TANGENTS TO A MULTIPLE PLANE CURVE

Sheldon Katz

The limiting behavior of the tangents and the flexes are computed as a reduced plane curve degenerates into a multiple plane curve.
0. Introduction. In this paper, we consider the degeneration of a reduced irreducible plane curve to a multiple plane curve. We study the associated degeneration of tangent lines by viewing a line as a linear imbedding $\mathbf{P}^{1} \hookrightarrow \mathbf{P}^{2}$ and studying deformations of this imbedding. We compute the limiting behavior of the dual curve and the flexes. A similar computation yields the limiting behavior of the bitangents; this will appear later in a separate paper. The main result is stated as Proposition (2.1).

The author takes this opportunity to thank Professor William Fulton for introducing him to this problem.

1. The dual of a multiple curve. Let $C \subset \mathbf{P}_{\mathbf{C}}^{2}$ be a smooth curve of degree $d . C^{*} \subset \mathbf{P}^{2 *}$ will denote the dual curve of tangents to C.

Let n be a positive integer, $n \geq 2$. Let

$$
\begin{equation*}
G^{n}+t F=0 \tag{1.1}
\end{equation*}
$$

be a generic pencil of plane curves, with $\operatorname{deg} G=d, \operatorname{deg} F=n d$. We will freely abuse notation by using the same letter to denote a polynomial or its zero locus. Here, generic means that G, F are smooth, and meet transversely at their $n d^{2}$ points of intersection, the base points of the pencil. G^{*} is assumed to have only nodes and cusps as singularities. The pencil (1.1) will be denoted by C_{t}. Let $C_{0}^{*}=\lim _{t \rightarrow 0} C_{t}^{*}$. The goal of this section is to prove the following.
(1.2) Proposition. C_{0}^{*} is the union of G^{*} with multiplicity n, together with the $n d^{2}$ pencils of lines through the base points, each pencil having multiplicity $(n-1)$.

Remarks. (1) Proposition (1.2) is quite elementary. It is not much more difficult than the case $n=2, d=1$ implicitly worked out in [4]. The
value in this method of proof lies purely in its expository value as a prelude to $\S 2$.
(2) By a standard formula for plane curves ([2], for example) $\operatorname{deg} C_{t}^{*}$ $=n d(n d-1)$ for $t \neq 0$, while $\operatorname{deg} C_{0}^{*}=n d(d-1)+(n-1) n d^{2}=$ $n d(n d-1)$.

The techniques used are a variant of the techniques of [3], which were inspired by the work of Clemens. Given a line $L \subset \mathbf{P}^{2}$, we look for a family of lines L_{s} with $L_{0}=L$ and L_{s} tangent to C_{t} with $t=s^{r}$ for a positive integer r. Then L would correspond to a general point of a multiplicity r component of C_{0}^{*} with cyclic local monodromy.

We choose an isomorphism $\alpha: \mathbf{P}^{1} \rightarrow L$ given by three homogeneous linear forms $\alpha=\left(\alpha_{0}(u, v), \alpha_{1}(u, v), \alpha_{2}(u, v)\right)$, where (u, v) are homogeneous coordinates on \mathbf{P}^{1}. We single out $(1,0) \in \mathbf{P}^{1}$ as the candidate for a point of tangency of L with C_{0}. We look for an extension of α to $\alpha(s)$, holomorphic in s for $|s|<\varepsilon$, with $\alpha(0)=\alpha$, and satisfying

$$
\begin{equation*}
\left(G^{n}+s^{r} F\right) \circ \alpha(s) \equiv 0\left(v^{2}\right) \quad \text { for }|s|<\varepsilon \tag{1.3}
\end{equation*}
$$

We attempt to solve (1.3) by power series in s. We show that this is possible when either L is tangent to G or when L passes through a base point. In the former case, for general L, we must take $r=n$, while in the latter case, we take $r=n-1$. By consideration of degrees, i.e. Remark (2), no other components are present, proving Proposition (1.2).

