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MODULAR INVARIANT THEORY AND
COHOMOLOGY ALGEBRAS
OF EXTRA-SPECIAL p-GROUPS

PHAM ANH MINH

Let W, be the group of all translations on the vector space Z,'.
Every element of W, is considered as a linear transformation on Z;, i.e.
W, is identified to a subgroup of GL(n,Z,). We have then a natural
action of W, on E(x,,...,x,; 1) ® P(y,,...,¥,; 2). The purpose of this
paper is to determine a full system of invariants of W, in this algebra.
Using this result, we determine the image ImRes(4,G), for every
maximal elementary abelian p-subgroup 4 of an extra-special p-group
G.

Introduction. Let G be a finite group and Z, be the prime field of p
elements. Let us writte H*(G) = H*(G,Z,) (the mod p cohomology
algebra of G).

If p = 2, the cohomology algebras of all extra-special p-groups were
determined by Quillen [7]. We are interested in the case p > 2. So from
now on, we shall assume this condition through the paper. For the
extra-special p-groups of order p3, their integral cohomology rings have
been computed by Lewis in [3], and their mod p cohomology algebras are
determined recently in Pham Anh Minh-Huynh Mui [4] and Huynh Mui
[6]. For an arbitrary extra-special p-group, Tezuka and Yagita had
computed H*(G)/ V0 in [9]. As observed in [6], the ideal YO of the
nilpotents in this algebra is quite complicated, so it seems difficult to
determine their nilpotent elements.

Let 4 be a maximal elementary abelian p-subgroup of an extra-spe-
cial p-group G. The inclusion map A = G induces the restriction homo-
morphism Res(4, G): H*(G) > H*(A)"Y, where W;(A) =
N;(A)/C;(A), the quotient of the normalizer by the centralizer of 4 in
G. The purpose of this paper is to determine the image Im Res( 4, G) for
every A. We shall see that the nilideal of Im Res( A4, G) is complicated, so
our results will be needed in the study of the ideal VO of H*(G).

This paper contains 3 sections. In §1, we consider maximal elemen-
tary abelian p-subgroups of an extra-special p-group following Quillen [7]
and Tezuka-Yagita [9]. By means of the modular invariant theory devel-
oped by Huynh Mui [5], we determine in §2 a full system for the
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invariants of W;(A) in H*(A). Using the results in §2, we determine
Im Res(A4,G) in §3. The main results of this paper are Theorem 2.4 and
Theorem 3.1.

I would like to acknowledge my sincere gratitude to Prof. Huynh Mui
for his generous and inspiring guidance. I am also deeply grateful to Prof.
Ngo Thé Phiét for many valuable discussions.

1. Extra-special p-groups and maximal elementary abelian p-sub-
groups. Let G be a p-group. As usual, let [G,G], Z(G) ®(G) = G? -
[G, G] denote the commutator subgroup, the center and the Frattini group

of G respectively. G is called an extra-special p-group if it satisfies the
following condition

(1.1) [G,G] = ®(G) = Z(G) = Z,.
Equivalently, G is an extra-special p-group if we have the group extension

1.2) 02,565V -0

where V' is a vector space of finite dimension over Z, and i is an
isomorphism from Z, onto the center of G. (For details or extra-special
p-groups see D. Gorenstein, Finite Groups, Harper & Row, New York,
1968, especially §5.5.)

As well known, the dimension of V = G/Z(G) is even. If dimV = 2,
G is isomorphic to one of the following groups

E =<a,b|a" = b? = [a,b]p = [a, [aab]] = [b9 [aab]] = 1>’
M= (a,blap2 =b?=1,b"1'-ab= a””).

Generally, if dim¥V = 2n — 2(n > 2), then G is isomorphic to one of the
following central products

E,_ =E--- -E — 1 times
(1.3) n—1 (n 1me )
Mn—l = n-2" M’

Let B: G/Z(G) X G/Z(G) — [G, G] be the map defined by
B(u,v) = [u',v’] for u,v € G/Z(G)
where u’, v" mean representatives of u and v respectively. One can easily
see that B is well-defined. Identifying G/Z(G) = V = Z2"~? and [G, G]
= Z,, B becomes the alternating form V' X V — Z , defined by

n—1

(1.4) B(u,v) = E Upj—1 " Uy — Uy " Uy

i=1
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for
u=(uy,...,u5, 5), v="_(vy,...,0,,_,) EV.

