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A FUNCTIONAL CALCULUS FOR BANACH
PI-ALGEBRAS

DENIS LUMINET

Let A be a unital Banach algebra. Take ax,...,an e A and let B
be the closed subalgebra of A they generate. The algebras ^(Ω) of
entire matrix-valued functions were introduced by J. L. Taylor, who
asked if they led to a functional calculus, generalizing the Shilov-
Waelbroeck-Arens-Calderon theorem. We show that a necessary condi-
tion for a functional calculus map ^ ( Ω ) -> A to exist is that B satisfy a
polynomial identity; sufficient conditions are that B be a topological
subquotient of a Banach Azumaya algebra, or that n = 2 and B satisfy
all identities of 2 X 2 matrices. For closed subalgebras of Banach
Azumaya algebras, we obtain a functional calculus on polynomial poly-
hedra containing the joint spectrum. Various properties of algebras of
matrix-valued functions are studied, including domains of holomorphy.

Introduction. In the early 1950's, Shilov, Waelbroeck and Arens-

Calderon constructed a functional calculus for several variables in a

commutative Banach algebra with unit (all algebras are assumed to be

complex). If A is such an algebra, and al9...9an e A, we have a homo-

morphism Pn -» A that sends 1 •-> 1, Xλ •-> al9..., Xn -> an, where Pn is

the polynomial algebra in Xl9...9Xn. This map extends to a continuous

homomorphism Θ(U) -> A, i.e., we have a commutative diagram

P
n

\

Θ{U)Θ{U)

provided the open subset ί/ of C" contains the joint spectrum of

(al9...,an)[q.

Is there a reasonable equivalent of this result for noncommutative

algebras? Let A be any unital Banach algebra, and take al9...9aneA.

We have a homomorphism Fn -> A that sends 1 •-> 1, Xλ •-> al9..., Xn •->

an, where Fn is the free algebra in Xl9...9 Xn. Can we extend this map to

some algebra s/ of "noncommutative functions"

\

127
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the existence of the extension being subordinate to a condition on a (yet
to be defined) joint spectrum of (al9...9an)Ί This is the functional
calculus problem for noncommutative algebras.

Our first task is to define the algebras of noncommutative functions
that will play the role of the 0{U)9 U Q C". Let us again consider a
commutative situation: entire functions of one variable. We can regard
them as "holomorphic functions", i.e., continuously differentiable func-
tions C ~-> C that satisfy the Cauchy-Riemann equations. Or we can view
them as "analytic functions", i.e., power series with infinite radius of
convergence. Of course, these notions are identical: a function is holomor-
phic if and only if it is analytic. The equivalence holds for functions of n
variables4, any function holomorphic (in the Cauchy-Riemann sense) in
the open set U c Cn is locally the sum of its Taylor series, and conversely.

It is somewhat surprising that the natural generalizations of "holo-
morphic" and "analytic" to noncommuting variables give rise to two
different theories. For simplicity, we shall deal again with "entire" func-
tions. We can consider functions that send w-tuples of i X / matrices to
i X i matrices (n > 2 is fixed, i ranges over the positive integers). If we
demand that these functions satisfy suitable intertwining conditions, we
obtain the algebra 2{Ω) of "free entire holomorphic functions". Even
simpler is the definition of ^(oo), the algebra of "free entire analytic
functions": we take all free power series with infinite radius of conver-
gence. J. L. Taylor, who introduced S(Ω) and ^(oo) in [14], showed that
J^(oo) embeds in S(Ω). The inclusion is proper: take free indeterminates
Xλ and X29 and consider

f{Xl9X2) =

where Sk is the standard alternating free polynomial in k variables. It is
easily shown that / e <@(Ω), for the value of / on a couple of matrices is
always given by a finite sum (Amitsur-Levitzki theorem, see [10]); but
/ £ ^(00): it cannot be written as a convergent power series (2.9).

Let us go back to the functional calculus problem. Since we can
always substitute Banach algebra elements in a free power series, the map
Fn -> A extends to ^(00). However, we are looking for a functional
calculus, and J^(oo) is not really a function algebra. Thus, we now ask
whether the map Fn -> A extends to «9(Ω) (which is a function algebra)

Fn - 4
4 / • (Taylor's question, [14])
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In order for the dotted map to exist, it is necessary that the subalgebra of
A generated by al9...,an be a Pi-algebra, i.e., some free polynomial
vanishes identically when evaluated on elements of the algebra (2.7).

The converse question is more delicate. We conjecture that ^(Ω)
gives a functional calculus for all Pi-algebras and any (finite) number of
variables. We prove this

(a) when the algebra is a separated quotient of a closed subalgebra of
a Banach Azumaya algebra;

(b) when the number of variables is two, and the algebra satisfies all
polynomial identities of 2 X 2 matrices.

It is not known if every finitely generated Banach Pi-algebra enjoys
property (a). Even if this is not the case, (b) indicates that (a) might be
superfluous.

To attack this question, we shall assume henceforth that the unital
Banach algebra A satisfies all identities of i X i matrices. Then the map
Fn -> A vanishes on the ideal Tni of those elements in Fn that are
polynomial identities for i X i matrices, and yields a map Fn/Tni = Rni

-* A, where Rni is the algebra of n generic i X i matrices. Rni can also
be described as an algebra of polynomial functions M/1 -> Mi (Mt is the
algebra of complex i X i matrices; likewise Mtj is the space of complex
i X j matrices, GLZ the complex general linear group,...). We can con-
sider ^ , the closure of Rni in Θ{MJι,Mi). An intrinsic definition of ^
can be given for n = i = 2, but fails when i > 2 or n > 2. 01 is the
algebra of "entire holomorphic functions of n i X i matrices". Does
Rn t -> A extend to

\

This question is equivalent to the following: can every function in Si be
represented by a power series, i.e., do "holomorphic" and "analytic"
coincide for entire functions of n i X i matrices (where now both n and /
are fixed). Still another way to phrase the question is: do <®(Ω) and
J^(oo) agree after factoring out the functions that vanish on / X i matrices?
If the answer is affirmative, we will have shown that <@(Ω) -+ A.

When n = i = 2, we can prove it, because we have precise structure
results on i? 2 2 , the algebra of two generic 2 x 2 matrices [7]. Our
approach does not seem to generalize to n > 2 or i > 2, when the
structure of the generic matrix algebra is less well understood. The basic
difficulty with our algebras 0t is that they are not finite modules over
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their centers, and the centers are not finitely generated algebras. Neverthe-
less, we can try a more complicated construction. Instead of considering
entire free power series, we take free power series with a finite polyradius
of convergence. Also, we add q extra indeterminates to the n we started
with, and impose q relations, before factoring out the identities of i X i
matrices. If the relations are chosen suitably, the quotient turns out to be
an Azumaya algebra (hence finite over its center), and its center is finitely
generated. Then we can show that the quotient is isomorphic to the
algebra of all "holomorphic functions" defined on an open set of Mt

n

which is a natural generalization of a polynomial polyhedron. This implies
the existence of ^(Ω) -> A when A is (a topological subquotient of) an
Azumaya algebra («, / arbitrary).

The contents of this paper can be summarized as follows. In Chapter
One, we give basic facts about algebras with polynomial identities. The
sole original result is a description of the algebra of two generic 2 x 2
matrices by intertwining conditions. Free algebras of analytic and holo-
morphic functions are introduced in Chapter Two, which is based on
Taylor's [14]. We include a study of "domains of holomorphy", parallel to
the domains of holomorphy in classical complex analysis. In Chapter
Three, we discuss Pi-algebras of holomorphic functions. Chapters Four
and Five, where the commutative functional calculus plays an important
role, constitute the heart of the paper. In Chapter Four, after developing
an implicit function theorem due to Taylor, we show that holomorphic
functions on n i X / matrices admits power series expressions in ap-
propriate domains, for which the function algebras are Azumaya. Chapter
Five concentrates on functions of two 2 x 2 matrices. Finally, Chapter
Six describes the construction of a functional calculus, under the assump-
tions (a) or (b) stated on page 129. For closed subalgebras of Azumaya
algebras, we obtain a functional calculus on polynomial polyhedra con-
taining the spectrum.

This paper originates in a doctoral dissertation completed at the
University of Utah under the supervision of Joseph L. Taylor, whom we
thank for his encouragement and stimulating comments.

Chapter One. Polynomial Identities

Let A be a complex algebra with unit. A satisfies a polynomial
identity if some noncommutative polynomial in n variables vanishes on
all ^-tuples of elements of A. We also say that A is a Pi-algebra. We shall
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write A < Mj when A satisfies all the identities of / X / matrices (in
particular the standard identity S2i = 0).