We now fix some more notation. Let P_{k} denote the vector space of homogeneous forms of degree k on $\mathbf{P}^{\mathbf{1}}$. There is a linear map

$$
\begin{equation*}
\Phi_{G}: P_{1}^{3} \rightarrow P_{d}, \Phi_{G}\left(\sigma_{0}, \sigma_{1}, \sigma_{2}\right)=\sum_{j=0}^{2} \sigma_{j}\left(\frac{\partial G}{\partial X_{j}} \circ \alpha\right) \tag{1.4}
\end{equation*}
$$

and for each integer $k \geq 0$, the related map

$$
\begin{equation*}
\Phi_{G}^{(k)}: P_{1}^{3} \xrightarrow{\Phi_{G}} P_{d} \rightarrow P_{d} /\left(v^{k+1}\right) \tag{1.5}
\end{equation*}
$$

(1.6) Lemma. For any $L, \Phi_{G}^{(1)}$ is surjective (hence also $\Phi_{G}^{(0)}$).

Proof. Since G is smooth, we may change coordinates so $\psi=$ $\partial G / \partial X_{0} \circ \alpha \not \equiv 0(\mathrm{v})$, so that ψ is a unit in the graded ring $R_{1}=\oplus_{j} P_{j} /\left(v^{2}\right)$. Thus any $Q \in P_{d} /\left(v^{2}\right)$ can be divided by $\psi\left(\bmod v^{2}\right)$ to yield $\sigma \in P_{1}$; then $\Phi_{G}^{(1)}(\sigma, 0,0)=Q$.

We introduce some more notation to facilitate higher order computations. Let

$$
\alpha^{(r)}=\left(\left.\frac{d^{r} \alpha_{i}}{d s^{r}}\right|_{s=0}\right)_{i=0,1,2}, \quad G_{i j} \alpha^{(r)} \alpha^{(s)}=\sum_{i, j}\left(\frac{\partial^{2} G}{\partial X_{i} \partial X_{j}}\right) \alpha_{i}^{(r)} \alpha_{j}^{(s)} .
$$

We also note that homogeneous polynomials of degree j in (u, v) can be viewed as polynomials of degree $\leq j$ in v; we will hence usually view $P_{j} /\left(v^{k+1}\right) \subset \mathbf{C}[v] /\left(v^{k+1}\right)$, and speak of constant terms, linear terms, etc. We also freely divide truncated polynomials.

We start by specializing to the case $n=2$ to fix ideas.
(1.7) Proposition. (1.2) is true for $n=2$.

Proof. We set $n=2, r=1$ (so that $s=t$) in (1.3), and let $t=0$ to obtain

$$
\begin{equation*}
G^{2} \equiv 0\left(v^{2}\right) \tag{1.8}
\end{equation*}
$$

where we have abused notation by viewing G as a form on \mathbf{P}^{1} via α. This gives

$$
\begin{equation*}
G \equiv 0(v) . \tag{1.9}
\end{equation*}
$$

We continue by differentiating (1.3) with respect to t and setting $t=0$.

$$
\begin{equation*}
2 G \Phi_{G} \alpha^{\prime}+F \equiv 0\left(v^{2}\right) \tag{1.10}
\end{equation*}
$$

Using (1.9), (1.10) forces $F=0(v)$, i.e.
L passes through a base point.
To show that the pencil containing L indeed has multiplicity 1 in C_{0}^{*}, we may take L general, and so assume G is not tangent to $L \simeq \mathbf{P}^{1}$ at $(1,0)$. We then obtain from (1.10)

$$
\begin{equation*}
\Phi_{G}^{(0)} \alpha^{\prime}=-F / 2 G . \tag{1.12}
\end{equation*}
$$

and Lemma 1.6 implies that we can solve (1.12) for α^{\prime}. Thus the pencils through the base points deform to first order; these pencils are the only candidates for a multiplicity 1 component of C_{0}^{*}.