A subspace W of V is said to be B-isotropic if B(u,v) = 0 for all
u,vEW.
In Quillen [7; §4] and Tezuka-Yagita [9; 1.7 and 3.4}, we have

LEMMA 1.5. There is a 1-1 correspondence between maximal abelian
p-subgroups A of G and maximal B-isotropic subspaces W of V. The
dimension of any maximal B-isotropic subspaces W of V is just n — 1.

From this lemma, we have

LEMMA 1.6. Any maximal elementary abelian p-subgroup A of G is of
rank n, i.e. A =7

Proof. It suffices to prove that A4 is also a maximal abelian subgroup
of G, and the result is implied from (1.5). Assume that 4 is not a maximal
abelian subgroup of G, then 4 ¢ A’, where 4’ is a maximal abelian
subgroup but not elementary of G. Let a € A’ with ord(a) = p>. Let
?,(G), B,(G) denote the subgroups of G defined by Q,(G) = {x €
G/ord(x) < p} and U,(G) = { y?|y € G}. Since |0,(G)| = p, we have
|2,(G)] = p**~? and ©,(G) is not an extra-special p-group. Hence
Z(2,(G)) 2 Z(G). Let b be an element of Z(Q,(G))\ Z(g), we have
[b,a] # 1, hence b & 4 and (A4, b) is then an elementary abelian p-sub-
group of G which contains strictly 4, a contradiction. The lemma is
proved.

PROPOSITION 1.7. Let A be a maximal elementary abelian p-subgroup
of G. Then there exist the elements a,, .. .,a,, b,,...,b,_; of G such that

(a) A ={a,,...,a,) and a, = cis a generator of Z(G)

(b) Wi (A) = (b,y,...,b,_,) whereb,=b,A,1 <i<n-1

(©Va’=a,ifi#j,a,-a,ifi=jfor1 <i, j<n-1

Proof. 1t suffices to prove that: () there exist the elements a,,...,a,,
b,,...,b,_, of G satisfying the conditions:

(a’) A =(ay,...,a,), where a, = c,

(') foreach i,1 <i <n -1, (a,;,b,) is an extra-special p-subgroup
of G of order p3,

(¢’) [b,a;]=1if i+ j, and the proposition can be obtained by
noting that W;(A4) = G/A and a; € C;(a;, b)) if i #j.
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First, let ¢;,...,c,_1, ¢, = ¢, be a basis of 4. Clearly, for1 <i<n
— 1, ¢; € G\ Z(G), so there exists an element d; of G such that [c,, d,]
# 1. Hence E; = {c;,d;) D Z(G) = ®(G) and {(¢,®(G),d,®(G)) is a
subgroup of G/®(G) of order less than p?. Then |E,| < p>. Since E, is
not abelian, we have |E,| = p> Thus E, is an extra-special p-group of
order p°. By [8, 4.17 Chap. 4], we have G-= E, - C;(E,).

Since G = E, - C;(E,), each c; (i # n) has the form

c; = c{i . dlsl . al(l)

with 0 <r, s, <p—1 and a® € C,(E,). Since [c;,¢;] = 1, s, is then
equal zero. Set a{® = ¢;, b{¥) = d,. We have 4 = (a",...,a®",¢) and
there exist the elements b, ..., bV, of G such that (a®, b} is an extra
special p-group of order p3, and [b{D, aP] = 1fori + 1.
Assume that there exists the elements a{®,...,a,, b{", ..., b%),
(1 < k < n — 1) of G such that
() 4 =(a®,...,aP,c),
(i) (a{®, b{®Y is an extra-special p-group of order p?,
(iii) [b%, 2] =1 for i # j and j < k.
For i # k + 1, a® bas the form a{® = g{®mi - a**D with0 < m, <p
and a**D e Cy((af);, bik),)). Set afiV = af®), bj('kﬂ) = b}k) for j <
k+ 1. Let b**D (k-2 <i<n—1) be the elements of G such that
(a**Y, pk+Dy is an extra-special p-group of order p>. We have then
(i) 4 = (alk*V, ... a3 ¢),
(i) (a**D, b{k*D) is an extra-special p-group of order p, for i # n,
(i) [b**D,a*k*V] =1 for j+ i and j < k + 1. Finally, put a, =
a" b b, =b""Y 1<ix<n— 1. We obtain (*). The proposition is then
proved.
(1.8) From now on, suppose that we are given a maximal elementary
abelian p-subgroup 4 of G. Let us identify 4 with the vector space Z" by
the correspondence