Basic properties of Pi-algebras can be found in [9], [12], [16]. Let us
also mention this recent result.

1.1. PROPOSITION (Braun). If A is a finitely generated Pi-algebra,
there exists i e N such that A < M .

Proof. See [4].

Azumaya algebras (also called central separable algebras) form an
important class of Pi-algebras. Here is a deep and useful fact.

1.2. PROPOSITION (Artin-Procesi). A is an Azumaya algebra of rank i2

over its center Z if and only if
(a) A < M
(b) For every maximal ideal I in A, A/I is a central simple algebra of

dimension i2 over its center.

Proof. [16, II.3.5].

Recall that, for A < Λfz , the Formanek center F(A) oί AΊs the subset
of A obtained by evaluating all central polynomials (for i X i matrices)
without constant term, in any number of indeterminates; see [9.VIII].

1.3. PROPOSITION

(a) F(A) is an ideal in Z(A), the center of A.
(b) F(A) = Z(A) if and only if A is an Azumaya algebra of rank i2

over its center.

Proof. [10, 5.1, 5.4].

Let n > 2, / > 2 be two integers. Let R be the algebra of n generic
/ X / matrices (see Introduction, or [11]).

Let B be the algebra of invariants (for ^-tuples of i X / matrices),
which we define by

B = {/: Mf^'C: /(mxm"1) =/(x) for all χεMf,we GlΛ
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Then S = BR is the algebra of concomitants (also known as the trace

algebra), and

1.4. PROPOSITION.

S = //: M? 4 Mz : /{rnxm'1) = mf{x)m'1

for all x <E Af/1, m e G l J .

Proo/. [11, 2.1].

Is it possible to describe R by stronger intertwining conditions? The

definition of Taylor's ^(Ω) algebra suggests that this might be possible, if

we accept noninvertible intertwining matrices. Unfortunately, this works

only for n = i = 2, where we have the

1.5. PROPOSITION. Let

R' = {/: M 2

2 P - n M 2 , f(χ)m = rnf(y)

wheneverx, y G M 2

2 , m e M2 andxm = my).

Then R' = R, the algebra of 2 generic 2 x 2 matrices.

Proof. Basic structure results for R are given in [7]. By (1.4),

S = {/: M2

2PO^nM2, f(x)m = mf(y)

when JC, y e M2

2, m G GL2 and cm = iwy>

and thus R Q R' Q S. Now i? and S have the same commutator ideal K

[7], so i?' will also have K as its commutator ideal, and R/K c Rf/K c

S/K:. Let Xl9 X2,Γ1,Γ2 be the classes modi^ of Xl9 X2,tτXvtτX2 e S.

Then i ? / ^ = C[Γ 1 ? X2] and S/ίΓ = C[Xl9 X2, Tl9 T2\. Take

al9 bv cv a2, b2, c2 G C and let

0 a2 0
Λ 2 \0 bτ-a,

0 \ (a, 0
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Let x = (xl9x2) and y = (yl9y2) Note that_^(^J5)j= (\ %)y. Let m =

(\ S). Suppose / G S/tf. Write f =Y.\ijklX[X{T$T[ (where λ ^ e C

and the sum is finite). If / e R'/K, f(x)m = mf(y), which forces λ^ =

0 when k Φ 0 or / Φ 0. Thus / e Λ'/ϋ: imphes that / = ΣλiJ00XiX{ e

Λ/^:, and from i?yϋ: = R/K, it follows that i?' = R (the final part of

this argument is due to E. Formanek).

From this description of R' = R, we obtain

Z(R) = Z(Λ') = {/: MΓ-ίΓc, f(x)=f(y)

whenever x, y e M2

2, m Φ 0, and xm = my >

from which we can get

1.6. COROLLARY.

= C + B{XλX2 - X2Xι)
2.

This appears in [7] with a different proof.

However, results analogous to (1.5) fail for n > 2 or i > 2.

1.7. EXAMPLE (Formanek). Let R be the algebra of 3 generic 2 x 2

matrices. Consider / e S , /(J*Γl9 X2, X3) = tτX1(X2X3 - X3X2); then /

satisfies the strong intertwining condition, but f £ R. Similar examples

can be given for pairs of i X i matrices (i > 2), and of course for n-tuples

of i X i matrices (i, Λ > 2).

We now go back to the algebra of invariants B (nj arbitrary). B is a

finitely generated algebra; more precisely

1.8. PROPOSITION. B is generated by {te(Xqι Xq)
m. r < 2ι! - 1}.

Proof. [11,1.3].

It follows that B is Noetherian.

Fix a set of generators zv...9zp for B. This defines a map Π:

1.9. DEFINITION. Let M^w = {(xv..., xn) G M": JC1? . . . , xπ generate

MJ.Let M? = M?- Mt

n.
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Note that Mj1 is open and dense in M/1.

Two important facts are contained in

1.10. PROPOSITION, (a) Π maps M? onto an affine algebraic subυariety

Mn C^dimΔ = (A2 - I)/ 2 + 1.
(b) Π restricted to M" maps onto an open, smooth subset Δ o / Δ ; in

fact, M? is the total space of a principal bundle with fiber PGL, and base A.

Proof. [10, 4.1.5.10]

We now attack the spectral study of Banach Pi-algebras. The funda-

mental structure result is

1.11. PROPOSITION. Let A be a primitive Banach algebra satisfying a

polynomial identity of degree d.

Then A = M, for some i < [d/2]

Proof. By a theorem of Kaplansky [9, II.l], A is a central simple

algebra of dimension z2 over its center Z, with 2i < d. By the Gelfand-

Mazur theorem, Z ^ C. Since C is algebraically closed, we conclude that

A = Mz .

1.12. COROLLARY. Assume A is a unital Banach algebra that satisfies

an identity of degree d, and let I be an ideal of A. Then (a), (b), (c) are

equivalent and imply (d):

(a) / is maximal

(b) / is primitive

(c) A/I « M, (2/ < d)

(d) / is closed.

Let A be a unital Banach Pi-algebra, and take a = (av..., an) e An.

All irreducible representations of A are finite-dimensional, and this will

allow us to define the joint spectrum of (av...,an) as a subset of

1.13. DEFINITION. Let

S P Ϊ ( ^ ) = {{ψ(aι)>- >φ(an)): Ψ irreducible representation A -> Mι

and sp(α) = U^sp^a). (Actually the union is always finite.)

We will need the notion of full spectrum.
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1.14. DEFINITION. Let

Aa) = {(ψ(aι)9...,ψ(an)): ψ nondegenerate

representation A -» M j

Also interesting is the polynomial spectrum.

1.15. DEFINITION. Let

άa) = {x = (xl9...,xn) ^Mt

n: pp(x) < pp(a) for all p SΞ Fn)

(p = spectral radius),

and psp(a) = UfLipsp(a).
Clearly 0 c sp(α) czfsρ(a) Qpsp(a).
We will not consider the problem of the Gelfand transform (can we

represent any semiprimitive Banach Pi-algebra as an algebra of continu-
ous matrix-valued functions?) in full generality here. Let us just mention
the

1.16. PROPOSITION (Fell). Let A be a unital C*-algebra such that
A/I =2 Λfz for all maximal ideals I of A (i is fixed). Let Z be the center of
A: then Z = C(X) for some compact Hausdorff space X. There is a bundle
Jί with fiber Mt and base X such that A =* Γ(X, Jt), the algebra of all
continuous sections of over X.

Proof [6, Th. 3.2].
Thus Azumaya C*-algebras can be represented as section algebras

(since the bundle J( need not be trivial, we cannot always write A =
C(X, M )). A similar result will be given for some Azumaya algebras of
holomorphic functions (4.19).

Chapter Two. Free Algebras of Functions

In his papers [14] and [15], Taylor studied "localizations" of the free
algebra. We fix n > 1. An embedding Fn-* si (where J / is a Frechet
algebra, i.e., a complete, metrizable, locally m-convex algebra) is said to
be a localization if there exist n linear maps Δ1? . . .,ΔW : J/->J/<S>J/(<S>

is the completed inductive tensor product) that have properties similar to
partial differential quotients [15, p. 6]. If, furthermore, Δ 1 ? . . . , Δw satisfy
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conditions analogous to the Cauchy estimates, si will be called a free
analytic algebra [15, p. 13]. When the map Fn -> si is understood, we shall
just say that si is a localization. Taylor gives many examples of localiza-
tions of Fl9 the polynomials algebra in one indeterminate. He shows that
si is a free analytic algebra (in one indeterminate) if and only if si= Θ{U)
for U open in C. Since the algebras Θ(U) give a one-variable functional
calculus, we can hope that free analytic algebras (in n indeterminates) will
lead to a functional calculus for n noncommuting variables in a Banach
algebra.