For the second order obstruction, we take the second derivative of (1.3) with respect to t and set $t=0$ to obtain

$$
\begin{equation*}
2 G \Phi_{G} \alpha^{\prime \prime}+2 G G_{i j} \alpha^{\prime} \alpha^{\prime}+2\left(\Phi_{G} \alpha^{\prime}\right)^{2}+2 \Phi_{F} \alpha^{\prime} \equiv 0\left(v^{2}\right) . \tag{1.13}
\end{equation*}
$$

In order for (1.13) to have a solution for $\alpha^{\prime \prime}$, we must require that

$$
\begin{equation*}
2\left(\Phi_{G} \alpha^{\prime}\right)^{2}+2 \Phi_{F}\left(\alpha^{\prime}\right) \equiv 0(v) . \tag{1.14}
\end{equation*}
$$

This can be accomplished by the following lemma.
(1.15) Lemma. $\left.\Phi_{F}^{(0)}\right|_{\operatorname{ker} \Phi} \phi_{G}^{(}: \operatorname{ker} \Phi_{\mathrm{G}}^{(1)} \rightarrow P_{n d} /(v)$ is surjective.

Proof. Since $\operatorname{dim} P_{n d} /(v)=1$, the lemma can fail to hold only if $\operatorname{ker} \Phi_{G}^{(1)} \subset \operatorname{ker} \Phi_{F}^{(0)}$. But since F and G intersect transversally, we can change coordinates in \mathbf{P}^{2} so that $X_{0}=0$ is tangent to F, and $X_{1}=0$ is tangent to G at $\alpha(1,0)$. So we may assume that, in the affine coordinate v near $(1,0) \in \mathbf{P}^{1},\left(\partial G / \partial X_{0}\right)(\alpha(v)) \equiv a v\left(v^{2}\right),\left(\partial G / \partial X_{1}\right)(\alpha(v)) \equiv b(v)$, where $b \neq 0$. Then $(-b u, a v, 0) \in \operatorname{ker} \Phi_{G}^{(1)}-\operatorname{ker} \Phi_{F}^{(0)}$.

Now we can replace α^{\prime} with $\alpha^{\prime}-\tilde{\alpha}$, where $\tilde{\alpha} \in \operatorname{ker} \Phi_{G}^{(1)}$ and $\Phi_{F}^{(0)} \tilde{\alpha} \equiv$ $\left(\Phi_{G} \alpha^{\prime}\right)^{2}(v)$, by the lemma. Then (1.12) still holds, but now the left-hand side of (1.13) is divisible by G, since (1.14) now holds. After dividing (1.13) by G, we can now solve for $\alpha^{\prime \prime}$ by using lemma (1.6) again.

For simplicity, we introduce the symbol Q_{j} to stand for any expression involving α only through $\alpha^{\prime}, \alpha^{\prime \prime}, \ldots, \alpha^{(j)}$. The higher order obstructions are now handled by the following easily established lemma.
(1.16) Lemma. For $n \geq 2$, the nth obstruction to (1.3) is

$$
\begin{aligned}
\left.\frac{d^{n}}{d t^{n}}\left(G^{2}+t F\right)\right|_{t=0} & \equiv 2 G \Phi_{G} \alpha^{(n)}+n \Phi_{F} \alpha^{(n-1)} \\
& +2 n \Phi_{G} \alpha^{\prime} \Phi_{G} \alpha^{(n-1)}+G Q_{n-1}+Q_{n-2} \equiv 0\left(v^{2}\right) .
\end{aligned}
$$

We inductively complete the power series solution of (1.3). We suppose that we have solved for $\alpha^{\prime}, \ldots, \alpha^{(n-1)}$. Then using Lemma 1.15, we modify $\alpha^{(n-1)}$ so that (1.16) becomes divisible by G. After dividing by G, we use Lemma (1.6) once more to solve for $\alpha^{(n)}$.

This procedure gives a formal power series solution of (1.3). By Artin's theorem [1] there is a holomorphic solution of (1.3) for $|t|<\varepsilon$. Thus, the pencils through the base points are each multiplicity 1 components of C_{0}^{*}.

Remark. The solution for $\alpha^{(n)}$ is far from unique; in fact, the computation above shows that the ambiguity lies in $\operatorname{ker} \Phi_{G}^{(0)} \cap \operatorname{ker} \Phi_{F}^{(0)}$, a 4-dimensional vector space. Let $B \subset \mathrm{GL}(2)$ denote the isotropy group of
$(1,0)$, so that $\operatorname{dim} B=3$. This is the ambiguity arising by representing L as $\left(\mathbf{P}^{1},(1,0)\right.$). The difference between 4 and 3 reflects that a curve (the pencil) is deforming.