0
1 .

a,— e = , <1,
0

where a,, ..., a, satisfy (1.7a). Then W(a) is the group
1
1 0
W.(A4) = 0 .. € GL(n,Z,)}.
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Let x,,...,x, € H'(4) = Hom(A4,Z,) be the duals of ¢,,...,c,. Let
¥; = Bx;, where B denotes the Bockstein operator. As it is well known, we
have

H*(A)=E(x,...,x,;1) ® P(y;,..., ,;2)
where E(x,,...,x,; 1) (resp. P(y,,..., y,; 2)) denotes the exterior (resp.
polynomial) algebra of n generators x,,..., x, (resp. y,,..., y,) of order
1 (resp. 2) over Z,,.
As in Huynh Mui [3, Chap. 2, §1], we have
(1.9)  (H*(4)" = (E(xp,...,x,51) @ P(yy,..., 3,5 D)™

where W, is the subgroup of GL(n,Z,) given by

1 *
1 0 =
W, = eGL(n,Zp)
0 1 =
1

and (E(xy,...,x,; 1) ® P(yy,..., y,; 2))" denotes the invariants of W,
in E(xy,...,%,; 1)® P(yy,..., Y3 2).

2. A full system for the invariants of W, in E(x;,...,x,; 1)®
P(yys---s Ve 2). We shall determine a full system for the invariants
(E(Xpy---5%,5 1) ® P(yy,..., y,; 2))" by use of Huynh Mui’s invariants
in [5].

Let 1 < k < n be an integer. Following Huynh Mui [5], we let

(2.1) Vi= Al;[z A+ Aoy + o+ N1y + )
i P
Let (sy,...,s,) be a sequence of integers with0 < s, < --- <5, <n.
For1 < i < k, define
xl x2 . e xn
B4 34 T Yn
si—1 s~ 1 s;—1
(2.2) M, =) 2 IR 4
3 ylpsi+1 yzp:,+?. . y'fs’+l
ylpn—l yzpn—l . y:n—l
As in [5, Prop. 14.5], the product M, - M, --- M,  has the factor
Lk~ Here " - -
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is Dickson’s invariant (see e.g. [S]). Hence we have Huymh Mui’s in-
variants

(23) Mn,sl.sz....,sk = n, (xla""xn’ yl""7yn)

,,,,,

= (_l)k(k"l)/zM .. /Lk 1

n,s;

We have the following theorem

THEOREM 2.4. There is a direct sum decomposition of modules

(E(xps..,%,; 1) @ P(py,...,y: )"
=E(x},...,%,_,) ®P()’1,---’)”n—1aVn)

& Z & Z @Mn,sl ..... s,‘P(yl""’yn—l’I/n)‘
k=1 O<s;;<---<s=n—1
Therefore the invariants xy, ..., X,_1, Vis--vs Y1, V,, M, 1 <k<

n,0<s, < ---s,=n—1 form a full system for the invariants of W, in
E(x;,%5,...,%,;1) @ P(yy,..., ¥,; 2).

Let 1 < k < n and let W, , denote the subgroup of GL(n,Z,) con-
sisting of all elements

1

k lines
0

1 € GL(n,Z,).

Particularly, W, ,_, = W, and W,, = GL,, ,
As a corollary of Theorem 2.4, we have

COROLLARY 2.6.
(E(xp-5%,51) @ P(yyseens 1,3 )W, 4
= E(xl"'*,xk) ®P(y19'--,yk,Vk+la'-~’I/n)

ei@i@ h

s=k+1 O<s;<---5y=s5—-1

@Ms,s, ..... s,P()’v---,Yk’Vk+1’---’V;)~
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Note that W, , = GL, ,, so Theorem 2.4 provides a proof of [S,Th. 15.6].

Proof. Fork +1<i<n,let

1

ith-column
Since

(E(xy,...,%,;1)® P(py,..., y.; 2)) "

n o
= N (E(x...,x,31)® P(yl,...,yn,2))w"‘l

i=k+1
the assertion follows from Theorem 2.4.

We shall prove Theorem 2.4 by induction on n.If n = 2, W, = GL,,
and the theorem follows from [5, Th. 15.6].

