## TANGENTS TO A MULTIPLE PLANE CURVE

### SHELDON KATZ

# The limiting behavior of the tangents and the flexes are computed as a reduced plane curve degenerates into a multiple plane curve.

**0. Introduction.** In this paper, we consider the degeneration of a reduced irreducible plane curve to a multiple plane curve. We study the associated degeneration of tangent lines by viewing a line as a linear imbedding  $\mathbf{P}^1 \hookrightarrow \mathbf{P}^2$  and studying deformations of this imbedding. We compute the limiting behavior of the dual curve and the flexes. A similar computation yields the limiting behavior of the bitangents; this will appear later in a separate paper. The main result is stated as Proposition (2.1).

The author takes this opportunity to thank Professor William Fulton for introducing him to this problem.

1. The dual of a multiple curve. Let  $C \subset \mathbf{P}_{\mathbf{C}}^2$  be a smooth curve of degree d.  $C^* \subset \mathbf{P}^{2*}$  will denote the dual curve of tangents to C.

Let *n* be a positive integer,  $n \ge 2$ . Let

$$(1.1) G^n + tF = 0$$

be a generic pencil of plane curves, with deg G = d, deg F = nd. We will freely abuse notation by using the same letter to denote a polynomial or its zero locus. Here, generic means that G, F are smooth, and meet transversely at their  $nd^2$  points of intersection, the base points of the pencil.  $G^*$  is assumed to have only nodes and cusps as singularities. The pencil (1.1) will be denoted by  $C_t$ . Let  $C_0^* = \lim_{t \to 0} C_t^*$ . The goal of this section is to prove the following.

(1.2) **PROPOSITION.**  $C_0^*$  is the union of  $G^*$  with multiplicity n, together with the  $nd^2$  pencils of lines through the base points, each pencil having multiplicity (n - 1).

**REMARKS.** (1) Proposition (1.2) is quite elementary. It is not much more difficult than the case n = 2, d = 1 implicitly worked out in [4]. The

#### SHELDON KATZ

value in this method of proof lies purely in its expository value as a prelude to §2.

(2) By a standard formula for plane curves ([2], for example) deg  $C_t^* = nd(nd - 1)$  for  $t \neq 0$ , while deg  $C_0^* = nd(d - 1) + (n - 1)nd^2 = nd(nd - 1)$ .

The techniques used are a variant of the techniques of [3], which were inspired by the work of Clemens. Given a line  $L \subset \mathbf{P}^2$ , we look for a family of lines  $L_s$  with  $L_0 = L$  and  $L_s$  tangent to  $C_t$  with  $t = s^r$  for a positive integer r. Then L would correspond to a general point of a multiplicity r component of  $C_0^*$  with cyclic local monodromy.

We choose an isomorphism  $\alpha: \mathbf{P}^1 \to L$  given by three homogeneous linear forms  $\alpha = (\alpha_0(u, v), \alpha_1(u, v), \alpha_2(u, v))$ , where (u, v) are homogeneous coordinates on  $\mathbf{P}^1$ . We single out  $(1, 0) \in \mathbf{P}^1$  as the candidate for a point of tangency of L with  $C_0$ . We look for an extension of  $\alpha$  to  $\alpha(s)$ , holomorphic in s for  $|s| < \varepsilon$ , with  $\alpha(0) = \alpha$ , and satisfying

(1.3) 
$$(G^n + s'F) \circ \alpha(s) \equiv 0 (v^2) \text{ for } |s| < \varepsilon.$$

We attempt to solve (1.3) by power series in s. We show that this is possible when either L is tangent to G or when L passes through a base point. In the former case, for general L, we must take r = n, while in the latter case, we take r = n - 1. By consideration of degrees, i.e. Remark (2), no other components are present, proving Proposition (1.2).

