Generally, if dimF = In - 2(n > 2), then G is isomorphic to one of the
following central products

( 3x En-ι = E E (n - 1 times)
1 ] Mn_x = En_2-M.

Let B: G/Z(G) X G/Z(G) -» {G, G] be the map defined by

B(u9v) = [u\v'\ for U,Ό e G/Z(G)
where u\ υf mean representatives of u and v respectively. One can easily
see that B is well-defined. Identifying G/Z(G) = F = Z ^ " 2 and [G,G]
= Zp, B becomes the alternating form V X V -> Zp defined by

w - l

(1.4) B(U, V) = Σ »2i-l ' »2i - «2/ V2i-l
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for

u = (ul9...9u2n_2)9 v = ( v l 9 . . . , v 2 n _ 2 ) ( = V.

A subspace W of V is said to be 5-isotropic if B(u9 v) = 0 for all

In Quillen [7; §4] and Tezuka-Yagita [9; 1.7 and 3.4], we have

LEMMA 1.5. There is a 1-1 correspondence between maximal abelian
p-subgroups A of G and maximal B-isotropic subspaces W of V. The
dimension of any maximal B-isotropic subspaces WofV is just n — 1.

From this lemma, we have

LEMMA 1.6. Any maximal elementary abelian p-subgroup A of G is of
rank n9 i.e. A s ϊn

p.

Proof. It suffices to prove that A is also a maximal abelian subgroup
of G, and the result is implied from (1.5). Assume that A is not a maximal
abelian subgroup of G, then A £ A'9 where A' is a maximal abelian
subgroup but not elementary of G. Let α e / with ord(α) =/>2. Let
Ω^G), ΰχ(G) denote the subgroups of G defined by ΩX(G) = {x e
G/ord(jc) <p) and Oχ(G) = {y p\y e G}. Since (ϋ^G)) =/>, we have
|Ω1(Gr)j = p2n 2 and Ω^G) is not an extra-special />-group. Hence
Z(Slx(G))J> Z(G). Let 6 be an element of ZiΩ^G^XZig), we have
[b9 a] Φ 1, hence b & A and (Λ, &) is then an elementary abelian p-sub-
group of G which contains strictly A, a contradiction. The lemma is
proved.

PROPOSITION 1.7. Let A be a maximal elementary abelian p-subgroup
of G. Then there exist the elements al9...9an9 bl9...9bn_1 ofG such that

(a) A = (al9...9 an) andan = c is a generator ofZ(G)

(b) WG(A) = (bl9...9bn__λ) wherebi = b§A91 < / < n - 1
(c) ap = at ifi Φj9 ai an ifi ^ j for 1 < i9 j < n - 1.

Proof. It suffices t o prove that: (*) there exist the elements al9...9 an9

bl9...9bn_ιof G satisfying the condit ions:
(a ' ) A = (al9...9an)9 where an = c,
(b') for each /, 1 < i < n - 1, (α,-, fr;) is an extra-special /^-subgroup

of G of order /?3,

( c 0 [bi>βj] = 1 if / Φ j y and the proposition can be obtained by
noting that WG(A) = G/A and α, e CG((aj9 6 » if i # 7.
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First, let cl9...9cn_l9 cn = c, be a basis of A. Clearly, for 1 < / < n
— 1, c, e G\Z(G), so there exists an element di of G such that [ci9dt]
Φ 1. Hence Es = {ci9dt) D Z(G) = Φ(G) and <cfΦ(G),^Φ(G)> is a
subgroup of (?/Φ(G) of order less than p2. Then \Et\ <p3. Since 2s, is
not abelian, we have {E^ = p3. Thus £ i is an extra-special p-group of
order p3. By [8, 4.17 Chap. 4], we have G- = Et QO^) .