LEMMA 2.7. P(y1,-- s Y )" = P(V1s Yas e v v s Vuo15 Va)-

Proof. Let f € P(y,,..., y,) be an invariant of W, having the factor
¥,, then f has the factor

wyn = wlnyZ + .- +wn—1nyn—-1 +yn fOI' W= (wij) € I/I/n'

Consequently f contains 1, c , wy, = V,, as a factor (refer to [S, 13.3]).

Assume that f’ is another invariant of W,. Let f, be the sum of all
terms of f’ free of y,. Then f, is an invariant of W,, hence sois f’ — f,.
Since f’ — f, has the factor y,, it has also the factor V,. We have
f'=fo=V)-f"”, where f” is a polynomial not having y, as factor.:
Repeating the above process on f”, we conclude that y,,...,y,_,, V,
generate the algebra P(y,,..., y,)".

Clearly y,,...,y,_1, V, are algebraically independent. The lemma
follows.
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(2.8) For later use, we need some notations. Consider V, =
Vi(Yis---» ¥,), We set

V;:, = I/n(yZ""’yn’ yl)

V.= I/n—l(yZ" <3 Vn-1s )’n)-

Let 0 < s < n be an integer. Then we have inductively the Dickson
invariants

Qo= (V- -+ V)"

Qn,s = Qn—l,s : V;zp_l + Q,l,,_l’s_l, O0<s<n

where Q, ; = 1. By a similar way as in 2.8, we set

Q:t—l,s = Qn—l,s(y2’ ] yn)

and
Mr:—l,sl ..... Sk = Mm—l,sl ..... sk(x27""xn; y2?"”yn)'
Let I = {iy,...,i,} withi; < --- <i, beasubsetof {1,...,n}. We
set
Xp =X X vt X
Further, we denote
1 0
1 0 =
W, = - |eGL(n,z,)).
0 1 =
1

LEMMA 2.9. Let 1 < k < n and let f be an element of
E(xp,...,x,; 1) ® P(yp,..., 5, 2)
having the form

f= ;xlfl(yl’ cees )’n)

where I runs over the subsets of order k in {1,...,n}. If f is an invariant of
W, then

(a) f; is an invariant of W,, for all I such that n € I. Furthermore, if
k =1, then f,, contains L, _, as a factor.

(b) If f; = O for all I such that n € I, then f, is an invariant of W, for
all I.
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Proof. Let w = (w;;) be an element of W,, we have

{xi 1<i<n,
wx; = .
WX+ s rw,_,X,_1 + X, i=n.
Then f has the form

f= E.xl(wfl) + x(wf;).

I+1I

This implies that wf; = f;, hence f; is an invariant of W,.

For the case k=1,let 1 <m <n — 1 be an integer and w =1 +
Ay, + oo +A, 48, 1, + &, be an element of W,, where A, € Z, and
¢,; denote the matrix with 1 in the (i, j)-position and 0 elsewhere. By
comparing the coefficients of x,, we have

S Yt Vo F A+ A Y1+ V)
+fn(y1""’yn-1’ yn + }\lyl + .- +Am—1ym—1 + ym)
=fm(y1""9yn—1’ yn)'

Put y,= —(Apyy + -+ +X,,_1 Y1), We have

SoVise e s Vet = (A + 2o X1 Pme1)s Yma1s oo Ya) =0
hence f, contains y, + A, y; + -+ +A,,_,y,_; as a factor. Consequently
f, contains L,_, as a factor. The lemma is proved.

LEMMA 2.10. If 0 <5, < -+ < s, < n — 2, we have

k
k+i
Mn—l,sl ..... s I/n - Mn,sl ..... s Z (—1) Mn,sl,...,§,,...,sk,n—1 : Qn—l,s,
i=1
and
k k+i
’ ’r __ _ _ 1 . ’
n—1,s,..., s I/n - Mn,sl ..... Sk Z( 1) Mn,sl,...,i,,...,.vk,n—l Qn-—l,s,»
i=1

up to a sign.

Proof. The first relation was proved in [5, Lemma I 4.12]. The second
is a direct consequence of the first by permuting 1 and n.

LemMA211. If 0 <5, < --- <5, < n — 2, we have

’ ’ —_ .
n—1,s,..., Sk I/n«l - E Mn,t, ..... % 'F(tl ..... t)+h
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where F,  ,, are elements of P(y,,...,»,) and h € E(x,,...,x,_;) ®
P(y15--v V)
Proof. Put
U= Aoy, + o A e A0, + 1)
\€Z,
A, #0
then V| = - U. By Lemma 2.10, we have
M;: 1.5...., Sk : I/n'—l U= Mn Spaeees S
u k+i
- Z (_1) an,s,....,E,»,...,s,‘,n—l : Q:I—l.s,-
i=1
= Mn $: §, I/n
BT k
+ Z ( 1)k+l ..... Sphenes Spon— I(Qn 1,s, - Q:l—l.s,-)
up to a sign.