We now fix some more notation. Let  $P_k$  denote the vector space of homogeneous forms of degree k on  $\mathbf{P}^1$ . There is a linear map

(1.4) 
$$\Phi_G: P_1^3 \to P_d, \Phi_G(\sigma_0, \sigma_1, \sigma_2) = \sum_{j=0}^2 \sigma_j \left( \frac{\partial G}{\partial X_j} \circ \alpha \right)$$

and for each integer  $k \ge 0$ , the related map

(1.5) 
$$\Phi_G^{(k)}: P_1^3 \xrightarrow{\Phi_G} P_d \to P_d/(v^{k+1}).$$

(1.6) LEMMA. For any L,  $\Phi_G^{(1)}$  is surjective (hence also  $\Phi_G^{(0)}$ ).

*Proof.* Since G is smooth, we may change coordinates so  $\psi = \partial G/\partial X_0 \circ \alpha \neq 0$  (v), so that  $\psi$  is a unit in the graded ring  $R_1 = \bigoplus_i P_i/(v^2)$ . Thus any  $Q \in P_d/(v^2)$  can be divided by  $\psi \pmod{v^2}$  to yield  $\sigma \in P_1$ ; then  $\Phi_G^{(1)}(\sigma, 0, 0) = Q$ . We introduce some more notation to facilitate higher order computations. Let

$$\alpha^{(r)} = \left( \frac{d^r \alpha_i}{ds^r} \bigg|_{s=0} \right)_{i=0,1,2}, \quad G_{ij} \alpha^{(r)} \alpha^{(s)} = \sum_{i,j} \left( \frac{\partial^2 G}{\partial X_i \partial X_j} \right) \alpha_i^{(r)} \alpha_j^{(s)}.$$

We also note that homogeneous polynomials of degree j in (u, v) can be viewed as polynomials of degree  $\leq j$  in v; we will hence usually view  $P_j/(v^{k+1}) \subset \mathbb{C}[v]/(v^{k+1})$ , and speak of constant terms, linear terms, etc. We also freely divide truncated polynomials.

We start by specializing to the case n = 2 to fix ideas.

(1.7) **PROPOSITION.** (1.2) is true for n = 2.

*Proof.* We set n = 2, r = 1 (so that s = t) in (1.3), and let t = 0 to obtain

$$(1.8) G^2 \equiv 0 (v^2)$$

where we have abused notation by viewing G as a form on  $\mathbf{P}^1$  via  $\alpha$ . This gives

$$(1.9) G \equiv 0 (v).$$

We continue by differentiating (1.3) with respect to t and setting t = 0.

(1.10) 
$$2G\Phi_{G}\alpha' + F \equiv 0 (v^{2})$$

Using (1.9), (1.10) forces F = 0(v), i.e.

(1.11) L passes through a base point.

To show that the pencil containing L indeed has multiplicity 1 in  $C_0^*$ , we may take L general, and so assume G is not tangent to  $L \simeq \mathbf{P}^1$  at (1, 0). We then obtain from (1.10)

(1.12) 
$$\Phi_G^{(0)} \alpha' = -F/2G.$$

and Lemma 1.6 implies that we can solve (1.12) for  $\alpha'$ . Thus the pencils through the base points deform to first order; these pencils are the only candidates for a multiplicity 1 component of  $C_0^*$ .

For the second order obstruction, we take the second derivative of (1.3) with respect to t and set t = 0 to obtain

(1.13) 
$$2G\Phi_{G}\alpha'' + 2GG_{ij}\alpha'\alpha' + 2(\Phi_{G}\alpha')^{2} + 2\Phi_{F}\alpha' \equiv 0 \ (v^{2}).$$

#### SHELDON KATZ

In order for (1.13) to have a solution for  $\alpha''$ , we must require that

(1.14) 
$$2(\Phi_G \alpha')^2 + 2\Phi_F(\alpha') \equiv 0 (v).$$

This can be accomplished by the following lemma.

(1.15) LEMMA. 
$$\Phi_F^{(0)}|_{\ker \Phi_G^{(1)}}$$
: ker  $\Phi_G^{(1)} \rightarrow P_{nd}/(v)$  is surjective.

