
PACIFIC JOURNAL OF MATHEMATICS
Vol. 125, No. 1,1986

A DESCRIPTION OF HSP-LIKE CLASSES,
AND APPLICATIONS

ANTHONY W. HAGER

First, in a concrete category, an HST-cIass (of objects) is one
closed under P: products, S': some kind of subobjects, H: surjective
images. Next, given a class E of morphisms, the object class of "injec-
tives for E" is defined: A e inj E means Ve e E, Vφ G
Hom(domain(e), A), 3φG Hom(codomain (e), A) with φe = φ. Then,
the "description" of the title is, in a concrete category with enough free
objects, and well-behaved in other ways: the HST-classes are exactly the
classes of the form inj E, for just those E which have domain(e) free for
each e e E (with the meaning of S' and the nature of the maps in E
depending on each other). This includes a version of Birkhoffs Variety
Theorem, but more to the present point, is interpreted easily in various
specific settings from topology, algebra, and abstract analysis to provide
quite concrete descriptions of HSP-like classes.

1. ST-dasses. In this preliminary section, we assemble definitions and

facts needed for the main result (2.2 below). A detailed account of most of

this appears in [HS, Chapter X] (though the Remark below notes a small

caveat).

1.1. DEFINITIONS. Let ^ be a category. A "class of objects" in # , or a

"subcategory of # " always will be assumed isomorphism-closed, and

subcategories will be assumed full.

A. The subcategory 3t is reflective in # if, for each object C e ^

there is an object rC e <% (the reflection) and a map C -* rC (the

reflection map) such that, whenever R e 8% and φ ^ Hom(C, R) there is

unique φ ^ Hom(rC, R) with φrc = φ.

The class s/ of objects is a P-class if whenever {At} is a subject of

s/9 then the ^-product miAi exists and lies in s/.

B. Let £ c epics (in # ) be closed under composition and contain all

isomorphisms.

!% is <?-reflective if 0t is reflective with each rc e £.

Define Jί(£) = {m\m = ge, e G ̂  => e isomorphism}. If B -> A e

)9 we call B an ^(^)-subobject of A.
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Class si of objects is an S^-class if A e si and ί - ^ ^ G Jί(g) =>

We call # an S-category if (a) Jί(S) is closed under composition,
and each morphism / has a factorization / = me, with e ^ S and
m e Jί(S), which is unique up to isomorphism, and (b) ^ is <f-cowell-
powered, i.e., each object has a "sufficient set" of <?-maps out of it.

REMARK. In the above, one may think of £ = surjections and Jί(S)
= injections, whence "^(*?)-subobject" is just "subobject" (in many
familiar categories, at least), or of <^= epics, whence the maps in Jί(S)
are called extremal monic.

However, while our applications in §3, 4 are of that sort, we should
note (the referee points out) that, in general, Jί(β) need not consist of
monies. In fact, 33H of [HS] is an example, relevant to our 4.1 below,
which see. (Condition (a) in the definition of <?-category says that
(S, Jί(g)) is a "right bicategory structure" in the sense of [K2]. This
differs from the "{£, ^#(^))-category" of [HS] exactly in that our J((S)
need not consist of monies.)

Now recall the definition of inj E in the introduction.

1.2. THEOREM. Let # be an S-category with products.
(a) (Freyd, Isbell, Kennison) The subcategory IM is S-reflectiυe iff the

object class of (% is an S#P-class.
(b) (Isbell, Kennison) The class of objects 9t is an S#P-class iff

R = injEfor some E c g.

1.2(a) is the cornerstone of the theory of reflections. Exactly this is
stated and proved by Kennison in [K2, p. 356]. Kennison attributes the
result to Freyd and Isbell, referring to [I2]. In [I2, p. 1276], Isbell states
and proves the above assuming Jt($) c monies, says " . . . except for
quibbles, it is a result of Freyd.", and refers to Freyd's thesis. One may
also see [HS], which has Jί(S) c monies; that makes little difference to
the proof.