We shall also need the notion of "lmc completion". The lmc comple-
tion jtf of a topological algebra si is the Hausdorff completion of si
with respect to the family of all continuous submultiplicative seminorms
on si. It has the universal property:

si -> B

j/

viz. every continuous homomorphism si-* B (B Banach algebra) factors
through si; see [13, p. 178] for an equivalent definition.

We assume henceforth n > 2. Let us investigate some "free algebras
of functions".

Every free polynomial p of degree d in Fn can be written as
p = Σfσl=oλσX

σ where σ is a noncommutative multi-index, |σ| its length,
and λσ is a complex coefficient. Let / =]0oo]. On /", we have the partial
ordering a = (al9..., an) < b = (bl9..., bn) if and only if ax < bv..., an

< bn. Let r ^ In. We introduce the algebra of power series [14], [15]:

2.1. DEFINITION.

&(')={ Σ λσ*
σ: Σ |λσkσ < oo for a l l / e r , t < r\

\|σ| = 0 |σ| = 0

Endowed with the obvious family of (semi)norms, #"(r) is a Frechet
algebra, and a free analytic algebra [15, p. 17]. Let ^(oo) = ̂ (r) where
r = (oo,..., oo). J^(oo) is the lmc completion of Fn, and can be regarded
as the algebra of "free entire analytic functions" (although free power
series do not correspond to functions in the sense of mappings). Taylor
claimed [14, p. 235] that ^{r) was never nuclear (as a Frechet space).
However, we have the

2.2. PROPOSITION. Let r = (rl9..., rn) e Γ. J^(r) is nuclear if and

only if at most one of the rl9...9rn is finite.
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Proof. We follow [14]. J^(r) is nuclear provided that, for every

p' e In

9 pr < r, there is p G J Λ , pf < p < r, for which the series

k ^ k k λ \ ' " kn\ [ P l

is convergent. This series can be rewritten as

oo / / \ k

Σ P l . . Pn\ ί 1

which converges if

Pi Pn

If (and only if) at most one of the rl9..., rn is finite, then for every choice

of ρf < r we will be able to find p, p' < p <r9 such that the above

inequality is satisfied, and &(r) will be nuclear.

2.3. COROLLARY. J^(OO) is nuclear.

Here is the relationship between free power series and the functional

calculus problem.

2.4. PROPOSITION. Let A be a unitial Banach algebra, and take

al9...9ane A. Choose rλ > \\aλ\\9 ...,rn> \\an\\. There is a continuous alge-

bra homomorphism &(r) -> A that maps 1 •-» 1, Xλ *-> al9... 9 Xn *-> an.

Proof. Elementary.

But, as we observed earlier, J^(r) can hardly be regarded as an

algebra of functions. Therefore, we shall now turn our attention to a quite

different kind of algebra, based on the idea of function rather than power

series.

The following definitions are borrowed from [14, p. 238]. Let Ω =

UjlxM/1 (topological disjoint union). If JC = (xv. . . , * „ ) ^ Af/1, y =

(yl9..., yn) e M"9 x θ y will denote

x o\ //*, o \ ix, on

o y)-[[o Λ J--lo , . ) J β ^
Let U be an open subset of Ω, let ί̂  = U Π Λ^". Then Ĉ  is open in Af,-.
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We denote the Frechet algebra of holomorphic functions in Uι with

values in Mι by Θ(Ui9 M,-).

Let 38{U) = ΠfLi&iU^M;) be the topological direct product. Thus

an element / G 38 (U) is a function on U which, when restricted to Un is a

holomorphic function with values in Mr

Note that 9S(JJ) is a nuclear Frechet algebra. We shall say that U

open in Ω is normal if x G Lζ , y G Lf implies i θ j G C//+/.

2.5. DEFINITION. Suppose ί/ is a nonempty open normal subset of Ω.

Then

whenever x G ί//5 y G £/,-, m G M f / and im = ray).

is a closed subalgebra of ^ ( t / ) and hence is also a nuclear Frechet

algebra. We have a natural map Fn -» 3ι(U). As no (nonzero) free

polynomial vanishes in all matrix algebras, this map is injective. Here is a

crucial property.

2.6. PROPOSITION. // U is a nonempty open normal subset of Ω, 3)(U)

is a projectiυe limit of Banach Pi-algebra.

Proof. £${U) is a closed subalgebra of 38(U). Any continuous semi-

norm v on 2{U) is essentially given by v(f) = max{| |/(x)| | : x G AT} for

some JSΓ compact in U, so K <z \J'J=1Mj1. Thus ^"^O) contain all poly-

nomial identities of i X / matrices, and the normed algebra 2(U)/v'ι(ΰ)

< Mr Taking an increasing sequence of compact sets and completing, we

can realize 2{U) as a protective limit of Banach Pi-algebras.

2.7. COROLLARY. Let A be a Banach algebra, and <p: Sf{U) -» A a

continuous homomorphism. There exists i G N such that φ@(U) < Mt

(hence φ@(U) < M, ).

Thus, if A is a Banach algebra with unit, and av . . . , an G ̂ 4, we can

hope to get a functional calculus map 3>(U) -* A, 1 •-* 1, Λ^ ^

α l 5 . . . , XΛ •-> flΛ only when the subalgebra of A generated by av..., an

satisfies some identity, hence all identities of / X / matrices for some /

(1.1).

Since Sf{U) is lmc and complete, the embedding Fn -> 3f(U) yields

an injection J^(oc) -> 2{JJ\ In particular, #"(oo) -» ^ ( Ω ) . We know

that J^(oo) is an algebra of "free entire power series", while S(Ω) is an

algebra of "entire matrix-valued functions".
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2.8. PROPOSITION. The map ^ ( o o ) -> ^ ( Ω ) is not surjective.

Proof. If it were, ^"(oo) and i^(Ω) would be isomoφhic Frechet
spaces; but on ^ ( Ω ) there is no continuous norm (2.7) and J^(oo) admits
many continuous norms.

A more concrete explanation is the following (see Introduction).

2.9. EXAMPLE. Let n = 2, consider
00

f{Xι, X2)
 = 2-rf Sk[Xl9 XιX29'"9 X1X2 )-

Then / € J^(oo): write / as a power series Σλ σΛ r σ, and observe that for

all J E N , there is a multi-index σ, \σ\> d, λ σ = 1; thus ΣλσJSfσ cannot

have infinite radius of convergence.

But / G ^ ( Ω ) : if x = (JC19 JC2) e A//% /(jc l 5 x 2 ) is given by the finite

sum Σ2

ιϊ=2Sk{xι,xιx1,...,xιX2~ι)> and / G ^ ( Ω ) ; it is easily checked

2.10. PROPOSITION. Let f e 0(Ω), x G Ui9 y e ί̂ . ΓΛere ώ α //
Δ: MJj -> M / y , z »-> f(x, y, z) such that

X Z

o y

(f(x) Δf(x9y,zY
i 0 f(y) t

whenever (g 'i+j'

. See [14, p. 239]. Note that (x

0 °y) G ϋj+j,, and as [/ is open,

(0 v) G ^+y f°Γ a ^ z i n a neighborhood of 0 in Af/J .

2.11. PROPOSITION. Every f & ^ ( Ω ) Λ^ a formal free power series in

Xl9..., An.

. For a given /, / will have a power series as a function
M/* = Cn'2 -» C / 2 = Mf.. This Taylor series can be written as a power
series in Xl9...9 Xn9 say Σ^QX^X0 [15, p. 20]. As Mi does not satisfy
any polynomial identity of degree < 2/, the λ(j} are uniquely determined
for |σ| < 2/. We define λ σ = λ ^ for any i > |σ|/2, and ΣλσX

σ is the
formal power series for /. Example (2.9) shows that we lose control on the
growth of the coefficients.
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Taylor proves [14, p. 242] that 3>(U) is a localization. However, it is
not a free analytic algebra. Let us only show

2.12. PROPOSITION. ̂ (Ω) is not a free analytic algebra.

Proof. Let E be an infinite-dimensional Banach space. If <®(Ω) were
a free analytic algebra, the set

V = {(*!,..., JCΛ) e (jSf ( £ ) ) " : there is a continuous homomorphism

would be open in the norm topology of (&{E))n [15, p. 14]. But (2.7)

F c W = {(xl9...9xn) G ( i f ( £ ) ) w : JC 1 9 . . . , JC Λ

generate a Pl-subalgebra of <£? (i?)}.