Since G = Ex CG{EX), each c^i Φ n) has the form

with 0 < ri9 si <p - 1 and Λ ^ e Q ί ^ ) . Since [ci9cx] = 1, ^ is then
equal zero. Set ^ = cl9 b™ = ί/x. We have A = ( Λ ^ , . . . , a£ll9c) and
there exist the elements b£\....b^ofG such that (a^ι\ b\l)) is an extra
special /?-group of order p3, and [fe^\ α^] = 1 for i Φ 1.

Assume that there exists the elements a[k\..., a^}l9 b[k\..., bj^}x

(1 < k < n - 1) of G such that

(ii) {a\k)

9 b\k)) is an extra-special /?-group of order /?3,
(iii) [b)k\ a\k)] = 1 for i Φ j and y < k.

For / # k + 1, αp> has the form α<*> = α ^ Γ ' ' aik+l) ^^ ° ^ mι < P
and α^+1> G ^ ( ( I I ^ ^ Λ ) ) . Set 4*+V> - *ί% *f+1) = *)« for y <
fc + 1. Let bjk+l) (k-2< i < n - 1) be the elements of G such that
(a\k+l), bjk+l)) is an extra-special /?-group of order />3. We have then

(ii) (a^k+ι\ bjk+ι)) is an extra-special /j-group of order p3, for i Φ w,
(iii) [tyk+ι\a\k+ι)] = 1 for j Φ i and j < k 4- 1. Finally, put a{ =

a]n~l), bi = bjn~ι\ 1 < i < n - 1. We obtain (*). The proposition is then
proved.

(1.8) From now on, suppose that we are given a maximal elementary
abelian /^-subgroup A of G. Let us identify A with the vector space TLn

p by
the correspondence

0
1

e, =

. 0 .

where al9...9an satisfy (1.7a). Then WG(a) is the group

1

WG{A) =
1 0

0 GL(«,Zj
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Let xl9...-,xn>GHl(A)=*Hom(A9Zpy be the duals of cl9...9cn. Let
yi = /foe,, where β denotes the Bockstein operator. As it is well known, we
have

H*(A) = E(xl9...9xΛ;l)βP(yl9...9ym;2)

where E(xv..., xn\ 1) (resp. P(yv..., yn\ 2)) denotes the exterior (resp.
polynomial) algebra of n generators xl9...9xn (resp. yv...,yn) of order
1 (resp. 2) over Zp.

As in Huynh Miii [3, Chap. 2, §1], we have

(1.9) ( / ί * U ) ) W ) H % . . . , χ w ; i f

where Wn is the subgroup of GL(«, Zp) given by

1 *
1 0 *

0 1 *
1

and (E(xv..., xn\ 1) Θ P(j> l 9..., yn\ 2))Wn denotes the invariants of Wn

in E(xv..., xn; 1) β P ( ^ , . . . , j ; n ; 2).

2. A full system for the invariants of Wn in E(xv...,xn; 1 )0
P ( ^ l 9 . . . , ^ M ; 2). We shall determine a full system for the invariants
(E(xv...,xn\ 1) Θ P(yι,.- ,yn', 2))w« by use of Huynh Miii's invariants
in [5].

Let 1 < k < n be an integer. Following Huynh Mύi [5], we let

(2.1) vk = Π (Kyi + Ky2+ ••• +K-ιyk-ι +

< St. < n.Let (sv ...,sk)bea sequence of integers with 0 <> sι <
For 1 < i < k, define

(2.2) AT,

'+ιyf

yΓ yΓ
As in [5, Prop. 14.5], the product MnSι • MnSi

Lk

n~\ Here

L n - K F 2 FM
Λ 1 Z /f

has the factor
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is Dickson's invariant (see e.g. [5]). Hence we have Huymh Mύi's in-
variants

(2.3) MnSιSi_Sk = MnSχ 9_Sk(xl9 ...9xn,yl9...,yn)

— / Λ\k(k-l)/2 λ 4 λ 4 /τk-\

We have the following theorem

THEOREM 2.4. There is a direct sum decomposition of modules

= E{x1,...,xn_ι)®P(y1,...,yn_1,Vn)

θ Mn,Sι_sP(yι,...,yn_1,Vj.