Our Theorem here (the introduction and 2.2 below) is clearly a
refinement of 1.2(b), regarding which: 1.2(b) is implicit in [I2] and [K1]. In
[IJ, one may begin looking at p. 644: 3.24 must use a version. In [K1? see
p. 406, "Proof of Theorem 1.2"; here, however, S = all epics. Doubtless,
the idea of using injectivity classes has appeared in many other places.

One proves 1.2(b) as follows: If 9t is S^P, then 9t is «?-reflective by
1.2(a). Then, let E = {rc\C e <§} (i.e., all reflection maps for 9t\ It is
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easy to prove that 01 = inj E. Conversely, if & = inj E: It is routine and
standard to verify that 0t is a P-class. It is routine too that Si is an
S^-class, using, though, the important "diagonalization" lemma ([K2],
1.1(6)): If ge = m/, with e E / a n d / w ^Jί{S\ then there is k with
ke = f and mk = g. (The crucial role of diagonalization is made clear in
[HS].)

2. HS^P-classes. The following is the setting for our description, 2.2
below.

μ

2.1. Let ^ be a category, with a functor #-> ^ to another category
^. (Usually, ^ will be the category of sets and functions, with μ an
obvious forgetful functor.)

(1) A morphism A -> Q of ^ will be called a surjection (in Ή) if μσ
is a retraction in G, i.e., if there is μA <- μQ with (μσ)χ = i d ^ . (In case
^ is sets and functions, we shall, of course, want "onto homomorphisms"
to be surjections: we assume the Axiom of Choice.)

μ

A class s/ of objects will be called an H-class if A e j / and A -> β

a suqection imply β G j ^ .
(2) We shall suppose that μ has a left adjoint, i.e., over each ^-object

there is a μ-free object, i.e.:
Given G e ^ , there is F{G) e # and a ^-map G -^ μF(G) such that

whenever C e ^ and G -> μC is a ^-map, there is a unique

The objects of the form F(G) are called free.

2.2. THEOREM. Let ^ be an S-category with products, which satisfies
2.1, and let Si be a class of objects. Then 3i is an HS^P-class iff 3%= inj E
for some E c $ with domain(e) free for each e e E.

2.3. REMARKS. In 2.2, note that: μ appears in the definition of H, and
in the definition of free; S appears in Sf and in the condition "E c $";
μ and S have almost nothing to do with each other. (One may note that
since retractions are always epic, if μ is faithful, then surjections are epic,
but not necessarily in S)

Thus, if one wants to study epireflections in a particular <$ via 2.2,
there are two degrees of freedom, choice of £ and choice of μ. These
choices are illustrated in 4.1 and 4.5, below.
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(I don't have an example where it is definitely necessary to use some
μ

-» other than a relatively obvious underlying set or unit ball functor. It

seems to me that there surely are such examples. In any event, there is no

technical complication at all associated with our apparent additional

generality.)

Proof of 2.2. We show that any HS^P-class takes the indicated form.

(1) LEMMA. (Slight variant of 31.9, [HS]). In # , each object is the

surjectiυe image of a free object.

Proof. Given A, let F(μA) -> A be the unique map for which

(μf)ιμA = idμA (per 2.1(2)). Then immediately, μf is a retraction in G,

hence / is a surjection.

(2) LEMMA. Let & be an S^P-class, and let E = {rF\Ffree] (i.e., the

class of reflection maps of free objects). Then, 2% c inj E c H0t.

Proof. 2% c inj{ r} for any ̂ -reflection map r, whence 0t c inj E.

Let A G injE, and (per (1)) let F be free and F-* A & surjection.

Then, there is rF -> A with frF = /, and / is a surjection (since (μf)(μrF)

= μf is a retraction, whence so is μf). Thus v4

So, if 3t is / / ^ P , (2) yields ® = inj E.

We now show that, for E as described, inj E is HS^P. From 1.2, inj £

is already S^P, so we show H:

(3) LEMMA. (Slight variant of 31.8, [HS].) In <g, each free object is
f σ

"sur-projective": Given F free, F -> Q and surjection A -> β, ί/zere w

A with of = f.