Since V, contains U as a factor, it remains to prove that Q,_,  —

Q, 1, has U as a factor. This is the fact by noting that

Qn—l.si(AZyZ + - +Anyn’ y2""’yn—1) = Q:t—l,s,(yl”"’yn)

forany A, € Z,, A, # 0. The lemma is proved.

LEMMA 2.12. Let 1 < k < n and f be an element of
E(xy.eesx,31) @ P(yyy-ees Vs 2)
given by

f= z M,,...sJ

n,s;
O0<s)<---<s=n—-1

..... sk)(yl’ e yk)

then f contains V,, as a vector if and only if so does every f

Proof. By definitionof M,, ; ., we have

f=(-1)""x, Z M, A

n—1,5,...,5_
0<s;<---<s;=n-1

+ El:xlfl(yl" s Vn)
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where X, denotes the summation over the subsets I of order k in
{1,...,n—1}. Put y, = ANy, + --- +X,_,y,_;. For each I,
[i(Veeees Yoo My + -+ +A,_1y,_,) must be equal zero. Then f;, has
V, as a factor. Consequently

F = M

n-—l,sl,...,sk_lf:v, ..... Sk
O0<s;<--- <5

also contains ¥V, as a factor.

Let0<s; < --- <sy=n-1land s, ,, < --- <s5,_, beits com-
plementin {0,...,n — 2}, we have
F- Mn—l,sk+1 ..... Sp—1 = i'xl T Xyt xn—lln—l Sisenns Sk

by (2.3). Since the left side is equal zero for y, = A y; + --- +A, 1y,
contains ¥, as a factor. The lemma is proved.

..... Sk

LEMMA 2.13. Let1 < k < nand
f= Z Mn,sl ..... s,‘f:\‘l ..... sk(yl""’yk) + g

O0<s;<---<s=n—1

be an element of E(xy,...,%,; 1) ® P(y,---, Vs 2), where g is an element
of E(xy,...,%,_1)® P(y,---,),). If f=0 then g=0 and f, _ =0
foreach0 < s, --- s, =n-—1.

.....

Proof. Let g =X, x,8,(»,-.-,¥,), where I runs over the subsets of
order k of {1,...,n — 1}. We have

M, ,=0=g-M,

n,n—1-
For each I, the coefficient of x, - x, in g- M, ,_, is (-1)""'g,- L,_,.
Hence g, = 0. Then g = 0 and

f = E Mn,sl ..... skfrl Sk = 0'

-----
O0<s;<--- <s=n-1

,n—1

n

ForO<s, < --- <s;,=n-11lets,, , <--- <s, beits complement

in {0,...,n — 1}, we have
f'Mn,s,Hl s=ixl.x2‘.'xn'Ln.f\‘1

.....

then f,  , = 0. Thelemma is proved.

Let k be an integer with 2 < k < n and let f be an invariant of W,
having the form

f= lefl()’v cees yn)
I
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where I runs over the subsets of order k in {1,...,n}. We write

(2.14) f= xl(zlxjfl) + Enxlfl

where ¥’ (resp. ¥”) denotes the summation over the subsets of order
k — 1(resp. k)in {2,...,n — 1,n}, and in the first summation J is given
by I = J U {1} for each I containing 1. We set

’
G=) x,fi
then G is an invariant of W, _,.
Now, we suppose that Theorem 2.4 is true for W, _,. We have then

(215) G= E r:—l,sl,...,skﬁlgsl ,,,,, Sg—1 + ZngJ
O0<s)< -+ <s_1=n—-2 J
where g, and g, are the invariants of W,_, in P(y,,...,y,) and

Y., denotes the summation over the subsets of order kK — 1 in {2,...,
n — 1}.

LEMMA 2.16. Allg, .  in (2.15) are invariants of W,

.......