The other component $2 G^{*}$ is found by letting $n=2, t=s^{2}$ in (1.3). The order zero obstruction again leads to (1.9), which holds for a tangent to G (in fact, $G \equiv 0\left(v^{2}\right)$). The first order obstruction is

$$
\begin{equation*}
2 G \Phi_{G} \alpha^{\prime} \equiv 0\left(v^{2}\right) \tag{1.17}
\end{equation*}
$$

which is again automatic, and puts no restrictions on α^{\prime}.
The second order obstruction is

$$
\begin{equation*}
2 G \Phi_{G} \alpha^{\prime \prime}+2\left(\Phi_{G} \alpha^{\prime}\right)^{2}+2 G G_{i j} \alpha^{\prime} \alpha^{\prime}+2 F \equiv 0\left(v^{2}\right) \tag{1.18}
\end{equation*}
$$

This equation can be solved for $\alpha^{\prime \prime}$ provided that

$$
\begin{equation*}
\left(\Phi_{G} \alpha^{\prime}\right)^{2} \equiv-F\left(v^{2}\right) \tag{1.19}
\end{equation*}
$$

We can assume that L does not pass through a base point (i.e. $F \not \equiv 0(v)$). After taking a square root, Lemma (1.6) ensures that we can find such an α^{\prime}, and (1.18) imposes no conditions on $\alpha^{\prime \prime}$. For the higher order obstructions we need an easy lemma.
(1.20) Lemma. For $n \geq 2$, the nth obstruction is

$$
\begin{aligned}
\left.\frac{d^{n}}{d s^{n}}\left(G^{2}+s^{2} F\right)\right|_{s=0} \equiv & 2 G \Phi_{G} \alpha^{(n)}+2 n \Phi_{G} \alpha^{\prime} \Phi_{G} \alpha^{(n-1)} \\
& +G Q_{n-1}+Q_{n-2} \equiv 0\left(v^{2}\right)
\end{aligned}
$$

Since $\Phi_{G} \alpha^{\prime}$ is a unit in $P_{d} /\left(v^{2}\right)$, we can choose $\alpha^{(n-1)}$ to ensure that there is no nth obstruction, using Lemma (1.6). Thus, there is a formal power series solution of (1.3) with $t=s^{2}$, and Artin's Theorem finishes the proof of Proposition (1.7).

Remark. In the case of tangents, the ambiguity lies in $\operatorname{ker} \Phi_{G}^{(1)}$, which is as before a 4-dimensional vector space.

Proof of Proposition (1.2). We start by letting $t=s^{n-1}$ in (1.3), and attempt to deform a pencil through a base point. There are clearly no obstructions through order $n-2$. The $(n-1)$ st obstruction is (since
$G^{j} \equiv 0\left(v^{2}\right)$ for $\left.j \geq 2\right)$

$$
\begin{equation*}
n!G\left(\Phi_{G} \alpha^{\prime}\right)^{n-1}+(n-1)!F \equiv 0\left(v^{2}\right) \tag{1.21}
\end{equation*}
$$

We may assume L is not tangent to G or F; then we can solve (1.21) for α^{\prime}.

The nth order obstruction is seen to be

$$
\begin{gather*}
n!\binom{n}{2} G\left(\Phi_{G} \alpha^{\prime}\right)^{n-2} \Phi_{G} \alpha^{\prime \prime}+n!\left(\Phi_{G} \alpha^{\prime}\right)^{n}+n!\Phi_{F} \alpha^{\prime} \tag{1.22}\\
+G Q_{n} \equiv 0\left(v^{2}\right)
\end{gather*}
$$

We now can use Lemma (1.15) to modify α^{\prime} so that (1.22) is consistent. After dividing (1.22) by G, and noting that $\Phi_{G}^{(1)} \alpha^{\prime}$ is a unit, we can then solve for $\alpha^{\prime \prime}$.