Proof. Let F = F(G), and consider

G %

x' 4 μf έ

μA £
X

/**•(<?)
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where, first, χ exists with (μσ)χ = idwg, since σ is a surjection; second,

we define χ' = χ{μf)*>G\ third, there is unique F(G) -> A with (μf)tG =

χ\ by freedom.

By uniqueness of "lifts over F(G)" there is only one F(G) -> β with

(μg)'c = (f"Ox'- But μ(σ/)iσ = (μo)(μf)ιG = (μσ)χ', and also (μ/) ι σ

= (^uQ)(μf)ιG = (μo)χ(μf)tG = (μσ)χ'. Thus σ/ = /, as desired.

(4) LEMMA. Let E QS with domain (e) free, for each e e E. Then,

inj E is an H-class.

Proof. Let A e inj £, >4 -^ β a surjection, F-^ B ^ E (with F free),

and F -> β. By (3), there is F -+ A with of = /. Then there is 5 -> ^

with /<? = /, whence σ(fe) = (σf)e = of = /, as desired. So β e inj E.

That completes the proof of 2.2.

2.4. COROLLARY. Lei # fee αw S-category with products, which satisfies

2.1, flrtd fe/ ^ 6e fl« S^P-class. Then: H0t = inj{ r F | Ffree}.

. (2) shows that H@Q Hin}{rF\F free} c H0t. But inj{rF |

F free} is already an if-class, by (4) above.

3. Remark on identities. We derive a version of Birkhoff s Variety

Theorem. So the model is the class of abstract algebras of some type. (See

[P].) Suppose that if-^ Sets satisfies 2.1.

A class E of surjections from free objects is called a class of identities',

if A G inj E we say that A satisfies E; inj E is called an equational class.

(A single identity may be thought of like this: Let F be free and p,

q e F. Let e be the quotient of F onto i 7 modulo "p = #". Then, A

satisfies "p = q" means A e inj{e}.)

So let <f = all surjections, suppose that ^{S) = all monies, and

suppose ^ is an ^-category with products. For S#, write S. Then 2.2

holds, and reads:

^ is an HSP-class iff Sfc is an equational class.

4. Applications. For the various specific # ' s below, we shall, unless

mentioned otherwise, take <?= all epics, whence Jί{d>)—the so-called

extremal monies consists of monies A -» B for which, identifying A with
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its image, "A admist no epic enlargement within BΓ For each specific ^
below, we shall, of necessity, be quite sketchy about technical details.

4.1. Hausdorff and Tychonoff spaces. We shall recover the theorem of
Kannan-Soundararajan [KS], For Haus, epic means dense image (whence
Haus is (epi-) cowellpowered), and extremal subobject means closed

subspace. Morphisms then factor as X -> Y = X -> f(X) *-> Y, and Haus

is an epi-category, of course with products. Take the usual forgetful
μ

Haus -> Sets; then the free objects F(S) exactly have μF(S) = S with

F( S) discrete.
So 2.2 applies and says: 01 is HS^P iff ® = inj £, for some class E

of dense maps of discrete spaces. About such ^ , one now proves easily
that the following are equivalent. (1) έ% contains a space with > 2 points.
(2) 3% contains discrete {0,1}. (3) $ contains every compact space. (4)
Each e e E is compact-extendible (i.e., Comp c inj E).

Compact-extendible maps in Haus are described in 2.5.1 of [He], and
in [KS] (p. 143, Step 4, (a), (b), (c)). For simplicity, we restrict to
Tychonoff spaces. Here, D -> K is compact-extendible iff K c βD
(Stone-Cech compactification) and e is an embedding. Rephrasing in
Tych: for each discrete 2), let E c K(D) c βD, let Jf = {D <-> K{D) \ D
discrete}, and rename injJf as "^compactness". Now 2.2 for Tych
reads: 3t is HS#P iff dt = {{1}, 0} or 91 = ̂ compactness for some Jf.
[KS] prove this, actually for regular Hausdorff spaces.