**Proof.** Since dim  $P_{nd}/(v) = 1$ , the lemma can fail to hold only if ker  $\Phi_G^{(1)} \subset \ker \Phi_F^{(0)}$ . But since F and G intersect transversally, we can change coordinates in  $\mathbf{P}^2$  so that  $X_0 = 0$  is tangent to F, and  $X_1 = 0$  is tangent to G at  $\alpha(1,0)$ . So we may assume that, in the affine coordinate v near  $(1,0) \in \mathbf{P}^1$ ,  $(\partial G/\partial X_0)(\alpha(v)) \equiv av(v^2)$ ,  $(\partial G/\partial X_1)(\alpha(v)) \equiv b(v)$ , where  $b \neq 0$ . Then  $(-bu, av, 0) \in \ker \Phi_G^{(1)} - \ker \Phi_F^{(0)}$ .

Now we can replace  $\alpha'$  with  $\alpha' - \tilde{\alpha}$ , where  $\tilde{\alpha} \in \ker \Phi_G^{(1)}$  and  $\Phi_F^{(0)}\tilde{\alpha} \equiv (\Phi_G \alpha')^2(v)$ , by the lemma. Then (1.12) still holds, but now the left-hand side of (1.13) is divisible by G, since (1.14) now holds. After dividing (1.13) by G, we can now solve for  $\alpha''$  by using lemma (1.6) again.

For simplicity, we introduce the symbol  $Q_j$  to stand for any expression involving  $\alpha$  only through  $\alpha', \alpha'', \ldots, \alpha^{(j)}$ . The higher order obstructions are now handled by the following easily established lemma.

(1.16) LEMMA. For 
$$n \ge 2$$
, the nth obstruction to (1.3) is  

$$\frac{d^n}{dt^n} (G^2 + tF) \Big|_{t=0} \equiv 2G\Phi_G \alpha^{(n)} + n\Phi_F \alpha^{(n-1)} + 2n\Phi_G \alpha' \Phi_G \alpha^{(n-1)} + GQ_{n-1} + Q_{n-2} \equiv 0 \ (v^2). \quad \Box$$

We inductively complete the power series solution of (1.3). We suppose that we have solved for  $\alpha', \ldots, \alpha^{(n-1)}$ . Then using Lemma 1.15, we modify  $\alpha^{(n-1)}$  so that (1.16) becomes divisible by G. After dividing by G, we use Lemma (1.6) once more to solve for  $\alpha^{(n)}$ .

This procedure gives a formal power series solution of (1.3). By Artin's theorem [1] there is a holomorphic solution of (1.3) for  $|t| < \varepsilon$ . Thus, the pencils through the base points are each multiplicity 1 components of  $C_0^*$ .

**REMARK.** The solution for  $\alpha^{(n)}$  is far from unique; in fact, the computation above shows that the ambiguity lies in ker  $\Phi_G^{(0)} \cap \ker \Phi_F^{(0)}$ , a 4-dimensional vector space. Let  $B \subset GL(2)$  denote the isotropy group of

(1,0), so that dim B = 3. This is the ambiguity arising by representing L as ( $\mathbf{P}^1$ , (1,0)). The difference between 4 and 3 reflects that a curve (the pencil) is deforming.

The other component  $2G^*$  is found by letting n = 2,  $t = s^2$  in (1.3). The order zero obstruction again leads to (1.9), which holds for a tangent to G (in fact,  $G \equiv 0$  ( $v^2$ )). The first order obstruction is

$$(1.17) 2G\Phi_G \alpha' \equiv 0 \ (v^2)$$

which is again automatic, and puts no restrictions on  $\alpha'$ .

The second order obstruction is

(1.18) 
$$2G\Phi_{G}\alpha'' + 2(\Phi_{G}\alpha')^{2} + 2GG_{ij}\alpha'\alpha' + 2F \equiv 0 \ (v^{2}).$$

This equation can be solved for  $\alpha''$  provided that

(1.19) 
$$\left(\Phi_{G}\alpha'\right)^{2} \equiv -F\left(v^{2}\right).$$

We can assume that L does not pass through a base point (i.e.  $F \neq 0(v)$ ). After taking a square root, Lemma (1.6) ensures that we can find such an  $\alpha'$ , and (1.18) imposes no conditions on  $\alpha''$ . For the higher order obstructions we need an easy lemma.