For the higher order obstructions, we note that for $r \geq n+1$

$$
\begin{align*}
& \left.\frac{d^{r}}{d s^{r}}\left(G^{n}+s^{n-1} F\right)\right|_{s=0} \tag{1.23}\\
& \quad \equiv n(n-1) \frac{r!}{(r-n+2)!} G\left(\Phi_{G} \alpha^{\prime}\right)^{n-2} \Phi_{G} \alpha^{(r-n+2)} \\
& \quad+n \frac{r!}{(r-n+2)!}\left(\Phi_{G} \alpha^{\prime}\right)^{n-1} \Phi_{G} \alpha^{(r-n+1)} \\
& \quad+\frac{r!}{(r-n+1)!} \Phi_{F} \alpha^{(r-n+1)}+G Q_{r-n+1}+Q_{r-n} \equiv 0\left(v^{2}\right)
\end{align*}
$$

As before, we can use Lemma (1.15) inductively to modify $\alpha^{(r-n+1)}$ to ensure the consistency of (1.23), then solve for $\alpha^{(r-n+2)}$ using Lemma (1.6). Finally, Artin's Theorem shows that a pencil through a base point is a multiplicity $(n-1)$ component of C_{0}^{*}.

Turning next to the tangents to G (so that $G \equiv 0\left(v^{2}\right)$), we let $t=s^{n}$ in (1.3). There are clearly no obstructions through order $(n-1)$.

The nth order obstruction yields

$$
\begin{equation*}
n!\left(\Phi_{G} \alpha^{\prime}\right)^{n}+n!F \equiv 0\left(v^{2}\right) \tag{1.24}
\end{equation*}
$$

Assuming that L does not pass through a base point, we can solve (1.24) for α^{\prime}.

For the higher order obstructions, we note that for $r \geq n+1$

$$
\begin{align*}
\left.\frac{d^{r}}{d s^{r}}\left(G^{n}+s^{n} F\right)\right|_{s=0} \equiv & n \frac{r!}{(r-n+1)!}\left(\Phi_{G} \alpha^{\prime}\right)^{n-1} \Phi_{G} \alpha^{(r-n+1)} \tag{1.25}\\
& +Q_{r-n} \equiv 0\left(v^{2}\right)
\end{align*}
$$

As $\Phi_{G} \alpha^{\prime}$ is a unit, we can solve for $\alpha^{(r-n+1)}$. Artin's Theorem completes the proof.
2. Flexes on a multiple curve. In the situation of $\S 1$, we look at the limiting behavior of the flexes of C_{t}.
(2.1) Proposition. The flexes of C_{t} degenerate to the flexes of G, the tangents to F at a base point, and the tangents to G at a base point, with multiplicities $n, n-2,2 n-1$ respectively.

Proof. By a standard formula for plane curves [2], C_{t} has $3 n d(n d-2)$ flexes; g has $3 d(d-2)$ flexes and $n d^{2}$ base points. Also $3 n d(n d-2)=$ $n(3 d(d-2))+(n-2) n d^{2}+(2 n-1) n d^{2}$. So as in $\S 1$, it suffices to construct deformations of the claimed limits with the indicated multiplicities.

We now need to solve

$$
\begin{equation*}
\left(G^{n}+s^{r} F\right) \circ \alpha(s) \equiv 0\left(v^{3}\right) \quad \text { for }|s|<\varepsilon \tag{2.2}
\end{equation*}
$$

for $r=n$ in the case of a flex of G, for $r=n-2$ in the case of a tangent to F at a base point, and for $r=2 n-1$ in the case of a tangent to G at a base point.

We first check the flexes of G, starting with a lemma.
(2.3) Lemma. If L is an ordinary inflectional tangent to G, then $\Phi_{G}^{(2)}$ is surjective.

Proof. We can change coordinates so that L has equation $X_{1}=0$, and G has an equation of the form $X_{1} f+X_{0}^{3} g$, where $f(0,0,1), g(0,0,1)$ $\neq 0$. We may as well let $\alpha: \mathbf{P}^{1} \rightarrow L$ be $\alpha(u, v)=(v, 0, u)$. Then, using subscript notation for partial derivatives, we find that

$$
G_{0} \circ \alpha=3 v^{2} g+v^{3} g_{0} \quad G_{1} \circ \alpha=f+v^{3} g_{1}
$$

and so $\Phi_{G}^{(2)}$ is surjective by inspection.