Therefore the invariants x x , . . . , x n _ v y v . . . . , y H _ l 9 Vn MnSχ^ ^ \<k<
n,0 < sx < — sk=* n — 1 form a full system for the invariants of Wn in

E(xlyx29...9xn; 1) 0 P(yl9...?yn\ 2 ) .

Let 1 < k < n and let Wnk denote the subgroup of GL(n,Zp) con-
sisting of all elements

1

Particularly, Wnn_1 = Wn and Wnl = GLn p.
As a corollary of Theorem 2.4, we have

COROLLARY 2.6.

(E(xι,...,xH;l)9P(yι,...,yn;2))Wntk

= E(Xl,...,xk)(

k lines

GL(/i,ZΛ

Σ Φ Σ Θ Σ
0<sι< • -s

sP{yχ,...,yk,vk+ι,...,vn).
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Note that Wnl = GLn p, so Theorem 2.4 provides a proof of [5,Th. 15.6].

Proof. For k + 1 < / < «, let

=

1

0

0

•

1

0

0
• l

γn,k

jth-column

Since

(E(x1,...,xn;l)®P(y1,...,yn;2))K>

= Π (E(x1,...,xH;l)9P(yl,...,yH,2))tti'i

the assertion follows from Theorem 2.4.

We shall prove Theorem 2.4 by induction on n. If n = 2, W2 = GL 2 ^

and the theorem follows from [5, Th. 15.6].

LEMMA 2.7. P ( Λ , . . . , yn)
w* = P < Λ , j 2 , . . . , yH_l9 Vn).

Proof. Let / G P(yv..., yn) be an invariant of

then / has the factor

having the factor

ω = Wn.

Consequently / contains Π ω e Wn ωyn = Fw as a factor (refer to [5,13.3]).

Assume that / ' is another invariant of Wn. Let / 0 be the sum of all

terms of / ' free of yn. Then / 0 is an invariant of Wn, hence so is / ' - f0.

Since / ' — / 0 has the factor yn, it has also the factor Vn. We have

/ ' — / 0 = FM

W •/", where / " is a polynomial not having yn as factor.

Repeating the above process on / " , we conclude that yl9...,^Λ_i, FM

generate the algebra P(yv..., ^ r t ) μ ; .

Clearly >^ l9...,^/I_1, Frt are algebraically independent. The lemma

follows.
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(2.8) For later use, we need some notations. Consider Vn =

Let 0 < s < n be an integer. Then we have inductively the Dickson
invariants

Qn = Qn_ι s - V?~ι + Qζ_ι 5_1 ? 0 < s < n

where Qs s = 1. By a similar way as in 2.8, we set

and

L e t / = {/1,...,/^} w i t h ^ < ••• < ik b e a s u b s e t o f ( 1 , . . . , A I } . W e

set

Further, we denote

1 'l ι2 ιk

0
1 0 *

0 1 *
1

GL(«,Z_)

LEMMA 2.9. Let 1 < k < n and let j be an element of

E{xι,...,xn;\)®P{y1,...,yn;2)

having the form

where I runs over the subsets of order kin { 1 , . . . , n }. /// is an invariant of
Wm9 then

(a) // is an invariant of Wn, for all I such that w e / . Furthermore, if
k = 1, thenf^ contains Ln_x as a factor,

(b) //// = 0 for all ϊ such that w e / , then ff is an invariant of Wn, for
allL
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Proof. Let ω = (ω / 7 ) be an element of Wn, we have

, 1 < i < n,

Then / has the form

This implies that ω// = //, hence // is an invariant of Wn.