Since 0 = (0, . . . , 0) e ϊF and W is not a neighborhood of 0, V cannot be
open. A similar argument shows that 2{U) is not a free analytic algebra.

In the setting of matrix-valued functions, we can study envelopes and
domains of holomorphy.

As usual, let U be a nonempty, open normal subset of Ω. By a
representation 2{U) -> Mi9 we mean a continuous unital algebra homo-
morphism. Since 2{U) is a localization of Fw, we have the

2.13. PROPOSITION. Let (xv...,xn) ^ M?. There is at most one

representation 2{U) -> Mi9 Xx •-> xv..., Xn >-* xn.

Proof. [15, p. 7].

Of course, if x = (xv... ,xn) G lζ., evaluation at JC will give a
representation. A natural question is: are there (finite-dimensional) repre-
sentations which are not evaluations?

2.14. DEFINITION. For i = 1,2,3,..., we let

Uj = {JC € M/1: there is one representation

Then C/ = U^x Ĉ  is the envelope of holomorphy of tΛ Since ί^ .cί j . c
Λ//1, we have ί/ c ί / c β ; thus we do not have to consider "Riemann
domains".
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2.15. Conjecture. We believe that tj is always open in Ω. If it were

true that 2{U) is a free analytic algebra, this would follow from [15].

Note that U is normal; if U is open, we have a natural isomorphism

2.16. DEFINITION. U is a domain of holomoφhy if U = U.

Although we do not have a complete characterization for domains of

holomoφhy, we have necessary conditions contained in the

2.17. PROPOSITION. Let U be a domain of holomorphy. Then:

(a) For all i, Ui is holomorphically convex {in the classical sense, viz. as

a subset of Cnil).

(b) Ifx G Ui andm G GL,, then mxm~ι G Ut

(c) Ifx G lζ. αm/j; G IΓ , ίAew

(o ί ) e D l + y forallztEM".

(d) // (g p G tfί+., /λ6n x G ϋj

Proof, (a) Assume Ut is not a domain of holomoφhy in Cni. Let Lζ

be its classical envelope of holomoφhy, which is a manifold spread over

Cw '2. Every holomoφhic function g: Ut -» Mz extends to g: t)j -> Mt.

Take x G t);, let ψ: 9{U) -» M/? / -> g(x) (where / | ^ = g); this defines

a representation of @(U). If x does not lie over Ui9 ψ cannot be given by

any point of U^soU is not a domain of holomoφhy.

(b) ψ(/) = mf(x)'1 defines a representation, which must be given by

evaluation at mxm'1.

(c) As U is normal, x 6 ί i | . and y e U. imply that

x
0

As [/ is open, for w G M/J , w small enough,

Now, by (b),

x w

0 7

O l J \ ° ^ J U l ) " \ 0

for all / e C*. Since tw is arbitrary, we see that

0 y) e ^+y f o r d l z e M o ^ s e e a k o
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(d) This follows from [15, p. 7].
We do not know if these four conditions are sufficient, i.e., if every

normal, open U that satisfies (a), (b), (c), (d) is a domain of holomoφhy.
We also have a class of examples, the holomoφhic polyhedra. Let V

be a domain of holomoφhy (e.g., Ω), take / j , , , . , / ^ @(V\ and con-
sider

U={χeV:pf1(x)<\9...9pfq{x)<\}.

U is open and normal, moreover

2.18. PROPOSITION. U is a domain ofholomorphy.

Proof. First observe that C / c F = > [ / c f / c F = F . Suppose x e U
— U. We can assume, without loss of generality, that pfλ(x) > 1, so there
is η e C, |τj| > 1, such that fλ(x) - η is not invertible in M(. But fλ - η
is invertible in Sd{JJ\ and a unital representation should map invertibles
onto invertibles.

In classical complex analysis, domains of holomoφhy are holomor-
phically convex, and conversely (Cartan-Thullen). Here, the ί^(ί/)-convex
hull of a compact subset of U will almost never be compact, even if U is a
domain of holomoφhy. Still, we think that domains of holomoφhy
should be "limits" of holomoφhic polyhedra.

Chapter Three. PI-Algebras of Functions

Let A be a, unital Banach algebra, and αl9..., αn e A. We have
shown that a functional calculus map 2{U) -> A could exist only if the
subalgebra of A generated by αv..., αn satisfied a polynomial identity,
hence all identities of i X i matrices for some / (2.7).

Without loss of generality, we shall assume that A itself satisfies the
identities of / X / matrices, i.e., A < Mt.

Suppose there exists φ: £&(Ω) -> A, 1 •-» 1, Xλ •-> αl9..., Xn »-> αn. φ
will then vanish on the ideal of polynomial identities of / X / matrices,
hence on its closure /,. = {/e ^(Ω): / = 0 on MJ1} (actually / = 0 on
Mt

n implies / = 0 on Af/, j < /). Thus φ will yield a map ^(Ω)/7, -> A.
The quotient 2(βi)/Ii can be expressed as an algebra of functions taking
^-tuples of j Xj matrices (1 <j< i) to j Xj matrices, and 3l{Q)/Ii <
M...
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In order to attack the question of the existence of φ, we need a
satisfactory theory of such quotient algebras, more generally of quotients
3>{U)/{fe. 2{U): f vanishes on Uj for all j < i}9 where U is open and
normal in Ω. Therefore, we are led to investigate Pi-algebras of functions,
similar to the 2d{JJ\ but now U Q{Jι

J=1M" has only finitely many
"levels".

We shall make a simplifying assumption, viz. consider just U c M"
(U has only one level). In the two cases we will study later, this is no loss
of generality:

— If i = 2, we can always embed (^-tuples of) scalars as (^-tuples of)
scalar matrices (Chapter Five)

— When our Pi-algebra of functions turns out to be Azumaya of rank
ι2, U must be contained in λf? (Chapter Four).

Another argument for restricting ourselves to "one-level" algebras is that
we can embed all MJ91 < j < /, in Mn (see also 6.6)

Let us thus take U open in M/1.

3.1. DEFINITION.

jtr(U) = (/: tΛ^ 'M,. , f(x)m = mf(y) whenever

x9 y e U9 m G Mi9 xm = my\.

3.2. DEFINITION. 9t{U) = the closure in Φ(U9 Mf) of the algebra R of
n generic / X / matrices.

Clearly 3t(U) c Jίf(U). In some sense, 9t{U) is the smallest algebra
we can define, if we demand that it be closed in Θ(U9 Mt) and contain the
generic matrices. We also expect every function of n i X / matrices to
satisfy the intertwining condition in (3.1), so Jίf(U) is the largest algebra
we can reasonably work with.

Neither of these two definitions is totally satisfying, (3.1) in view of
example (1.7), (3.2) because we do not expect all domains U to be Runge.
But both will prove to be useful in the sequel. In the next two chapters, we
shall show, under suitable assumptions on U9 that 3i(U) = J^(U). Let us
already mention

3.3. PROPOSITION. ^(M 2

2) = JT( Af2

2).

Proof. Let / e j f ( M 2

2 ) ; / is the sum of its Taylor series (as /:
-> M2), i.e., / = Σ^]=ocμt

μ where cμ e M2, μ is a commutative multi-
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index, and t is a 8-tuple of complex numbers (the 8 entries of the matrices
Xx and X2). Since the intertwining condition (3.1) is linear, fk =
Σ^=ocμt

μ e R (the algebra of 2 generic 2 x 2 matrices) by (1.5), and

fk -> /, so / e ^ ( M 2

2 ) . The reverse inclusion is obvious.

This result will be generalized later (4.17). Note that the analog of
(3.3) fails when n > 2 or / > 2, because of (1.7).

Chapter Four. The Implicit Function Theorem

Algebras of holomorphic functions on polynomially convex sets in C"
were studied by H. Cartan and K. Oka in the 1940's. They yield one road
(Waelbroeck) to the commutative functional calculus [8], while another
approach (Shilov, Arens-Calderon) uses the Weil integral formula. We do
not see any generalization of the Weil formula to functions of several
noncommuting variables. On the other hand, Taylor [15, p. 23] proved an
"implicit function theorem" that will play the role of the Oka-Cartan
results.