The proof of the case of flexes is now completed by mimicking the computation of the component $n G^{*}$ of $\S 1$, using Lemma (2.3) in place of Lemma (1.6).

We turn next to the case of a tangent to F at a base point, i.e. $G \equiv 0$ $(v), F \equiv 0\left(v^{2}\right), t=s^{n-2}$.

There are clearly no obstructions through order $n-3$. For the order $n-2$ obstruction, we note that

$$
\begin{equation*}
\left.\frac{d^{n-2}}{d s^{n-2}}\left(G^{n}+s^{n-2} F\right)\right|_{s=0} \equiv \frac{n!}{2} G^{2}\left(\Phi_{G} \alpha^{\prime}\right)^{n-2}+(n-2)!F \equiv 0\left(v^{3}\right) \tag{2.4}
\end{equation*}
$$

and since F, G have order exactly 2,1 respectively as polynomials in v, F / G^{2} is a unit, so we can extract an $(n-2)$ root and solve for $\Phi_{G}^{(0)} \alpha^{\prime}$ in (2.4).

The higher order obstructions are given by

$$
\begin{align*}
& \left.\frac{d^{k}}{d s^{k} k}\left(G^{n}+s^{n-2} F\right)\right|_{s=0} \tag{2.5}\\
& =\frac{n(n-1)(n-2)}{2} \frac{k!}{(k+3-n)!} G^{2}\left(\Phi_{G} \alpha^{\prime}\right)^{n-3} \Phi_{G} \alpha^{(k+3-n)} \\
& \quad+G^{2} Q_{k+2-n}+n(n-1) \frac{k!}{(k+2-n)!} G\left(\Phi_{G} \alpha^{\prime}\right)^{n-2} \Phi_{G} \alpha^{(k+2-n)} \\
& \quad+\frac{k!}{(k+2-n)!} \Phi_{F} \alpha^{(k+2-n)}+Q_{k+1-n}\left(v^{3}\right)
\end{align*}
$$

This case is finished by a couple of lemmas.
(2.6) Lemma. $\left.\Phi_{F}^{(1)}\right|_{\operatorname{ker} \Phi_{G}^{(0)}}: \operatorname{ker} \Phi_{G}^{(0)} \rightarrow P_{n d} /\left(v^{2}\right)$ is surjective.

Proof. Lemma 1.15 says that $\operatorname{dim} \operatorname{ker} \Phi_{G}^{(1)} \cap \operatorname{ker} \Phi_{F}^{(0)}=3$. Reversing the roles of F and G yields the lemma.
(2.7) Lemma. After solving for the k th obstruction, we have ∞^{3} solutions for $\alpha^{1}, \ldots, \alpha^{(k+2-n)}$, and $\Phi_{G}^{(0)} \alpha^{(k+3-n)}$ is determined.

Proof. Inductively, we equate the linear plus constant term of (2.5) to $0\left(v^{2}\right)$, using Lemma (2.6) to modify $\alpha^{(k+2-n)} . \Phi_{G}^{(0)} \alpha^{(k+3-n)}$ is now found by Lemma (1.6).

An application of Artin's Theorem completes the proof of the case of a tangent to F at a base point.

Finally, we turn to a tangent to G at a base point, i.e. $G \equiv 0\left(v^{2}\right)$, $F \equiv 0(v), t=s^{2 n-1}$.

There are clearly no obstructions through order $n-2$. The order $n-1$ obstruction is

$$
\begin{equation*}
\left.\frac{d^{n-1}}{d s^{n-1}}\left(G^{n}+s^{2 n-1} F\right)\right|_{s=0} \equiv n!G\left(\Phi_{G} \alpha^{\prime}\right)^{n-1} \equiv 0\left(v^{3}\right) \tag{2.8}
\end{equation*}
$$

which forces

$$
\begin{equation*}
\Phi_{G}^{(0)} \alpha^{\prime}=0 \tag{2.9}
\end{equation*}
$$