(We note that this example can be described with J^= all dense
compact-extendible maps, whence Ji{!F) = all perfect maps. (See 33H of
[HS].) Here, Jί{^) c monies. Then, one can show, a class $% is S^P iff
<% is S^P (i.e., epireflective) and 0t contains all compact spaces.)

4.2. Uniform spaces. Unif is the category of Hausdorff uniform spaces.
For X G Unif, sX denotes Samuel compactification. (See [It].) Everything
said above about Haus is true in Unif, up to the point of what "compact-

e

extendible" means. Here, D -» K is compact-extendible iff sK = sX and
e is a uniformly continuous homeomoφhism (which means that topologi-
cally K is a subspace of sD, and the uniformity of K is no coarser than
the relative one from sD, and relativized to D, is no finer than D 's—which
for discrete D is automatic). So, for each (uniformly) discrete D, let
D Λ K{D) be compact-extendible, let J f= {D -^ K(D) \D discrete},
and rename injJf as "^compactness". Then, 9ί is HS^P iff ^ =

0 } , o r ^ = ^compactness for some X.
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4.3. Proximity and Alexandroff spaces. (See [lt] and [Hx], respectively.)
Assume the Hausdorff axiom. The HS^P-classes in each of these cate-
gories are as in Tych, with the Smirnov compactification (Prox) and the
Alexandroff compactification (Alex) replacing the Stone-Cech compactifi-
cation.

4.4. Abelian torsion-free and lattice-ordered groups. [HMa] describes
HS^ P-classes in (let us say) Ab and /Ab. We sketch the situation.

Here, "A -> B is epic" means that B is a subobject of the divisible

hull of the image e(A). For Ab, that is elementary and for /Ab, it is a

theorem from [AC]. So Ab and /Ab are epi-cowellpowered. Extremal

subobject thus means pure subgroup or sub-/-group, and homomorphisms

A -> B factor as A -» B = A -> p(h(B)) -> 5, where p(h(B)) is the pure

subobject generated by A(2?).
We use the usual underlying-set-functor, Ab or /Ab -> Sets. The free

object on the set S, F(S), is for Ab, Σ{Zs\s e S}, (each Z5 = Z), and
for /Ab, the sub-/-group of Z z * generated by all projections πs: Zs -* Zs

(see [BKW]). So 2.2 applies, but is reduced further as follows:

(a) [HMa] In Ab or /Ab, let 9t be S,P. Then, inj{rF\F free} =

inj{Z -> rZ).
Then, if ^ (still only S#P) is not trivial, rz must be an embedding

and it follows from elementary algebra that rZ is a sabring of g, hence is
the subring of Q generated by reciprocals of some set P of primes, and
A e inj{ Z -> rZ} means 4̂ is P-divisible. Thus

(b) [HMa] In Ab or /Ab, # is HS^P iff 9t = {(0)} or St = P-divisible,
for some set P of primes.

4.5. Archimedean l-groups with strong unit. The details appear in
[HMo]. This category generalizes Banach lattices with unit, a topic of
interest in functional analysis.

We admit the case of unit = 0; i.e., the zero-group is an object.
Morphisms are /-group homomorphisms preserving unit. For simplicity in
describing epics, etc., we shall assume here that all groups are divisible.
Let S? be the category. We require the Yosida representation: Each
non-zero A e S? is isomorphic to A Q C(YA), YA compact Hausdorff,
with uA = 1 (uA the unit of A) and A separating points of YA. We
identify v4 with A.

Then: A -> B is epic iff Λ(̂ 4) is uniformly dense in B; whence S? is

epi-cowellpowered. And for a subobject, "extremal" means uniformly
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closed. So morphisms factor as A -> B = A -> h(A) *-> 5, "( )" denot-

ing uniform closure.
^ has products: Given {At} with units {M,}, the ^product is the

ideal in the /-group product ("cardinal product") generated by u = (w,-),
with w as unit.