For the case k = 1, let 1 < m < n - 1 be an integer and ω = 1 +

λi εi« + + λ w _ 1 ε w _ 1 / l + εm be an element of Wn9 where λ, e Z^ and

ε,7 denote the matrix with 1 in the (/, y)-position and 0 elsewhere. By

comparing the coefficients of xm9 we have

+ + λ w . 1 j ; m . 1 + ym)

Put j m = ~ ( λ l Λ + •-- +λm_1 -y, I I_1),wehave

hence fn contains ym + Xxyx + + λm_ιym_ι as a factor. Consequently

fn contains Ln_x as a factor. The lemma is proved.

LEMMA 2.10. If 0 < sx < < sk < n - 2, we have

k

Vn = Mns - Σ ( - l ) * * ' ^ , * ! s skn-l'Qn-lssk K

wp to a sign.

~~ Mn,Sl,...ysk L \ l) Mn,s1,...,sn...,sk,n-l ' Vn-l,s

Proof. The first relation was proved in [5, Lemma I 4.12]. The second

is a direct consequence of the first by permuting 1 and n.

LEMMA 2.11. If 0 < sλ < < sk < n - 2, we have
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where F{tχ tk) are elements of P(yv..., yn) and h e E(xv..., xn_λ)

Proof. Put

u- Π

then J^' = Fw'_χ f/. By Lemma 2.10, we have

k

V""lj iW
1 = 1

= M M f K,

k

+ Σ(-l)^X,Sl,...,S/,...,S,,n-

up to a sign.
Since Vn contains U as a factor, it remains to prove that β n _ l f J

β^-x,, has U as a factor. This is the fact by noting that

for any λ i ^ Zp, λn Φ 0. The lemma is proved.

LEMMA 2.12. Let 1 < k < n and f be an element of

given by

f =

then f contains Vn as a vector if and only if s o does every f ^ S k ) .

Proof. By definition of Mns^ s^ we have
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where Σ, denotes the summation over the subsets / of order k in
{1, . . . . , * - 1}. Put yn = \xyx + ••• + λn_1yn_ι. For each /,
fiiyv > yn-v λ i Λ + +λw_1j>w_1) must be equal zero. Then ft has
Vn as a factor. Consequently

0<Si< -" <sk

also contains Vn as a factor.
Let 0 < sx < "- < sk = n - I and sk+1 < < $„_! be its com-

plement in {0 , . . . , n - 2}, we have

* X2 ' ' ' Xn-l^n-lfsly...,sk

by (2.3). Since the left side is equal zero for yn = \xyx + +λJ I_1 <yn_1,
so is fSι Sk. Hence fSltmm%9Sk contains Vn as a factor. The lemma is proved.

LEMMA2.13. Let! < k < nand

f= Σ ΛίM ,Λ JΛ»

be an element of E(xv..., xn; 1) 0 P(yv..., >>„; 2), wΛer̂  g ώ ΛAI element
of E(xl9...,xmr_ι)9P(yl9...9yΛ). / / / = 0 *Ae* g = 0 αw//^...^ = 0
/or ^αcΛ 0 < sx - - sk = π — 1.

Proof. Let g = Σ/Jc/g/( j x , . . . , >>„), where / runs over the subsets of
order k of•_•{!,..., n — 1}. We have

For each /, the coefficient of JC7 xn in g Mnn_1 is ( - l ) π l g / ^ n - i
Hence g, — 0. Then g = 0 and

/- Σ J#.Λ.....*Λ.....* - o.

For 0 < 5X < < sk = w — 1, let sk+1 < < sM be its complement
in { 0 , . . . , n — 1}, we have

then /^ SA = 0. The lemma is proved.

Let k be an integer with 2 < k < n and let / be an invariant of Wn

having the form
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where / runs over the subsets of order k in {1,...,«}. We write

(2-14) / -

where Σ' (resp. Σ") denotes the summation over the subsets of order
k — 1 (resp. k) in {2,..., n - 1, n}, and in the first summation / is given
by / = / U {1} for each / containing 1. We set

G-Σ'tjfi
then G is an invariant of Wn'_v

Now, we suppose that Theorem 2.4 is true for Wn__v We have then

(2.15) G = Σ K-i+......t_ιg*......t_ι+Σxjgj
0<sx< •- <sk_ι = n-2 J

where g S ι S k ι and gs are the invariants of W^_x in P(yv . ..,.)>„) and
Σ 7 denotes the summation over the subsets of order k - 1 in {2,...,
n - 1 } .