We change notation slightly, putting $G^{(j)}=d^{j}(G \circ \alpha(s)) /\left.d s^{j}\right|_{s=0}$, noting that $G^{(j)}=\Phi_{G} \alpha^{(j)}+Q_{j-1}$. With the additional information (2.9), we now see that there are no obstructions through order $2 n-3$. The order $2 n-2$ obstruction is given by

$$
\begin{align*}
& \left.\frac{d^{2 n-2}}{d s^{2 n-2}}\left(G^{n}+s^{2 n-1} F\right)\right|_{s=0} \tag{2.10}\\
& \quad=\frac{n(2 n-2)!}{2^{n-1}} G\left(G^{\prime \prime}\right)^{n-1}+\frac{n(n-1)(2 n-2)!}{2^{n-1}}\left(G^{\prime}\right)^{2}\left(G^{\prime \prime}\right)^{n-2} \\
& \quad \equiv 0\left(v^{3}\right)
\end{align*}
$$

This leads to

$$
\begin{equation*}
G^{\prime \prime} \equiv-(n-1)\left(G^{\prime}\right)^{2} / G(v) \tag{2.11}
\end{equation*}
$$

The order $2 n-1$ obstruction is

$$
\begin{align*}
\frac{d^{2 n-1}}{d s^{2 n-1}} & \left.\left(G^{n}+s^{2 n-1} F\right)\right|_{s=0} \tag{2.12}\\
= & \frac{n(n-1)(2 n-1)!}{6 \cdot 2^{n-2}} G\left(G^{\prime \prime}\right)^{n-2} G^{\prime \prime \prime} \\
& +\frac{n(n-1)(n-2)(2 n-1)!}{6 \cdot 2^{n-2}}\left(G^{\prime}\right)^{2}\left(G^{\prime \prime}\right)^{n-3} G^{\prime \prime \prime} \\
& +\frac{n(2 n-1)!}{2^{n-1}} G^{\prime}\left(G^{\prime \prime}\right)^{n-1}+(2 n-1)!F \\
\equiv & 0\left(v^{3}\right)
\end{align*}
$$

looking at the linear term, and using (2.11), we find

$$
\begin{equation*}
\left(G^{\prime}\right)^{2 n-1} / G^{n-1} \equiv(-1)^{n} \frac{2^{n-1}}{n(n-1)^{n-1}} F\left(v^{2}\right) \tag{2.13}
\end{equation*}
$$

(2.12) implies that we can solve for $\Phi_{G}^{(1)} \boldsymbol{\alpha}^{\prime}$, and that $G^{\prime \prime}$ is a unit, using (2.11) again.

Turning to the quadratic term of (2.12), we see that we must solve for $G^{\prime \prime \prime}(v)$, or equivalently, for $\Phi_{G}^{(0)} \alpha^{\prime \prime \prime}$. This is possible exactly when the expression multiplying $G^{\prime \prime \prime}$ in (2.12) is divisible by v^{2}, but not by v^{3}. But this expression is a multiple of

$$
\begin{equation*}
\left(G^{\prime \prime}\right)^{n-3}\left[G G^{\prime \prime}+(n-2)\left(G^{\prime}\right)^{2}\right] \tag{2.14}
\end{equation*}
$$

which satisfies the indicated requirement, by (2.11) and the fact that $G^{\prime \prime}$ is a unit.

Notice that $\Phi_{G}^{(0)} \alpha^{\prime \prime}$ depends only on α^{\prime}, while $\Phi_{G}^{(0)} \alpha^{\prime \prime \prime}$ depends on $\Phi_{G}^{(1)} \alpha^{\prime \prime}$ and α^{\prime}; however, it is a non-trivial linear expression in the linear term of $\Phi_{G}^{(1)} \alpha^{\prime \prime}$, as revealed by a examination of our solution of (2.12).