4.1. PROPOSITION. Let 3F= ̂ (rv..., rΛ, sl9...9 sq) be a power series
algebra (2.1) in the indeterminates Xτ,..., Xn, Yv..., Y. Let pv..., pq be
free polynomials in Xly..., Xn and let I be the closed ideal generated in &
by Pi -Yl9...,pq- Yr

Then £ = IF/I is a free analytic algebra in the indeterminates Xl9...9Xn9

provided I Φ & (we do not distinguish between Xk in 3F and its class
mod/, k = l,...,w).

Proof. [15, p. 26 (Example 3)].

Recall that algebras of power series do map into Banach algebras
(2.4), but not all functions in ^(Ω) have convergent power series expres-
sions (2.9). However, this very example (2.9) indicates that power series
algebras and matricial function algebras might coincide after factoring out
the identities of i X i matrices. Our goal is to prove this, under suitable
hypotheses. The idea is to map quotients of power series algebras into
Pi-algebra of functions (Chapter Three) by a "Gelfand transformation"
and show that the homomorphism must be an isomorphism.

We want to map § = &/! (4.1) into an algebra Jίf(U) (3.1). Let us
study £ by looking at its finite-dimensional representations (a representa-
tion is always assumed to be continuous and nondegenerate).
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4.2. DEFINITION. For i = 1,2,3,..., we let

Uj— {x = (x l 9 . . . , xn) e M/1: there is a (unique, 2.13)

representation $ -> Λf,, Zx •-> JC X , . . . , Xn •-> xn).

Note that each Uέ is open in M? [15, p. 14] and invariant under
conjugation. What does Ut look like? Can it be defined by analytic
inequalities?

4.3. PROPOSITION. Let \\\\ be any algebra norm on Mt. If x =
(xl9 . . . , * „ ) e M/1, **</ ll^ll < r l 9 . . . , | | x j | < rn9 \\px{x)\\ <

Proof. This follows from (2.4)
We have a converse result

4.4. PROPOSITION. If x = (xl9. . ., xn) e Ui9 then p(xλ) <
rl9...,p(xn) < rn, ppλ(x) <sl9...9ρpq{x) < sq.

Proof. Suppose X G ϋj. Let a be the corresponding representation
S -> Mf , and α its lift &-* Mi9 so δ( Xx) = xx. Now / = ΣJLo^-^ί G ^
if Σ*lo c**ί converges for all /x e R+, rx < rl9 and then ά(/) = Σ™=ockx!{
converges only if p(xx) < rv As Ut is open we must have p(xx) < rv

Similarly, we can consider power series of a single variable, and show
p(x2) < r29..., p(xn) < rn9 ρpx(x) <sl9...9 ppq(x) < sq.

4.5. R E M A R K . Combining (4.3) and (4.4), we see that, for x e Af/1,

χi) < rl9...,p(χn) < r

\\Pι(x)\\ < s l 9 . . . , \ \ p q ( x ) \ \ < s q f ~X€Ξ i=*

which does not completely determine Ut (except when / = 1), but does
give some control on it. Later, projective limit arguments and the
Gelfand-Beurling formula will allow us to obtain functional calculi on
domains defined by analytic inequalities (6.4).

4.6. REMARK. If (for example) pλ is a central polynomial for / X i
matrices, then pλ(x) is a scalar matrix for all x e M/2, ||/?i(*)|| = ρpι(x)9

and the condition for px is completely known.
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4.7. REMARK. With results like (2.18) in mind, one could believe that
actually (4.4) determines Ui9 i.e.,

eM?: p(x1)<r1,...,p(xn)<rn9

ppx(x) <sl9...,ppq(x) < sq).

This is not the case; let n = 2, q = 0 (so § = 1F\ rγ = r2 = 1, / = 2.
Then

and inclusion is strict: let f(Xl9 X2) = Σ ^ . o ί ^ Λ ) * * / G ^ a n d (*i> *2)
e ί/2 implies p(;c1x2) < 1, which does not follow from p(xτ) < 1, ρ(x2)
< 1.

Now let i be chosen such that Uι Φ 0, but Uj = 0 for 7 < z. Note
that all we are going to do is trivial for i = 1, so the reader may assume
i > 2.

Our strategy is to study a quotient algebra of $ which is Azumaya of
constant rank i2. All irreducible representations of such an algebra will be
/-dimensional. Thus, Ίί Uj= 0 for j < /, but UtΦ 0, we will factor out
the identities of i X 1 matrices, in order to get rid of all the irreducible
representations in dimension greater than 1.

Let U = Ur Also note that ί̂  = 0 for j < i implies U Q M? (1.9);
if x E [/, JC e M/1, then x corresponds to a reducible /-dimensional
representation, which yields a subrepresentation and a quotient represen-
tation in dimension less than /, contradicting the emptiness of UJ9 j < i.
We have the "Gelfand transformation": for / e S9 x e {/, let /(x) =
φ(/), where φ is the unique representation &-* Mi9 Xλ •-> x l 9 . . ., Xn ̂ >
xn.

4.8. PROPOSITION. The map f »-> / defines a continuous homomorphism
γ: «f-

. [15, p. 15].

γ is certainly not injective; ker γ contains /, the closure in S of the
polynomial identities of i X / matrices.

4.9. DEFINITION. Let ^ = S/J.

We obtain a homomorphism ^ -^ Jf. We want to prove that <§ -* J?
is in fact a (topological, as both ^ and J? are Frechet) isomorphism.
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We shall prove (4.12, 4.13) that ^ and Jf are Azumaya of rank i2. Of
course & < Mi (we factored out / which contains the identities of i X i
matrices) and $?< Mt (Jf is an algebra of MΓvalued functions). All
closed maximal ideals of 9 and 34? correspond to points in U c M?9 and
they have codimension i2. but we cannot apply Artin-Procesi (1.2) here,
since ^ and Jίf have maximal ideals that are not closed. We need the

4.10. PROPOSITION. Let A be a Frechet algebra which is Azumaya over
its center Z. Then the trace map [5, /// §2] T: A -> Z is continuous.

Proof. A is a finite Z-module. Take el9...9ek a generating set for A

over Z ; if a e A, a = Σ)=λajej for some aλ,...,akeZ. Since T is

Z-linear, T(a) = ΣajT(ej). Consider the map ψ: Z* -» A, (av ...9ak)->

Σa-e^ ψ is continuous and suqective, hence open, and Zk/keτ\p — A (as

Frechet spaces). Let T\ Zk -+ Z, (al9...,ak) -> TQLdjej) = ΣajT(βj).

Tf is continuous and vanishes on kerψ, yielding a continuous map T"\
ZVkerψ -^ Z. Now T is just Γ/r provided we identify ,4 with ZVkerψ.
(I am indebted to R. Brooks for this argument.)

Recall that we defined a map Π: M? -> Δ c C^ which sends Λ "̂
onto A, A smooth (1.10). Since U c M,", we have F = UU c A, F is a
smooth locally closed submanifold of Cp, and

(/: U °^m'C, f(mxm-1) = f(x) whenever

4.11. PROPOSITION. V ispolynomially convex in Cp.

Proof. Write J^= limJ^, where the J ^ are Banach algebras, and
^ = lim &k. Then each ^ is a Banach Azumaya algebra, as shown by
(1.2): all maximal ideals of 9k are closed and have codimension i2. Now
R (the algebra of n generic i X i matrices) is dense in ^, for Fn+ was
dense in & (4.1) and density is preserved under quotients, and R is dense
in each &k. The trace map T: &k -> Z(^k) is just (up to a coefficient
which we may assume is 1) the usual trace, so T maps R into B,
B c Z ( ^ ) ; since R c ^ , we see that BR = S Q &k. As i? is dense in
9k9 so is S. Furthermore, B is dense in Z ( ^ ) : if / e Z ( ^ ) , f=Tf9S
dense in ^ = > / = l i m / 7 ( / . ε S ) , Γ continuous (4.10) => / = 7/ =
hm 77)., and each 77) G Zί^) = 5. Since J5 is dense in Z(9k)9 Z{<gk) is a
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finitely generated commutative Banach algebra. Its maximal ideal space
Vk can be identified with a compact, polynomially convex subset of A.
Now Vk c V9 in fact V = \JkVk is an increasing union of compact
polynomially convex subsets of A, and each compact subset of V is
contained in some Vk. Therefore V is polynomially convex.