’

Proof. Clearly all g, . are invariants of W, ;. We need only
provethat g, . =a;g withe, =1+¢g, Wehave

f=xG+ Z”xlfl
= 2 ler:—l,sl,.._,xk_lgsl ,,,,, Sk-1

05S1< <sk_1=n—2

+ X%k (155 2,) + XPx1 (1,0, 3)
where X (resp. ¥®) denotes the summation over the subsets of order k
in {1,...,n — 1} (resp. {2,...,n — 1,n} such that n € I). By Lemma
2.9, each 1, with I in 2@ is an invariant of W,. Hence

—_— ’
w f= Z (len—1,:,.,...,sk_“*’13(s‘ ..... P

0<s)<-+-<s_,=n-2
ilen—l,sl,.A.,.\'k_lwlg(sl ..... s,‘_l))

+ X Ox00h + 3P, - S INUN 2 Px,.
Then
(1) 0=f-of

= Z ler:—l,sl,...,sk_l(gsl ,,,,, Se1 wlgsl ..... 5/(—1)

0<s;< -+ <s_y=n—2

X Zfolé(ylv---’yn)
K
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where ¥ denotes the summation over the subsets of order £ in {1,...,
n — 1}. By multiplying (1) by M,/_, ,_,, we obtain fg = 0 for each K, by
23).Let0<s;< --- <sp,_;=n—2and s, <5, < --- <s,_; be
the ordered complement in {0,1,...,n — 2}. By multiplying (1) by
M’ _,» according to (2.3), we obtain

n—=1,84,...,8,

gsl ..... Sk -1 - wlgsl = O'

The lemma is proved.

Lemmata 2.7-2.13 are obtained by a similar way as in [5]. The
following is crucial in the determination of the invariants of W,.

LEMMA 2.17. Let k be an integer with 2 < k < n and f be an element of
E(xl"”’xn; 1) ® P(yl"--,yn; 2) given by
f= lefl(yl""’yn)
I

where I runs over the subsets of order k in {1,...,n} such that {1,n} ¢ I.
If f is an invariant of W,, then f can be decomposed into the form

f= Z Mn,sl ..... skj:vl ..... Sk + h
0<sy<--- <s=n-—1
where all f, . are invariants of W, in P(y,...,y,) and h is an element

Of E(Xyy.-oyX;-1) ® P(Y1seevs Vo1, V)

Proof. We write

f= Z”xlfl + xl(Z,fol)

as in (2.14). Set F = ¥" x,f,, then F is an invariant of W,”_,, and we have
the decomposition

F= X Mo LE )

O<sy< -~ <s=n—2 R
+ XX F (-5 )
1

where F,  and F, are invariants of W,”_,, and ¥, denotes the summa-
tion over the subsets of order k in {2,...,n — 1}. As in the proof of
Lemma 2.16, one can see that all F; .  are invariants of W,. Further-
more, we can assume that all F,, where I occurs in ¥,, and all f,, with
1 € I, have y, as a factor. Hence they obtain ¥V’ ; as a factor.
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Let w, =1 + ¢,. We have

= ’
wlf_ Z n—1,sy,..., skF;I ..... S
O<s,<---<s;=n-2
i E Mn—l,s, ..... skF;, ..... S
O<s)<---<s;y=n-2

+ Y x0,F + xl(z,xjwlfl)-
I
Hence
0 =f— wlf= + Z Mn—-l.s, ..... skE\‘l ..... Sk

0<s)<---<s;=n-2
+ ZXI(FI - o F)+ xl(Z’xj(fz - “’1f1))-
I

Since F; and f, have V,”, as a factor, F; — w,F; and f; — w,f; contain
V,_1 as a factor. By Lemma 2.12, F; . also contains V,”_, as a factor.
Then we have

..... s

f= Z Alr:—l,sl ..... skI/Il’—ll:;: ..... Sk
O0<s)<---<s;=n-2
+ Zx,F, + xl(z’x,f,).
I
By Lemma 2.11, f has then the form
f = Z Mn,s, ..... s,(fsl ..... sk(ylz’yn) + Z " xlhl
O<s;<---<s,=n-1

where ¥.”” denotes the summation over the subsets of order k in {1,...,
n—1}.
Let w be an element of W,. We have
O0=f-owf= E mxl(hl - ‘*’hl)
+ E Mn,sl ..... sk( f:\'l ,,,,, Sk - wfsl ,,,,, sk)'
O0<s;<---<s=n—1

By Lemma 2.13, we have f, s = 0and h; — wh, = 0. Hence
fs......s, and h; are invariants of W,. The lemma is proved.

Sk—w-‘n

.....