LEMMA 2.16. AllgSγ Sk ^ in (2.15) are invariants of Wn.

Proof. Clearly all g5χ Ski are invariants of Wn'_x. We need only
p r o v e that gSι Ski = axgs^. ^_ χ with W l = 1 + ε l ι r We have

Λ, . •, Λ) + Σ ( 2 )^/1/(Λ, , Λ)
where Σ ( 1 ) (resp. Σ ( 2 )) denotes the summation over the subsets of order k
in {1,..., n — 1} (resp. {2,..., n - 1, n} such that n e /) . By Lemma
2.9, each 1Λ with / in Σ ( 2 ) is an invariant of Wn. Hence

Then

(1) 0=f-ωJ

Σ *iA/«-i,ίl
••• <sk^ι = n — 2
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where Σ ^ denotes the summation over the subsets of order k in {1, . . . ,

n — 1}. By multiplying (1) by M'n_x w _ 2 , we obtain /^ = 0 for each K, by

(2.3). Let 0 < sι < < sk_x = n —2 and sk < sk+1 < < sn_λ be

the ordered complement in {0,1,...,w - 2}. By multiplying (1) by

M^_lSk Sn ^ according to (2.3), we obtain

The lemma is proved.

Lemmata 2.7-2.13 are obtained by a similar way as in [5]. The

following is crucial in the determination of the invariants of Wn.

LEMMA 2.17. Let k be an integer with 2 < k < n and f be an element of

E(xv>.., xn; 1) Θ P(yv..., yn\ 2) given by

where I runs over the subsets of order k in { 1 , . . . , « } such that {1, n} € I.
If f is an invariant of Wn, then f can be decomposed into the form

/ = Σ Mn^_SkfSi_Sk + h
0<sι< " - <sk = n-l

where all fSχ % are invariants of Wn in P(yv...,yn) and h is an element

ofE(xv.. /I"x lx) 9 P(yv..., yH_l9 Vn).

Proof. We write

as in (2.14). Set F = Σ"xffr, then F is an invariant of Wή_γ, and we have

the decomposition

0<sι< • <sk = n-2

where FSι Sk and Ff are invariants of Wn'__v and Σf denotes the summa-

tion over the subsets of order k in {2,...,n — 1}. As in the proof of

Lemma 2.16, one can see that all Fs s are invariants of Wn. Further-

more, we can assume that all Fn where / occurs in Σ 7 , and all fn with

1 G / , have yn as a factor. Hence they obtain V"-\ as a factor.
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Let ωx = 1 + ε l n. We have

± Σ
0<s1< <

Hence

0=/-ω1/=±

Since F, and /7 have K ^ as a factor, F7 — ωλFj and /7 — ω!/, contain
Vn'_λ as a factor. By Lemma 2.12, FSii Sk also contains Vr^_1 as a factor.
Then we have

J JLi IVΛn-lyslJ...ysk

yn-lΓsι,...,sk

0<sι< -" <sk = n-2

I

By Lemma 2.11, / has then the form

/ = Σ Mmtl sJSι_ Sk(yi2,yn) + Σ '"x.h,
0

where ΣA// denotes the summation over the subsets of order k in ( 1 , . . . ,
n-l).

Let ω be an element of Wn. We have

By Lemma 2.13, we have/5i Sk — ωfSi 5jt = 0 and hf - ωhf = 0. Hence
fSι Sk and hj are invariants of Wn. The lemma is proved.