We can now prove

4.12. PROPOSITION. Jtf is an Azumaya algebra.

Proof. In view of (1.3), it is sufficient to prove that F(J^) = Z(JίT).
We already know that Z(J(?) = Θ(V). Let # be the set of central
polynomials without constant term. Then M? = Π{f~\0)} ( / e V). As
Z(R) c B and B is Noetherian, we can suppose M/2 = {x e A//2: fx(x)
= = fr(x) = 0}, with fl9...9freB. These functions f l 9 . . . , fr can
be seen as functions on ΠM/1 = Δ, they have no common zero on A,
hence no common zero on V. As V is polynomially convex, we can find
gl9...9g, e Φ(V)9 with fιgι + - • +/rgr = 1. This shows 1 e F(JT),
and J f is Azumaya.

Similarly, we have

4.13. PROPOSITION. 9 is an Azumaya algebra.

Proof. The space of closed maximal ideals of Z(^) is V (same proof
as in (4.11)). Take f v . . . , fr as in (4.12). They have no common zero in V9

and by a result of Arens [2] we can find gl9...,gr ^ Z(&) with fλgγ

+ " +Λ^r = !• τ h u s 1 e F(S?) and S? is Azumaya.

4.14. REMARK. We have a map 9 -» ̂ f7 between two Azumaya alge-
bras of rank ι2. In order to show that this map is an isomorphism, it is
enough to establish the isomorphism on the centers. Injectivity of Z(^)
-> Z{J^) implies injectivity of 9 -> 3tf9 because we have a natural corre-
spondence between ideals of 9 and ideals of Z(&). If Z(&) -> Z(Jίf) is
also surjective, then 9 -> J^ is bijective [12,1.8.49].

4.15. PROPOSITION. ΓΛe map Z(^) -> Z(Jίf) is an isomorphism.

Proof. Again, write 9= lim S^ and Z(9) = hmZ(9k). The maxi-
mal ideal space F^ of Z(9k) is a compact polynomially convex subset of
F. By a form of the (commutative) holomoφhic functional calculus due to
Allan [1], there is a continuous homomorphism Φ(V) -> Z{9k) which is
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the identity on B. Passing to the projective limit, we obtain a map

Θ(V) -» Z(9). We also have a map (Gelfand) Z{9) -> Z(JT) = Θ(V\

and the composition Z(@) -> Z(Jίf) -> Z(@) is the identity on B, which

is dense in Z(^) . Hence Z(&) = Z( Jf).

From this, we obtain, in view of (4.14)

4.16. THEOREM. The map & -> Jί? is an isomorphism.

This theorem has several consequences

4.17. COROLLARY. &(U) = JfT(U) (recall (3.1, 3.2)) (/or i? w έfeiwe ί/i

4.18. COROLLARY. ΓΛ<? idealJ (see 4.9) ώ βήfwα/ to kerγ (/or J^(£/) is

separated by its i-dimensional representations).

4.19. PROPOSITION. There is a holomorphic bundle Jί over V with fiber

Mi such that Jtif is isomorphic with Y(V,Jl) the algebra of holomorphic

sections of Jί over V.

Proof. Cover U by open sets Ua such that Ua - U(Ua) X PGL, ( =

as complex manifolds). Let Va = Π Ua. On Ua9 Π has a holomorphic

section σa: Va -> £/β, Π(σα(z)) = z for all z in Va. For / e JT(U), define

/«: F « ^ M / b y f«(z) = f(°a(z)) (z(ΞVa) W e S e t homomorphisms
Jίf(U) -> Φ(Kα, Mz), / -> /α. Pasting these, we obtain a bundle Λ? over V
and a map Jt?(U) -» T(V,Jί). This map induces an isomoφhism on the
centers, and both algebras are Azumaya. Thus Jίf(U) — Y(V,Jί).

Chapter Five. Two Generic 2 x 2 Matrices

Let R be the algebra of generic 2 x 2 matrices generated by Xx and

X2. The structure of R is described in [7]. As generators for the algebra of

invariants B, we take zx = trX1 ? z 2 = detX1 ? z3 = trX2, z 4 = detX2>

z 5 = tvX1X2, so 5 = C[z1? z2, z3, z4, z5]. Note that

so all invariants could be expressed in terms of traces (1.8).

The algebra of concomitants S is a free 2?-module of dimension 4:

S = B + BXλ + BX2 + .BA^X,. We shall also need the commutator ideal

of R (cf. 1.5)), [i?, R] = [5, S] = S(XXX2 - X2Xλ).
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We let T = XλX2 - X2Xl9 σ = τ2 = {XYX2 - X2XX)
2, and Z(R) =

C 4- Bσ (see 1.6).

We now find the lmc completion of R. As & = 3$(M2) is lmc and
complete, we have an injective map R -» ^ , and we shall show that it is a
(topological, as both R and ^ are Frechet) isomoφhism. Note that R
and @t are not Azumaya (they have irreducible representations in di-
mension 1 and 2), so the method of Chapter Four (reduction to the center)
will not do. Instead we are going to use a Five lemma argument.

We have a diagram with exact rows

0-> [R,R] -* R -* R/[R9R]-+0
a I βl γ l

0 -• \9t,9t\ -* 9t -* 9t/\9t, Λ]-*0

where [R, R] and [3t>&] are the closed commutator ideals of R and 3%. If
we can prove that both a and γ are isomoφhisms, it will follow that /? is
bijective too.

5.1. PROPOSITION, γ is an isomorphism.

Proof. Both R/[R, R] and ^ / [ ^ , @\ are commutative Frechet alge-
bras generated by (the classes of) Xx and X29 and we have

where the maps on the left are holomorphic functional calculi, and the
maps on the right are Gelfand transforms. It follows that Θ(C2) =
R/[R, R] = 3t/\9t, 9t\

Now we have to show that a is an isomoφhism. We let 3$ = B =
0(C5), and define 5^= ^ + ^ + ^ Z 2 + @XXX2.

5.2. PROPOSITION, y w a free 38-module.

Proof. If α + ftJ!^ + c^2 + dXxX2 = 0, with α, f),c,ί/G ^ , write four
scalar equatins (corresponding to the four matrix entries) and observe that
the determinant of the system is σ = (XλX2 — X2Xι)

2. Since σ is not a
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zero-divisor, a = b = c = d = 0 is the only solution.
Next let

Γ= {/: Mf^M^ fimxnr1) = m/(x)m"1

for all x e Λf2

2, m e GL2J.

5.3. PROPOSITION. ίf= *Γ.

Proo/. Clearly ^ c y , and Z ( ^ ) = Z(f) = # . Let / e ^ " . An
argument similar to (3.3) allows us to write / as the sum of a power series,
all partial sums of which belong to S = B + BXλ + BX2 + 5XXX2. Thus
we can write f = a + bXx + cX2 + dXλX2, where α, Z?, c, J are formal
power series in zv z2, z3> z4, z5. On the other hand, a, b, c, d can also be
computed by solving a 4 X 4 system with entries in 3& and determinant σ,
so by Cramer's rule α, 6, c, d will be meromorphic functions: a = A/σ,
(A £L £#), etc. But the fact that a has a formal power series forces a to be
holomorphic on C5, i.e. a e ^ . Similarly, b,c,d^ 3$ and / e ^ .

We let JΓ= ^ T , and claim that Jf = [Λ, Λ] = [#, ̂ ] . Actually, since
[R, R] c [^, Λ] we need only show that J f c [£, Λ] and [^, 9t\ c Jf.

5.4. PROPOSITION. Jf c [Λ, Λ].

. It is enough to show that 3#τ Q[R,R].

Let v be any submultiplicative seminorm on R. Without loss of
generality, we can suppose v is a norm. Let E be the completion of Bτ
with respect to v. E is a Banach space, and J?(E) is a Banach algebra.
We have an embedding ψ: B -> J?(E), given by (/ e 5):

ψ(z5)(/τ) = XxX2fτ + frXxX2 (see [7]).

These relations show that ψ(zx), ψ(z2), ψ(z3), ψ(z4), ψ(z5) are »̂
continuous (Bτ -> JBT), hence extend to continuous linear maps E -* E.
Let v4 be the closure of ψ(B) in 3?(E). A is a finitely generated
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commutative Banach algebra. At this point, we can employ the (commuta-
tive) holomorphic functional calculus: there is a continuous homomor-
phism Θ(C5) = a -> A, 1 -> 1, zλ -> ψ(zx), z2 -> ψ(z2), z3 -> ψ(z3), z4

»-> ψ(z4), z5 •-» ψ(z5). Hence, if / e ^?, the linear map ψ(/) will be in >4,
it will send τ onto fτ e £. Thus JV C £. This holds for any choice of *>,
and 3&Ί c 2?T, the closure of Bτ in [Λ, Λ] (i.e., in R). We can multiply by
Xl9 X2 and XXX2, proving that J f c [Λ, R].