The proof of Theorem 2.4 will be completed by the following

LEMMA 2.18. Let k be an integer with 1 < k < n and f be an element of
E(xb--"xn; 1) ® P(yb._',yn; 2) given by

f= z,:xlfl(yl’- s V)
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where I runs over the subsets of order k in {1,...,n}. If f is an invariant of

W, then f can be decomposed into the form
f= Z Mn.sl ..... skfs, ..... sk(yl”"’yn) +h
O<s;<---<s=n-1

where all f, . are invariants of W,, and h is an element of
E(xyy...3%,_ 1) ®P(yi,-e s Vs Vao)-

Proof. If k =1, we have f= x,f, + --- +x,f,- By Lemma 2.9, f,
contains L,_, as a factor

fn = Ln—lg
with some invariant g of W, in P(y,,..., y,)- Then
f= xlfl + - +xn—1fn-1 + ann——lg

= (_l)n_an,n—lg + h.

Hence the lemma is proved for the case k = 1.
Next we consider the case 2 < k < n. As in the proof of Lemma 2.16,
f has the form

f= xl Z Mr:—l,sl,...,sk_lgsl ..... Sk—1

O<s;<---<s_,=n-2

+ 2% (yyseo o 3,) + 2% (v 0)

and all g, .  areinvariants of W, by Lemma 2.16. Let 0 <s; < ---
< s,y = n — 2. By definitionof M, . ., wehave

’ = ’
le”_lvsl""’sk—l - Mn.sl,...,sk_l,n-—l + lehl(yl’ LR yn)
I

where ¥; denotes the summation over the subsets of order k in {2,...,n}.
Then f has the form

f Z Mn.sl‘...,sk_l,n—-lgsl ..... Sg—1

O0<s;<---<$§_y=n-2

+ 2(3)xlfl,(yl’- LR yn)

where X¥x,f; satisfies the conditions of Lemma 2.17. The lemma is
proved.

3. The restriction homomorphism. Let G be an extra-special p-
group of order p2"~! (n > 2). Let A be a maximal elementary abelian
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p-subgroup of G as in (1.8). We are going to apply the invariants of W, to
prove the main theorem of this paper as follows.
THEOREM 3.1.(a) If G = E,,_,, then
ImRes(A4,G) = H*(4)""
= E(xl"“’xn—l) ® P(yl,...,y,,_,,V,,)

®) & )y e M,,

k=1 0<s;< - <sg=n-1
(b) IFG=M,_,, then
ImRes(4,G) = E(xy,...,%,_1) ® P(y1,--s Yur1s V).

s,(P(y17""yn—1’V)'

.....

LEMMA 3.2. The elements x,, y;,1 < i < n, and V, arein ImRes( 4, G).

Proof. This lemma has been proved by Tezuka-Yagita in [9]. For V,
Tezuka and Yagita had used the Chern class of a complex representation
of G. Here we give another proof by use of the norm map in Evens [1]. Let
N'=N7y-¢c bethe norm map. By [1, Th. 2], we have

Res(4,G) A (y,) = V,.

LEMMA 33. For 0 <s, < --- <s,=n—1, there exist ¢ = 0,1;
t,=1,2,3,... such that
Mn,sl ..... Sk = Bfo_@hﬁfx e "@IIBEIMn,O,I,...,n-J

up to a sign, where P' are the Steenrod operations.

Proof. Let {iy,...,i.}, {i{,...,i;} be respectively two subsets of

order kK and k" in {0,1,...,n — 1} with i; < -+ <, i{ < --- <i}.
Let us define the relation
{igyeoesig} < {if, o it}
if one of the following conditions is satisfied:
—k < k',

—if k = k’, then there exists an integer 1 < m < k such that i,, < i,, .
and i, =i form+1<s < k,unless {iy,...,i,} = {if,..., i}

The set 2({0,1,...,n — 1}) is then totally ordered. The lemma will
be proved by descending induction on {s,,..., s, }.

First, we have M, ;, ., .= +BM,,, , , up to a sign. Assume
inductively that the lemma holds with {s,,...,s,}. Let s{,...,s; be the
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preceding element of {s,,..., Sk} We have

—if k' <k,theM, ., . =BM,,

—if k' =k, then there exists 0 < m < k such that s, <s, and
s; =s,form + 1 <1t < k. Hence

The lemma is proved.
Let Z = Z(G). We have the following commutative diagram of group
extensions

(3.4) 1 - Z - G - G/Z - 1
Il U U
(3.5) 1 » Z - 4 - A4/Z - 1

Let A’ = A/Z be identified with the subgroup Z7*' of A. The
central group extension (3.5) becomes
(3.5) 15Z->4-4 -1
corresponding to the trivial cohomology class.