μ

Take <Ŝ -> ^ as: The objects of & are partially ordered sets with top
and bottom (possibly equal), and no other order relations, with maps
preserving top and bottom as morphisms. μ(A) = {a e A \ \a\ < uA) (the
unit ball), with the border (uA = top, -uA = bottom).

Then: A -^ B is a "surjection" iff either A = B = (0), or, J? # (0)

and σ is an onto homomorphism.
An object of ^ is either a singleton, whence the associated free object

is (0), or it can be unambiguously expressed in the form G U { +1). Then,
the free object over G U { ± 1}, say F(G), is the /-subgroup of C([-l, 1]G)
generated by 1 and all projections πg: [-1,1]G -> [-1,1]- (Thus -F(0) is
the reals.)

2.2 applies, and is reduced further as follows:
(a) If ^ i s ^ P , theninj{/y|.Ffree} = inj{F(ω) -> rF(ω)}.
Then, if ^ (still only 5^P) is not trivial, F(ω) -> r^co) must be an

embedding, and ri^co) c C([-l, l]ω) follows.
When Θ c C([-l, l]ω), define the class "0-closed" as: A is 0-closed =

whenever av a29..., &A with |̂ rz| < 1, and 0 G φ, then 0°(α.) G 4̂.
(For each ι, we have Λ,.: YA -> [-1,1], whence we have the "evaluation
map" <Λf->: 7^ -> [-l,l]ω. Thus 0°<tfz): 7̂  -> iϊ, and 0o(α,.> may or
may not be an element of A.)

Let [Θ] be the /-subgroup generated by F(ω) U Θ.
(b) A is ^-closed iff A e inj{F(ω) -> [φ]}.
(c) 9t is HŜ >P iff 01 = {(0)} or Λ = ^-closed, for some Θ.
(The referee points out that the above example can be described just

as well using the functor ^-> Sets with v(A) = the open unit ball of A:
OL

here, v = aμ, where ί̂ -> Sets removes top and bottom; then a has left

adjoint "adjoint top and bottom", and the object of <9* is μ-free iff it is

p-free.)
4.6. Archimedean l-groups with weak unit. This situation is detailed in

[H2r5] Here we take $ = all essential epics, ^ = pointed sets, and μ(A) is
the underlying set of A with the weak unit as base point. Then, the
description of the HS^P-classes is similar to 4.5(c), with C(Rω) replacing
C([-l, l]ω). (Also, one can use a functor v directly to Sets, as at the end of
4.5.)
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The analysis of this situation is not yet complete. I don't know
whether or not the above describes all epireflective //-closed classes. Only
recently have the epics been characterized, by R. N. Ball and the present
author, and we don't know yet what the extremal monies are.

5. Remark on implicit operations. Suppose in # that 2.2 holds for
S = all epics. All of the examples in §4 except Unif have the property that
an HS^P-class inj is is nontrivial iff each e is an embedding. It seems
reasonable to call a class E of epic embeddings of free objects a class of
operations, and, if A e inj E, to say that A is E-closed. Roughly speaking,
given the epic embedding F -> B of free F, the elements of F are "explicit
operations" and the elements of B — F are "implicit". If F is free on a set
of power m, then these operations are thought of as having arity m. 4.4
and 4.5 especially support that view, and with that view, 4.4 says that in
Ab or /Ab, every implicit operation is unary, and 4.5 says that in £f,
every implicit operation is < ω-ary. In the same vein, one sees that in
Tych there is no cardinal bound on arity of implicit operations.

μ

There seems to be a cardinal property of (say, for simplicity) #-> Sets
with enough free objects, namely "maximal true arity of implicit opera-
tions" defined perhaps as:

a = least m such that for every class E of operations, there is a class Er

of < m-ary operations (i.e., the domains are free on sets of power
< m) such that A is /^-closed iff A is E'-closed (i.e., inj E = inj £").

Usually then, for such E\ there will be a single morphism e such that
inj E' = inj{ e}—as in 4.4 and 4.5.

Acknowledgment. Thanks are due the referee and F. E. J. Linton for
several observations and suggestions.
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