5.5. PROPOSITION. [^, ^ ] c Jt.

Proof. [Λ, 9t\ = [JT, JT] c [̂ ", T\ = [^, ^ ] = Jf.

Combining (5.4) and (5.5), we have

5.6. PROPOSITION. [R, R] = [^, ^ ] , so a is an isomorphism.

Now, by the Five lemma, (5.1) and (5.6) yield

5.7. THEOREM, β is an isomorphism, and R = ̂ ( M 2

2 ) = 2

5.8. REMARK. We have not been able to find the lmc completion of
the algebra of n generic i X i matrices for n > 2 or i > 2. We believe that
it should equal &(M?)9 i.e., that Θ{MJι,Mi) induces the finest lmc
topology on the algebra of n generic / X i matrices. But it is only for
n = / = 2 that we have enough information on the generic matrix algebra
(given in [7]) to prove it. The structure of the other generic matrix algebras
is less well understood.

As an application of the above result, let us consider the following
situation. A is a topological algebra and Z(A) its center. We have maps

Z(A)

and the homomorphism Z(A) -> Z(A) need not be one-to-one or onto,
as shown by (5.9, 5.11).

5.9. P R O P O S I T I O N . If A is the algebra of two generic 2 x 2 matrices,
the map Z(A) -> Z(A) is not surjective.

Z(A)

i
A

- Z(A)

T
^ A

Proof. A = Ji?(M*) = @(Mϊ) (5.7), and (cf. 1.6) Z(A) = C +
Θ(C5)σ. Recall that Z(A) = C + Bo. Endow C 5 with a norm, and let
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Γ = { Z E C 5 : \O(Z)\ < exp(-||z||)}. T is ia "rapidly decreasing" neighbor-
hood of { z e C 5 : σ(z) = 0}. T is not compact. Nevertheless, every
/ e Z(A) is bounded on T: f e Z(A) =* f = a + bo (α e C, b <Ξ B =
C[zv z2, z3, z49 z5]); |/(z) | < \a\ + |Z>(z)|exp(-||z||) for z G Γ . W e can de-
fine a submultiplicative seminorm on Z(A)by v(f) = sup r |/(z)|; v does
not extend to Z{A), as g(z) = σ(z) exp(zx

2) is unbounded on T. So Z(^4)
is a proper subalgebra of Z(A).

5.10. REMARK. If it were true that Z(A) = C 4- 0(C5)σ> then it
would be possible to show (using localization, in the ring theoretic sense)
that A = Jίf(Mj). This is the case, but for different reasons.

Here is a different phenomenon.

5.11. PROPOSITION. If A is the enveloping algebra of sl(2,C), then the
map Z(A) —> Z(A) is not injectiυe.

Proof. By [14, p. 250], A is a direct product of matrix algebras. We
know that A has one (up to equivalence) irreducible representation in
each dimension 1, so A = Y\fLιMi, and Z(A) — CN is the algebra of
sequences of complex numbers. Now Z(A) = C[Ω] (Ω is "the" Casimir
element), and Z(A) =* 0(C), the entire functions of Ω. We have the map
φ: Z(A) -> Z(A). Looking at the infinitesimal character, we see
that φ sends the function Ω e Θ(C) to the sequence (0,3/4,2,...,
(n2 - 1 ) / 4 , . . . ) < Ξ C N . Hence

By the Weierstrass theorem [8, 1.5.4], φ is a surjection Θ(Q -> C N . φ is

not injective, for its kernel contains /(Ω) = sin4τrΩ.

Chapter Six. The Functional Calculus

The results of Chapter Four will now yield a functional calculus for

topological subquotients of Banach Azumaya algebras, giving a positive

answer to Taylor's question: if A is a separated quotient of a closed

(unital) subalgebra of a Banach Azumaya algebra, if a = (al9. . . , # „ ) e A",

then there is a continuous algebra homomorphism S(Ω) -> A that sends

1 -> 1, A^ -> a l 9 . . . , Xn •-» αn. If we suppose that 4̂ is a closed subalge-

bra of a Banach Azumaya algebra, we can even get a functional calculus

on a polynomial polyhedron. We will also give a result valid for two

variables in any Banach algebra satisfying all identities of 2 X 2 matrices.
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First let A be a Banach Azumaya algebra of rank i2 over its center

Z(A). Take (al9...9an) = a e ^4". Our idea is the following: choosing

suitable free polynomials pl9...,/^, radii rl9..., rn9 sl9...9sq9 using the

implicit function theorem of Chapter Four, we will get a homomoφhism

9 -> Jί?(U) which, provided 9 and f̂7 are Azumaya, will be an isomor-

phism (4.16). Since 9 maps into A, we will obtain a continuous homomor-

phism J(?-+ A. But things are not that simple. Since all irreducible

representations of A are /-dimensional, we have have (see 1.13) that

spj(a) = 0 for j < i. This does not imply that spz(α) c M/2 (a trivial

counterexample: let ax = = an = 0). Even if sp (α) c M/2, we do not

know that psp^a) c M/1 (see 1.15), and even if pspέ(a) c M/1, can we

find suitable Pι,...9pq and corresponding radii such that Ui = U Q M/2?

If this can be done, then the machinery of Chapter Four will apply. The

difficulties can be overcome. As A is Azumaya, Z(A) = F(A) (1.3); in

particular, 1 G i ^ ) , there exists Pθ9 SL free polynomial without constant

term which is central for i X i matrices, and bl9...9bm e A9 such that

P0(bv . . . , fem) = P o(^) = l Let ^ 0 = 1 — P o . Let us use the construction

of Chapter Four, pv...9pq being free polynomials in Xl9...9 Xn9 p0 a

free polynomial in X[9..., X'm. We choose rx > HαJI,..., rn > \\an\\9 sx >

\\Pι(a)\\,...,sq> \\pq(a)\\. We take J ^ to be the free power series

algebra in Xl9..., Xn9 X[,..., X'n9 ΎX9..., Ύq9 Yθ9 with the radii rl9..., rπ,

oo, . . . , oo, 5 1 ? . . . , sq, 1. We have a continuous homomoφhism (2.4)

), . . . J ^ ^ ( β ) , 7 0 ^ 0 = 1 - Po(b) = po(b). This homomor-

phism vanishes on the closed ideal generated in ^ + by Yo - p0, Yx -

pl9...9Yq— pq, and by all polynomial identities of ' Letting Φ* be the

quotient, we obtain a map ^ - > A9 Xλ-> al9... 9 Xn *-> an9 X[ •->

1 ? ...9xn9x'l9...9 x'm) e M"+m: there is a representation

sr->Λ, x ^ ^ , . . . , ^ ^ ^ , x{~x'l9...9x'm*x

Now U+=UXU\ where U Q M?, U'Q M["; in fact (4.6) £/' =
{(*ί, . . . , x l ) G Aί/": | Λ ( x 0 l < 1}, and U c M - (for Po = 1 - p0

vanishes on M™\ hence U Q Mt

n+m. By (4.16), the map ^^JίT =
Jίf(U+) is an isomoφhism. This shows

6.1. PROPOSITION. There is a unique continuous homomorphism Jίf(U+)

-> A9 1 -» 1, Xι*+a9...9Xn*+an9 X{>-> bl9...9X'm++ bm. (Uniqueness

follows from polynomial density (4.17)).
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This is not satisfactory yet, because

(a) we do not know U+ in terms of analytic inequalities;

(b) we are interested in functions of a,..., an, and bl9...9bm have

been thrown in.

In order to get rid of the bl9...9 bm, observe that Jί?(U+) = &(U+).

Restrict the map Jίf(U+) ^ A to the algebra of n generic matrices

generated by Xv..., Xn, and extend it by continuity to the closure, viz.

<%{U) (recall that ί/+ is a product domain). This implies

6.2. PROPOSITION. There is a {unique) continuous homomorphism

@{U) -*AA*l,Xi* al9...,XH * an.