(1.20) LEMMA. For  $n \ge 2$ , the nth obstruction is  $\frac{d^n}{ds^n} (G^2 + s^2 F) \Big|_{s=0} \equiv 2G \Phi_G \alpha^{(n)} + 2n \Phi_G \alpha' \Phi_G \alpha^{(n-1)} + GQ_{n-1} + Q_{n-2} \equiv 0 \ (v^2).$ 

Since  $\Phi_G \alpha'$  is a unit in  $P_d/(v^2)$ , we can choose  $\alpha^{(n-1)}$  to ensure that there is no *n*th obstruction, using Lemma (1.6). Thus, there is a formal power series solution of (1.3) with  $t = s^2$ , and Artin's Theorem finishes the proof of Proposition (1.7).

**REMARK.** In the case of tangents, the ambiguity lies in ker  $\Phi_G^{(1)}$ , which is as before a 4-dimensional vector space.

*Proof of Proposition* (1.2). We start by letting  $t = s^{n-1}$  in (1.3), and attempt to deform a pencil through a base point. There are clearly no obstructions through order n-2. The (n-1)st obstruction is (since

 $G^{j} \equiv 0 (v^{2}) \text{ for } j \ge 2)$ (1.21)  $n!G(\Phi_{G}\alpha')^{n-1} + (n-1)!F \equiv 0 (v^{2}).$ 

We may assume L is not tangent to G or F; then we can solve (1.21) for  $\alpha'$ .

The nth order obstruction is seen to be

(1.22) 
$$n! {n \choose 2} G(\Phi_G \alpha')^{n-2} \Phi_G \alpha'' + n! (\Phi_G \alpha')^n + n! \Phi_F \alpha' + GQ_n \equiv 0 (v^2).$$

We now can use Lemma (1.15) to modify  $\alpha'$  so that (1.22) is consistent. After dividing (1.22) by G, and noting that  $\Phi_G^{(1)}\alpha'$  is a unit, we can then solve for  $\alpha''$ .

For the higher order obstructions, we note that for  $r \ge n + 1$ 

$$(1.23) \quad \frac{d^{r}}{ds^{r}} (G^{n} + s^{n-1}F) \Big|_{s=0}$$
  

$$\equiv n(n-1) \frac{r!}{(r-n+2)!} G(\Phi_{G}\alpha')^{n-2} \Phi_{G}\alpha^{(r-n+2)}$$
  

$$+ n \frac{r!}{(r-n+2)!} (\Phi_{G}\alpha')^{n-1} \Phi_{G}\alpha^{(r-n+1)}$$
  

$$+ \frac{r!}{(r-n+1)!} \Phi_{F}\alpha^{(r-n+1)} + GQ_{r-n+1} + Q_{r-n} \equiv 0 (v^{2}).$$

As before, we can use Lemma (1.15) inductively to modify  $\alpha^{(r-n+1)}$  to ensure the consistency of (1.23), then solve for  $\alpha^{(r-n+2)}$  using Lemma (1.6). Finally, Artin's Theorem shows that a pencil through a base point is a multiplicity (n-1) component of  $C_0^*$ .

Turning next to the tangents to G (so that  $G \equiv 0$  ( $v^2$ )), we let  $t = s^n$  in (1.3). There are clearly no obstructions through order (n - 1).

The *n*th order obstruction yields

(1.24) 
$$n! \left( \Phi_G \alpha' \right)^n + n! F \equiv 0 \left( v^2 \right).$$

Assuming that L does not pass through a base point, we can solve (1.24) for  $\alpha'$ .

For the higher order obstructions, we note that for  $r \ge n + 1$ 

(1.25) 
$$\frac{d^{r}}{ds^{r}}(G^{n}+s^{n}F)\Big|_{s=0} \equiv n\frac{r!}{(r-n+1)!} (\Phi_{G}\alpha')^{n-1} \Phi_{G}\alpha^{(r-n+1)} + Q_{r-n} \equiv 0 (v^{2}).$$

As  $\Phi_G \alpha'$  is a unit, we can solve for  $\alpha^{(r-n+1)}$ . Artin's Theorem completes the proof.