The proof of Theorem 2.4 will be completed by the following

LEMMA 2.18. Let k be an integer with 1 < k < n and f be an element of

E(xv..., xn; 1) » P(yv..., yn\ 2) given by
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where I runs over the subsets of order k in { 1 , . . . , n}. If f is an invariant of
Wn, then f can be decomposed into the form

f = Σ Mn^...,SkfSι,..., J>Ί> > Λ) + h

0<sλ< <sk = n — 1

where all fSχ Sk are invariants of Wn, and h is an element of
E(xl9..., x JΊ)"

Proof. If fc = 1, we have / = x ^ + +xnfn. By Lemma 2.9, /„
contains Ln_x as a factor

Λ = Ln-ιS

with some invariant g of Wn in P(yv..., yn). Then

Hence the lemma is proved for the case k = 1.
Next we consider the case 2 < k < n. As in the proof of Lemma 2.16,

/ has the form

<sk_ι=n — 2

and all g $ are invariants of Wn by Lemma 2.16. Let 0 < sx <

< sk_λ = n — 2. By definition of M m .,sk_l9n-ι w e ^

where Σ7 denotes the summation over the subsets of order k in {2,..., n}.
Then / has the form

/ L-4 n,sl*....,sk_i,n — los1,...ySjc_l

where Σ(3)xff/ satisfies the conditions of Lemma 2.17. The lemma is
proved.

3. The restriction homomorphίsm. Let G be an extra-special p-
group of order p2n~ι (n > 2). Let A be a maximal elementary abelian
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/ -subgroup of G as in (1.8). We are going to apply the invariants of Wn to
prove the main theorem of this paper as follows.

THEOREM 3.1. (a) JfG = EH_lt then

lmRes(A,G) = H*(A)Wc(A)

= E(x1,...,xm_1)9P(y1,...,yH_1,Vn)

e Σ φ Σ ®Mn,Sι sP(y1,...,yn-1,vn).
k = l 0<s1< - - <sk = n-l

(b) IFG = Mn_v then

LEMMA 3.2. The elements xiy yi91 < i < n, and Vn are in ImRes(^4,G).

Proof. This lemma has been proved by Tezuka-Yagita in [9]. For Vn9

Tezuka and Yagita had used the Chern class of a complex representation
of G. Here we give another proof by use of the norm map in Evens [1]. Let
^ Γ = .yΓZ(G) _̂  c be the norm map. By [1, Th. 2], we have

Rcs(A,G)jr(yn) = Vn.

LEMMA 3.3. For 0 < sx < < sk = n — 1, there exist εi = 0,1;
ti — 1 , 2 , 3 , . . . such that

up to a sign, where &ι are the Steenrod operations.

Proof. Let {il9...Jk), {i[9...,ι^} be respectively two subsets of
order k and k' in {0,1,..., n — 1} with ix < < ik, i[ < < i'k..
Let us define the relation

{ίi,...,/*} ^ [iί'-^'k'}

if one of the following conditions is satisfied:
— k < k'9

—if k = k\ then there exists an integer 1 < m < k such that im < ϊm

a n d is = i's f o r m + 1 < s < k, u n l e s s { i v . . . , i k } = { i { , . . . , i ' k } .
The set ^( {0 ,1 , . . . , n - 1}) is then totally ordered. The lemma will

be proved by descending induction on {sv...,sk}.
First, we have Mnl2,...,w-i = ±#Wπ,b,i,...,«-i up to a sign. Assume

inductively that the lemma holds with {'sl9...9sk). Let s[,...,.ψ be the
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preceding element of{sl9...,sk}. We have

- i f lc' < K the MnA_s,, = βMnAs[_s^
—if k' = fc, then there exists 0 < m < k such that s'm < sm and

s't = st for m + 1 < t < k. Hence

The lemma is proved.

Let Z = Z(G). We have the following commutative diagram of group

extensions

(3.4) 1 -* Z -* G -* G/Z -» 1

II u u
(3.5) 1 ^ Z ^ A -+ A/Z -+ 1

Let A' = A/Z be identified with the subgroup Z ^ 1 of A. The

central group extension (3.5) becomes

(3.5)' \^Z-*A-*A'-*\

corresponding to the trivial cohomology class.