The higher order obstructions are given by

$$
\begin{align*}
\frac{d^{k}}{d s^{k}} & \left.\left(G^{n}+s^{2 n-1} F\right)\right|_{s=0} \tag{2.15}\\
= & \frac{n(n-1) k!}{2^{n-2}(k+4-2 n)!} G\left(G^{\prime \prime}\right)^{n-2} G^{(k+4-2 n)} \\
& +\frac{n(n-1)(n-2) k!}{2^{n-2}(k+4-2 n)!}\left(G^{\prime}\right)^{2}\left(G^{\prime \prime}\right)^{n-3} G^{(k+4-2 n)}+G Q_{k+3-2 n} \\
& +\left(G^{\prime}\right)^{2} \tilde{Q}_{k+3-2 n}+\frac{n(n-1) k!}{2^{n-2}(k+3-2 n)!} G^{\prime}\left(G^{\prime \prime}\right)^{n-2} G^{(k+3-2 n)} \\
& +G^{\prime} Q_{k+2-2 n}+\frac{n k!}{2^{n-1}(k+2-2 n)!}\left(G^{\prime \prime}\right)^{n-1} G^{(k+2-2 n)} \\
& +Q_{k+1-2 n}+\frac{k!}{(k+1-2 n)!} \Phi_{F}\left(\alpha^{(k+1-2 n)}\right) \\
\equiv & 0\left(v^{3}\right)
\end{align*}
$$

Equation (2.15) can be solved inductively.
(2.16) Lemma. After solving for the kth obstruction, we have ∞^{3} solutions for $\alpha^{\prime}, \ldots, \alpha^{(k+1-2 n)}$, we have found $\Phi_{G}^{(1)} \alpha^{(k+2-2 n)}$, and we have found $\Phi_{G}^{(0)} \alpha^{(k+4-2 n)}$. This last depends non-trivially and linearly on the linear term of $\Phi_{G} \alpha^{(k+3-2 n)}$, and on terms of lower order.

Proof. By induction. We start by examining the constant term of (2.15). We observe that the constant term of $G^{(k+2-2 n)}$ depends on $\Phi_{G}^{(1)} \alpha^{(k+1-2 n)}$ and lower derivatives of α. Also we note that the expression $Q_{\mathrm{k}+1-2 n}$ in (2.15) depends on $\Phi_{G}^{(0)} \boldsymbol{\alpha}^{(k+1-2 n)}$ and lower derivatives of α. So Lemma (1.15) applies to allow for the modification of $\alpha^{(k+1-2 n)}$ as before.

Next, we consider the linear term of (2.15). We observe that the constant term of $Q_{\mathrm{k}+2-2 n}$ depends on $\Phi_{G}^{(0)} \boldsymbol{\alpha}^{(k+2-2 n)}$ and lower derivatives of α, while inductively the constant term of $G^{(k+3-2 n)}$ depends non-trivially and linearly on the linear term of $\Phi_{G} \alpha^{(k+2-2 n)}$ and on lower order
terms, so that after equating the linear term of (2.15) to 0 , we can first solve for the linear term of $\Phi_{G} \alpha^{(k+2-2 n)}$ (hence for $\Phi_{G}^{(1)} \alpha^{(k+2-2 n)}$, as we inductively know the constant term). Lemma (1.16) allows us to solve for $\alpha^{(k+2-2 n)}$.

Finally, we turn to the quadratic term. Exactly as in the order $2 n-1$ obstruction, we see that $\Phi_{G}^{(0)} \alpha^{(k+4-2 n)}$ is multiplied by a constant multiple of (2.14), which we have seen is divisible by v^{2}, but not by v^{3}. So we can solve for $\Phi_{G}^{(0)} \alpha^{(k+4-2 n)}$, and apply Lemma (1.6). Note that the quadratic term of (2.15) involves $\alpha^{(k+3-2 n)}$ only non-trivially and linearly through the linear term of $\Phi_{G} \alpha^{(k+3-2 n)}$, completing the induction.

An application of Artin's Theorem now finishes the case of tangents to G through a base point, as well as the proof of Proposition (2.1).

References

[1] M. Artin, On the solution of analytic equations, Invent. Math., 5 (1968), 277-291.
[2] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, N.Y. 1978.
[3] S. Katz, Degeneration of quintic threefolds and their lines, Duke Math. J., 50 (1983), 1127-1135.
[4] H. Schubert, Kalkül der Abzählenden Geometrie, Springer-Verlag, Berlin, 1979.
Received April 25, 1985.

University of Oklahoma
NORMAN, OK 73019