2. Flexes on a multiple curve. In the situation of §1, we look at the limiting behavior of the flexes of  $C_i$ .

(2.1) PROPOSITION. The flexes of  $C_t$  degenerate to the flexes of G, the tangents to F at a base point, and the tangents to G at a base point, with multiplicities n, n - 2, 2n - 1 respectively.

*Proof.* By a standard formula for plane curves [2],  $C_t$  has 3nd(nd - 2) flexes; g has 3d(d-2) flexes and  $nd^2$  base points. Also  $3nd(nd - 2) = n(3d(d-2)) + (n-2)nd^2 + (2n-1)nd^2$ . So as in §1, it suffices to construct deformations of the claimed limits with the indicated multiplicities.

We now need to solve

(2.2) 
$$(G^n + s'F) \circ \alpha(s) \equiv 0 (v^3) \text{ for } |s| < \varepsilon$$

for r = n in the case of a flex of G, for r = n - 2 in the case of a tangent to F at a base point, and for r = 2n - 1 in the case of a tangent to G at a base point.

We first check the flexes of G, starting with a lemma.

(2.3) LEMMA. If L is an ordinary inflectional tangent to G, then  $\Phi_G^{(2)}$  is surjective.

*Proof.* We can change coordinates so that L has equation  $X_1 = 0$ , and G has an equation of the form  $X_1f + X_0^3g$ , where f(0,0,1),  $g(0,0,1) \neq 0$ . We may as well let  $\alpha$ :  $\mathbf{P}^1 \rightarrow L$  be  $\alpha(u,v) = (v,0,u)$ . Then, using subscript notation for partial derivatives, we find that

$$G_0 \circ \alpha = 3v^2g + v^3g_0 \qquad G_1 \circ \alpha = f + v^3g_1$$

and so  $\Phi_G^{(2)}$  is surjective by inspection.

The proof of the case of flexes is now completed by mimicking the computation of the component  $nG^*$  of §1, using Lemma (2.3) in place of Lemma (1.6).

We turn next to the case of a tangent to F at a base point, i.e.  $G \equiv 0$ (v),  $F \equiv 0$  (v<sup>2</sup>),  $t = s^{n-2}$ .

There are clearly no obstructions through order n - 3. For the order n - 2 obstruction, we note that

(2.4) 
$$\left. \frac{d^{n-2}}{ds^{n-2}} (G^n + s^{n-2}F) \right|_{s=0} \equiv \frac{n!}{2} G^2 (\Phi_G \alpha')^{n-2} + (n-2)!F \equiv 0 (v^3)$$

and since F, G have order exactly 2, 1 respectively as polynomials in v,  $F/G^2$  is a unit, so we can extract an (n-2) root and solve for  $\Phi_G^{(0)}\alpha'$  in (2.4).

The higher order obstructions are given by

$$(2.5) \quad \frac{d^{k}}{ds^{k}k} (G^{n} + s^{n-2}F) \Big|_{s=0}$$

$$= \frac{n(n-1)(n-2)}{2} \frac{k!}{(k+3-n)!} G^{2} (\Phi_{G}\alpha')^{n-3} \Phi_{G}\alpha^{(k+3-n)}$$

$$+ G^{2}Q_{k+2-n} + n(n-1) \frac{k!}{(k+2-n)!} G (\Phi_{G}\alpha')^{n-2} \Phi_{G}\alpha^{(k+2-n)}$$

$$+ \frac{k!}{(k+2-n)!} \Phi_{F}\alpha^{(k+2-n)} + Q_{k+1-n} (v^{3}).$$

This case is finished by a couple of lemmas.

(2.6) LEMMA. 
$$\Phi_F^{(1)}|_{\ker \Phi_G^{(0)}}$$
: ker  $\Phi_G^{(0)} \rightarrow P_{nd}/(v^2)$  is surjective.

*Proof.* Lemma 1.15 says that dim ker  $\Phi_G^{(1)} \cap \ker \Phi_F^{(0)} = 3$ . Reversing the roles of F and G yields the lemma.