Let £*!,..., an, bv..., bn_ be the elements of G satisfying Prop. 1.7,

such that al9...,an correspond to the canonical basis of A as in (1.8).

Then {axZ,...,an_ιZ,bxZ,...,bn_ιZ} form a basis of G/Z. Let us
identify G/Z with Zln~2 by the correspondence

*, β

0

0

< i,

0

. 0 .

Λ + / - 1.

For / > «, let xi+ι be the dual of eέ over Zp and yi+ι = βxi+v For ι < n

(resp. i = Λ), the element x, G H\A) can be identified with the dual of ei

(resp. c G Z) over Z^. We have then

H*(G/Z) = £ ( * ! , . . . , JC Λ - 1 , J C Λ + 1 , . . . , x2ιi-i; ! )

and H*(Z) = £(xw; 1) 0 P ( Λ ; 2).

In Pham Anh Minh-Huynh Mύi [4; Lemma 2.2], we have proved

LEMMA 3.6. Let f ^ H\Zn

p) be represented by a 2-cocyclef: Zn

p ® Zn

p

-> Zp. Then we have
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where

«/= Σ/(*,->*,*) and βtj = f(ei>ej)-f(ej>e,)
k = l

From this lemma, one can see that the cohomology class z corre-
sponding to the extension (3.4) is

(3 7) y i + * Λ + 1 + XlX" + 2 + + X«-1X2«-1 i f G = Mn-\

X* + X * + * * " + * * - l i f G = £ «-l

via the isomorphism (jcΛ)*: H2(G/Z, Z) s H2(G/Z, Zp).
Consider the Hochschild-Serre spectral sequences of the central exten-

sions (3.4) and (3.5)'. Let T: H*(Z) -> H* + ι(G/Z) denote the transgres-
sion as usual. From [2; Chap. Ill, 3], we have

wn = zG H2(G/Z).

LEMMA 3.8. //G = M^_l9

Proof. Since AnnH*(A,/C)(τxw) = 0, we have

E3(Z9G) = //*(G/Z)| ( T J C r t,^ } 0 τp[yn]

(see e.g. Pham Anh Minh-Huynh Mύi [4]).
The inclusion map A <-> G gives us the corresponding map

EJZ,G) - EJZ,A) = £2(Z,>1) = H*(A) β //

with image in 7/^(^0 Θ Z^[ jM]. Then

by Theorem 2.4. The lemma is proved.

The above lemma concludes the part (b) of Theorem 3.1. The follow-
ing completes the proof of 3.1(a).

LEMMA 3.9. If G = En_v then Mrt 0 1 /2_1 = xl9..., xn is an element
of ϊmRes(^4,(j), hence so are the elements Mns v 0 < sλ < < sk

= n - 1.
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Proof. Since xx - x2 xn_1 e Ann ff*(G/Z)(τx n ) , we have

x1 x2 xΛ_19x,eEZ-ι*(Z9G)

(see e.g. Pham Anh Minh-Huynh Miii [4]).
Consider the morphism of spectral sequences induced by the inclu-

sion map (A,G) *-» (G, Z). We have the commutative diagram

F"-ιHn(G) -* EZrι*(Z,G)

(3.10) I if

Fn~ιHn{A) -+ E^l\Z,A).

Here FΉ*{G) and FΉ*(A) are Hochschild-Serre filtrations correspond-
ing to (3.4) and (3.5)'.

Let m be an element of Fn~ιHn(G) such that

M e F"ιH»(G) ~Xl-x2 xH_λ ® xn e= E^(Z9G).

From the diagram (3.10), we have

Res(Λ,G)M = xx - x2 xn + FnHn{A).

Since F"Hn(A) = Hn(A') c ImRes(Λ,G) by Lemma 3.2, the element

*i *2 """ •*« ̂ e s t o ImRes(^4,G).
By Lemma 3.3, all Mn s s are elements of ImRes(^4,G). The

lemma is proved.
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