All we know about U is (4.5). We let

U* = {x e MP: p(Xl) < rl9...9p(xn) < rn9

PPi(x) < *i, , PPq(x) <s

q)

Then ί / * D ί / (4.4), which gives a homomorphism 3t{U*) -> 9t{Jϋ\ and

(6.2) yields

6.3. PROPOSITION. There is a unique continuous homomorphism 9l(U*)

The proposition is not quite optimal: we chose rλ > H α ^ l , . . . , r π >

\\an\\> s ι > \\Pi(a)\\> •- >Sq> \\Pq(<*)\\'> a n d w e d e f i n e U* b y spectra l radii.
Fortunately, we can express everything in terms of spectral radii. Take

h > P(aι)> "^n> P(an\ h > ppx(a)9 ...9sq> ppg(a); t h e n for k large
enough, K l | < r ί , - . . , r t < r * , \\p*(a)\\ < ϊ * , . . . , \\pk

q{a)\\ < sk

q. We
just repeat the whole construction, but with (n + q) extra polynomials

* ! * , . . . , * * , pϊ,...,p%9 and radii r ^ , . . . , ^ , ί*,...,ί*. Since p(xf) =

p(xι)k,..., (6.3) becomes

6.4. THEOREM. / /

W= [xeλf?: ρ(x1)<fl9...9p(xn)<rn9

PPi(x) <Si> > >PPq(x) <sq}>

there is a unique continuous homomorphism @(W) -> A9 Xλ ^> al9..., Xn
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This gives the functional calculus on polynomial polyhedra for Banach

Azumaya algebras of constant rank. Now let AQ be a closed unital

subalgebra of the Banach algebra A, Azumaya of rank i2. Let a,...,an G

Ao. We have

6.5. PROPOSITION. With W as in (6.4), there is a unique continuous

homomorphism 0ί(W) -> Aθ9 1 •-> 1, Xλ -> al9..., Xn *•> an.

Proof. This follows immediately from (6.4), since Ao is closed in A.

6.6. PROPOSITION. If AO is a Banach Azumaya algebra, it is a closed

subalgebra of a Banach Azumaya algebra of constant rank.

Proof. Let Ao = (&[ AJ9 Aj Azumaya of rank j 2 . Let k = i\ We

can embed Aj as a closed subalgebra of Mk/J(Aj) which is Azumaya of

rank k2, and Ao = ®\=ιMk/j(Aj)\ the embedding has closed range, for

the sum is direct.

6.7. COROLLARY. Proposition 6.5 holds for closed subalgebras of Banach

Azumaya algebras (of nonconstant rank).

Now let A be a Banach Azumaya algebra, Ao a closed subalgebra of

A, and ̂  the quotient of Ao by a closed ideal. Let ( α , . . . , an) e ^4". Lift

6.8. PROPOSITION. // rx > μ(aλ\...,rn > p(άn)9 sλ > pp^a),...9sq

> ppq(a)9 if

W= {xeM?: p(xx)<rl9...9p(xn)<rn9

PPι(x) <sl9...9ppq(x) < q

there is a unique continuous homomorphism 9$(W) -> Al9 N 1, Xλ

an.

Proof. Compose 9t{W) -> Ao (6.5) with the quotient map Ao -> Ax.

This proposition is not fully satisfactory: we had to take rx >

p(aλ)9 We do not know if it holds with rλ > p(α x), Anyway, (6.8)

gives us the

6.9. COROLLARY. // Aλ is a topological subquotient of a Banach

Azumaya algebra of rank z'2, and a,...,an e Al9 there is a unique continu-

ous homomorphism ^(M") -> Al91 •-> 1, Xλ *-> al9... 9 Xn *-> an.
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We are ready for a partial answer to Taylor's question.

6.10. PROPOSITION. // Aλ is a topological subquotient of a Banach

Azumaya algebra, if a,...,an ^ Al9 there is a unique continuous homomor-

phism 0 ( Ω ) -+Al9\~>\9X1*+al9...9Xn-» an.

Proof. Compose S(Q) -» 9(M?) -* Av To see that 0(Ω) -» ^(M/ 7),

combine (2.11) and the argument of (3.3).

6.11. REMARK. It is not known if every finitely generated Banach

Pi-algebra is a topological subquotient of a Banach Azumaya algebra. In a

purely algebraic setting, every algebra with n generators that satisfies

some identity is a quotient of the algebra R of n generic i X / matrices

for some i (1.1), and R can be presented as a subalgebra of a matrix

(hence Azumaya) algebra. In the Banach case, the best we can say is

6.12. PROPOSITION. Let A < Mέ be a unital Banach algebra. Assume

a e F(A) and a is not a topological divisor of zero. Then A can be

embedded as a closed subalgebra of a Banach algebra B which is Azumaya of

rank i2.

Proof. Since a is not a topological divisor of zero, there is a Banach

algebra B that isometrically contains A and where a is invertible [3] (here

A is not commutative, but a is central, and Aren's proof works in our

case). Now a e F(B), a invertible in B imply 1 e F(B), and B is

Azumaya.

We now employ the results of Chapter Five.

Let A be a unital Banach algebra, A < M2; take (al9 a2) e A2.

6.13. PROPOSITION. There is a unique continuous homomorphism
2 -+A9l~l,Xi~ al9 X2 * a2.

Proof. This is just a restatement of (5.7).

6.14. COROLLARY. There is a continuous homomorphism 3>(Sΐ) -> A9

> 1, Xλ -> al9 X2 >-> a2.

Let us summarize (2.7, 6.10, 6.14).
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6.15. THEOREM. Let A be a unital Banach algebra; a,...9ane A. In

order for a continuous homomorphism ί^(Ω) —> A, 1 »-> 1, Xx —> α 1 ? . . . , Xn

•-> an to exist, it is necessary that B, the closed subalgebra of A generated by

1, a9...9an satisfy a polynomial identity; it is sufficient that B be a

topological subquotient of a Banach Azumaya algebra or that n = 2 and

B < M 2 . We conjecture that the necessary condition is also sufficient.

In Chapter One, we defined various notions of spectrum, including

the "polynomial spectrum" (1.15). We can restate (6.5) in terms of /?sp.

First we need a

6.16. PROPOSITION. Let A be a unital Banach Pi-algebra, and b e A.

Then p(b) = sup{pφ(6): φ irreducible representation of A).

Proof. It is obvious that p(b) > ρφ(b) for all φ. Now there is s e C,

\s\ = p(6), such that (b — s) is not invertible, hence not invertible on

either side [9, IIA3]. Thus A{b - s) is a proper left ideal, which is

contained in a maximal left ideal /. This gives an irreducible (finite-di-

mensional, 1.12) representation φ of A. As φ(b — s) = φ(b) — s is not

invertible, ρφ(b) > \s\ = φ(b).

T a k e p1,...,pq free p o l y n o m i a l s , rl9..., rn9 sl9...9sq> 0. A n o p e n

set of t h e f o r m

W= [x^Mt

n: p(x1)<r1,...,p(xn)<rn9

PPi(x) < sl9... 9 ppq(x) <sq]

is called a polynomial polyhedron.

6.17. PROPOSITION. Let A be a Banach algebra that is Azumaya of rank

i2 over its center. Let (a,..., an) = a ^ An. If W Q M? is a polynomial

polyhedron that contains sp7(α) = / s p z ( α ) , there is a continuous homomor-

phism &( W) -> A91 -> 1, Xx *+ al9..., Xn -• an.

Proof. Recall (6.4). All we have to show is that W ~2 sp^(α) implies

*ι > P(aι\ •->rn> P(an)> sι > PPι(a)> - >sq > PPqW B Y (6-16), p(ax)
= s\xp{ρφ(a1): φ irreducible}. So

sPi(a) QW=> (φ(a1)9...M<*n)) e W (all φ)

=> pφ(^i) < rx (al lφ)

=> p{aλ) <rl9....



CALCULUS FOR PI-ALGEBRAS 159

Here is the corresponding formulation of (6.5). Let Ao be a closed
subalgebra of A, a Banach Azumaya of rank i2. In view of (6.6), we can
assume that the dimension of all irreducible representations of Ao divides
i (this is automatic when / = 2). Take a = (a,..., an) e AQ.

6.18. PROPOSITION. If W is a polynomial polyhedron that contains

(tf), there is a continuous homomorphism 3t{W) -> Aθ9 1 •-» 1, Xx •->

Proof. Similar to (6.17), as every irreducible representation yields a
/-dimensional representation.

6.19. REMARK. In the commutative case, the Arens-Calderon trick [8,
3.2.3] allows us to obtain a functional calculus on (an open neighborhood
of) the spectrum. For Pi-algebras, it is not clear that we can pass from
polynomial polyhedra to arbitrary open sets containing the full spectrum.
Every commutative algebra with unit "contains" C, so the resolvent
equation Σn

k==1(ak - sk)xk = 1 makes sense, and is solvable precisely for
s £ sp(α). For A < M, , there is in general no embedding Mif -> A9 and
the problem should be formulated differently.
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