(2.7) LEMMA. After solving for the kth obstruction, we have  $\infty^3$  solutions for  $\alpha^1, \ldots, \alpha^{(k+2-n)}$ , and  $\Phi_G^{(0)} \alpha^{(k+3-n)}$  is determined.

*Proof.* Inductively, we equate the linear plus constant term of (2.5) to 0 ( $v^2$ ), using Lemma (2.6) to modify  $\alpha^{(k+2-n)}$ .  $\Phi_G^{(0)}\alpha^{(k+3-n)}$  is now found by Lemma (1.6).

An application of Artin's Theorem completes the proof of the case of a tangent to F at a base point.

Finally, we turn to a tangent to G at a base point, i.e.  $G \equiv 0$   $(v^2)$ ,  $F \equiv 0$  (v),  $t = s^{2n-1}$ .

There are clearly no obstructions through order n - 2. The order n - 1 obstruction is

(2.8) 
$$\frac{d^{n-1}}{ds^{n-1}}(G^n + s^{2n-1}F)\Big|_{s=0} \equiv n!G(\Phi_G \alpha')^{n-1} \equiv 0 (v^3)$$

which forces

$$\Phi_G^{(0)}\alpha' = 0$$

We change notation slightly, putting  $G^{(j)} = d^j(G \circ \alpha(s))/ds^j|_{s=0}$ , noting that  $G^{(j)} = \Phi_G \alpha^{(j)} + Q_{j-1}$ . With the additional information (2.9), we now see that there are no obstructions through order 2n - 3. The order 2n - 2 obstruction is given by

$$(2.10) \quad \frac{d^{2n-2}}{ds^{2n-2}} (G^n + s^{2n-1}F) \Big|_{s=0}$$
  
=  $\frac{n(2n-2)!}{2^{n-1}} G(G'')^{n-1} + \frac{n(n-1)(2n-2)!}{2^{n-1}} (G')^2 (G'')^{n-2}$   
=  $0 (v^3).$ 

This leads to

(2.11) 
$$G'' \equiv -(n-1)(G')^2/G(v).$$

The order 2n - 1 obstruction is

$$(2.12) \quad \frac{d^{2n-1}}{ds^{2n-1}} (G^n + s^{2n-1}F) \Big|_{s=0}$$
  
=  $\frac{n(n-1)(2n-1)!}{6 \cdot 2^{n-2}} G(G'')^{n-2} G'''$   
+  $\frac{n(n-1)(n-2)(2n-1)!}{6 \cdot 2^{n-2}} (G')^2 (G'')^{n-3} G'''$   
+  $\frac{n(2n-1)!}{2^{n-1}} G'(G'')^{n-1} + (2n-1)!F$   
=  $0 (v^3)$ 

looking at the linear term, and using (2.11), we find

(2.13) 
$$(G')^{2n-1}/G^{n-1} \equiv (-1)^n \frac{2^{n-1}}{n(n-1)^{n-1}} F(v^2).$$

(2.12) implies that we can solve for  $\Phi_G^{(1)}\alpha'$ , and that G'' is a unit, using (2.11) again.

Turning to the quadratic term of (2.12), we see that we must solve for G'''(v), or equivalently, for  $\Phi_G^{(0)}\alpha'''$ . This is possible exactly when the expression multiplying G''' in (2.12) is divisible by  $v^2$ , but not by  $v^3$ . But this expression is a multiple of

(2.14) 
$$(G'')^{n-3} \Big[ GG'' + (n-2)(G')^2 \Big]$$

#### SHELDON KATZ

which satisfies the indicated requirement, by (2.11) and the fact that G'' is a unit.

Notice that  $\Phi_G^{(0)}\alpha''$  depends only on  $\alpha'$ , while  $\Phi_G^{(0)}\alpha'''$  depends on  $\Phi_G^{(1)}\alpha''$  and  $\alpha'$ ; however, it is a non-trivial linear expression in the linear term of  $\Phi_G^{(1)}\alpha''$ , as revealed by a examination of our solution of (2.12).