Let a,,...,a,, by,...,b,_ be the elements of G satisfying Prop. 1.7,
such that a,,...,a, correspond to the canonical basis of A4 as in (1.8).
Then {a,Z,...,a,_,Z,b,Z,...,b, ,Z} form a basis of G/Z. Let us
identify G/Z with Z2"~? by the correspondence

M~ ] M A~ ]

0 0
a,—e = 1 <i, b,.r-->en+i__ll' <n+i-1.
[0 0]

For i > n, let x,,, be the dual of e, over Z, and y,,; = Bx, .. Fori <n
(resp. i = n), the element x, € H 1(A) can be identified with the dual of e,
(resp. c € Z) over Z,. We have then

H*(G/Z) = E(Xy,..., Xy 1y Xps1r---2X2n_15 1)
®P(Yyseees Yuets Yus1re -+ Yan-13 2)

and H¥(Z) = E(x,; 1) ® P(y,; 2).
In Pham Anh Minh-Huynh Mui [4; Lemma 2.2}, we have proved

LEMMA 3.6. Let f€e H 2(Z;) be represented by a 2-cocycle f: Z, ® Z,
— Z,. Then we have

n
= Zaiyi+ E Blj i _[
i=1

1<i<j<n
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where

p—1
a; = Z f(e,.,e‘.k) and B;j =f(ei’ej) _f(ej’e,)-
k=1
From this lemma, one can see that the cohomology class z corre-
sponding to the extension (3.4) is

(3.7) Nt XX, XX, X, Xy, HG=M,
X Xpo1t XoX, 0+ o+, X5, fG=E,_

via the isomorphism (x,)*: H(G/Z,Z) = H(G/Z,1,).

Consider the Hochschild-Serre spectral sequences of the central exten-
sions (3.4) and (3.5)’. Let : H*(Z) » H**'(G/Z) denote the transgres-
sion as usual. From [2; Chap. III, 3], we have

>, =z € H*(G/Z).

LEMMA 38. If G = M, _,, then
ImRes(4,G) = E(x;,..., %, 1) ® P(y1s--es Vuo1>V,)-

Proof. Since Ann gy 6,(7x,) = 0, we have
E3(Z’G) = H*(G/Z)l("xm/g“'xn) ® Zp[yn]

(see e.g. Pham Anh Minh-Huynh Mui [4]).
The inclusion map 4 < G gives us the corresponding map

E(Z,G) > E_(Z,A)=E,(Z,A)=H*(4)® H*(Z)
with image in H*(4") ® Z [ y,]. Then
ImRes(4,G) C (H*(4) ® Z,[5,])"

= E(xl""’xn—l) ®P(y1”"’yn——1’l/n)

by Theorem 2.4. The lemma is proved.

The above lemma concludes the part (b) of Theorem 3.1. The follow-
ing completes the proof of 3.1(a).

LEMMA 39. If G=E, |, then M, ,, , | = Xy,...,X, is an element
of ImRes(A4,G), hence so are the elements M, 0<s;< -+ <5y
=n-—1

----- S



MODULAR INVARIANT THEORY 363

Proof. Since x, - x5+ ++* -X,_; € Ann ., 7(7x,), we have
Xyt Xyttt Xy ® Xy € E;—l’l(Z’G)
(see e.g. Pham Anh Minh—Huynh Mii [4]).
Consider the morphism of spectral sequences induced by the inclu-
sion map (A4, G) = (G, Z). We have the commutative diagram

F"H"(G) - E*'YZ,G)
(3.10) l Lf
F''H"(4) - E"'(Z, A).
Here F'H*(G) and F'H *( A) are Hochschild-Serre filtrations correspond-
ing to (3.4) and (3.5)".
Let m be an element of F”~H"(G) such that
Me Fn—lHn(G) i X - Xyt 'xn—l ® Xn € Eo':)_l’l(Z’G)’
From the diagram (3.10), we have
Res(4,G)M = x; - x, -+ x, + F'H"(A).
Since F"H"(A) = H"(A’) C ImRes(A4,G) by Lemma 3.2, the element
X, X, -+ x, lies to ImRes(4, G).
By Lemma 3.3, all M,
lemma is proved.

are elements of ImRes(A4,G). The

..... S
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