The higher order obstructions are given by

$$(2.15) \quad \frac{d^{k}}{ds^{k}} (G^{n} + s^{2n-1}F) \Big|_{s=0}$$

$$= \frac{n(n-1)k!}{2^{n-2}(k+4-2n)!} G(G'')^{n-2} G^{(k+4-2n)}$$

$$+ \frac{n(n-1)(n-2)k!}{2^{n-2}(k+4-2n)!} (G')^{2} (G'')^{n-3} G^{(k+4-2n)} + GQ_{k+3-2n}$$

$$+ (G')^{2} \tilde{Q}_{k+3-2n} + \frac{n(n-1)k!}{2^{n-2}(k+3-2n)!} G'(G'')^{n-2} G^{(k+3-2n)}$$

$$+ G'Q_{k+2-2n} + \frac{nk!}{2^{n-1}(k+2-2n)!} (G'')^{n-1} G^{(k+2-2n)}$$

$$+ Q_{k+1-2n} + \frac{k!}{(k+1-2n)!} \Phi_{F}(\alpha^{(k+1-2n)})$$

$$= 0 (v^{3}).$$

Equation (2.15) can be solved inductively.

(2.16) LEMMA. After solving for the kth obstruction, we have  $\infty^3$  solutions for  $\alpha', \ldots, \alpha^{(k+1-2n)}$ , we have found  $\Phi_G^{(1)}\alpha^{(k+2-2n)}$ , and we have found  $\Phi_G^{(0)}\alpha^{(k+4-2n)}$ . This last depends non-trivially and linearly on the linear term of  $\Phi_G \alpha^{(k+3-2n)}$ , and on terms of lower order.

**Proof.** By induction. We start by examining the constant term of (2.15). We observe that the constant term of  $G^{(k+2-2n)}$  depends on  $\Phi_G^{(1)}\alpha^{(k+1-2n)}$  and lower derivatives of  $\alpha$ . Also we note that the expression  $Q_{k+1-2n}$  in (2.15) depends on  $\Phi_G^{(0)}\alpha^{(k+1-2n)}$  and lower derivatives of  $\alpha$ . So Lemma (1.15) applies to allow for the modification of  $\alpha^{(k+1-2n)}$  as before.

Next, we consider the linear term of (2.15). We observe that the constant term of  $Q_{k+2-2n}$  depends on  $\Phi_G^{(0)} \alpha^{(k+2-2n)}$  and lower derivatives of  $\alpha$ , while inductively the constant term of  $G^{(k+3-2n)}$  depends non-trivially and linearly on the linear term of  $\Phi_G \alpha^{(k+2-2n)}$  and on lower order

terms, so that after equating the linear term of (2.15) to 0, we can first solve for the linear term of  $\Phi_G \alpha^{(k+2-2n)}$  (hence for  $\Phi_G^{(1)} \alpha^{(k+2-2n)}$ , as we inductively know the constant term). Lemma (1.16) allows us to solve for  $\alpha^{(k+2-2n)}$ .

Finally, we turn to the quadratic term. Exactly as in the order 2n - 1 obstruction, we see that  $\Phi_G^{(0)} \alpha^{(k+4-2n)}$  is multiplied by a constant multiple of (2.14), which we have seen is divisible by  $v^2$ , but not by  $v^3$ . So we can solve for  $\Phi_G^{(0)} \alpha^{(k+4-2n)}$ , and apply Lemma (1.6). Note that the quadratic term of (2.15) involves  $\alpha^{(k+3-2n)}$  only non-trivially and linearly through the linear term of  $\Phi_G^{(k+3-2n)}$ , completing the induction.

An application of Artin's Theorem now finishes the case of tangents to G through a base point, as well as the proof of Proposition (2.1).

#### References

- [1] M. Artin, On the solution of analytic equations, Invent. Math., 5 (1968), 277–291.
- [2] P. Griffiths and J. Harris, *Principles of Algebraic Geometry*, Wiley-Interscience, N.Y. 1978.
- [3] S. Katz, Degeneration of quintic threefolds and their lines, Duke Math. J., 50 (1983), 1127–1135.
- [4] H. Schubert, Kalkül der Abzählenden Geometrie, Springer-Verlag, Berlin, 1979.

Received April 25, 1985.

UNIVERSITY OF OKLAHOMA NORMAN, OK 73019