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ON THE SINGULAR K-3 SURFACES
WITH HYPERSURFACE SINGULARITIES

Mixk10 FURUSHIMA

Let A be a singular K-3 surface with hypersurface singularities. If 4
has singularities other than rational singularities, then the minimal
resolution of A is a ruled surface over a non-singular algebraic curve of
genus g (0 < g < 3), and further, under the additional conditions g # 0
and dim H?(4; R) = 1, the global structure of M can be determined.

Introduction. Let A4 be a projective algebraic normal Gorenstein
surface, namely, the canonical line bundle on the set of regular points of
A is trivial in a neighbourhood of each singular point. Then we can define
the canonical line bundle on 4. We assume here that 4 has always
singularities. Such a surface is called the singular del Pezzo surface (resp.
singular K-3 surface) if the anti-canonical line bundle on A is ample (resp.
trivial) on A. The study of the singular del Pezzo surface (resp. singular
K-3 surface) was done by Brenton [4] and Hidaka-Watanabe [7] (resp.
Umezu [11]). In particular, Umezu had an interesting result on the
singularities of a singular K-3 surface.

On the other hand, these surfaces are also closely related to the study
of a complex analytic compactification of C3 (see [4], [5]). Let (X, 4) be a
non-singular Kiahler compactification of C* such that 4 has at most
isolated singularities. Since X is a non-singular 3-fold, 4 has at most
isolated hypersurface singularities. Further, we can see that Pic4 = Z and
A is isomorphic to either P2, or a singular del Pezzo surface, or a singular
K-3 surface. In the case where A4 is isomorphic to P? or a singular del
Pezzo surface, the structure of ( X, 4) is determined in [6] (see also [4]).

Now, in this paper, we shall consider the singular K-3 surface. Let 4
be a projective algebraic singular K-3 surface and 7: M — A4 be the
minimal resolution of singularities of A. Then M is a non-singular K-3
surface or a ruled surface over a non-singular algebraic curve R of genus
g = dim H'(M; 0,,). Let S be the set of singularities of 4 which are not
rational singularities. Then S # & if and only if M is a ruled surface over
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R. Taking into account that Pic4 = Z implies S # &, we shall study here
the singular K-3 surface 4 with S # &.

In §1, we discuss the structure of M as a ruled surface (see Proposi-
tion 3). In §2, we show that if the singularities of 4 are hypersurface
singularities, then we have 0 < g < 3 (see Propositions 5 and 6). Finally,
in case of ¢ # 0 and dim H?(4; R) = 1, we determine the global structure
of M (see Theorem).

The author would like to thank Prof. Masakazu Suzuki for his
suggestions and encouragement and also thank the referee for pointing
out mistakes in the original version.

1. Preliminaries.

1°. Let A be a projective algebraic normal Gorenstein surface (see
Introduction). Then we can define the canonical divisor K, on 4. We call
A the singular K-3 surface if (i) the singular locus of A is not empty, (ii)
K, =0, (iii)) H'(4; 0,) = 0. Let A4 be a singular K-3 surface and S be
the set of singular points which are not rational double points. Let =:
M — A be the minimal resolution of the singular points of 4 and put
7~ 1(S) = C = U, C. Then we have

PrOPOSITION 1 (Umezu [11]). Assume that S + <. Then

(1) the canonical divisor K,, = —Xio,n;- C; (n, > 0) and thus M is a
ruled surface over a non-singular compact algebraic curve R of genus
q = dim HY(M; 0,,) (namely, M is birationally equivalent to P-bundle
over R).

(2) if ¢ # 1, then S consists of one point with p, = dim(R'm0,,) s =
g+ 1

(3) if g = 1, then S consists of either one point with p, = 2 or two points
with p, = 1. Moreover, in second case of (3), both of the two points are
simple elliptic.

REMARK 1. Let b*(A) be the dimension of positive eigenspace with
respect to the cup product pairing H?*(A4; R) X H*(4; R) —
H%*A; R)=R. Then b*(A)=1if S+ &. In fact, if S # @, then
p(M) =0 since M is ruled. By Kodaira equality b*(M) = 2p,(M)
+1, where p, = dim H*(M; 0,,), we have b*(M) = 1. By Brenton [3],
b*(A) = b*(M), thus we have the claim.
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In case of S # &, let M be the relatively minimal model of M and
u: M — M be the birational morphism. Then M is a P*-bundle over R.
Then we have the following

PROPOSITION 2. Assume that S # &. If g # 0, then we have either

(1) M = M and C is irreducible (in fact, C is a section of M),

(2) there exists an irreducible component C, of C such that C, is a
section of M and the rest C — C, =\, ., C, is contained in the singular
fibres of M, or

(3) C consists of two disjoint irreducible components C, and C, which
are the sections of M.

LeMMA U, ((11)). Let M= M, 5> M, > -~ 3 M =M be a se-
quence of blow-downs obtaining a relatively minimal model M of M. Then
there exists D, € | — K| (0 < i < n) such that

(1) supp(D,) is the union of the exceptional sets of m which correspond
to the singular points in S,

(i) p, is the blow-up with center at a point on supp(D;) for1l < i < n,
@ii1) w,(D;_y) =D, for1 <i < n.

Lemma U, ([11]). Assume q > 1. Then | — K,,| contains no irreducible
curve.

( Proof of Proposition 2). By Proposition 1, M is a ruled surface over a
nonsingular compact algebraic curve R of genus ¢ > O and —K,, = X, n,C,

(n,; > 0). Applying the adjunction formula for a general fibre f of M, we
have

2= (—KM'f)= Zni(ci’f)-

Thus we have the following

(i) There exist two irreducible components C;, C, of C such that
n=n,=1(C,-f)=(C,-f)=1,and (C,;- f) = 0 for i > 3. Applying
the adjunction formula for the curve C; (i = 1,2), we have that the curve
C; (i = 1,2) is a non-singular elliptic curve with (C, - C,) = 0 and there
exists no other irreducible component of C which intersects C; (i = 1,2).
Thus, by Proposition 1, we must have C = C; U C, and — K, = C; + C,.

(i) There exists an irreducible component C; such that n, =2,
(C,-f)=1and(C;-f)=0(i # i;). Thus, =K, = 2C, + ¥, n,C.
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(iii) There exists an irreducible component C, of C such that n; = 1,
(C,-f)=2and (C,;- f) = 0(i # 1). Applying the adjunction formula for
the curve C;, we have that C,; is a non-singular elliptic curve and there
exists no other irreducible component of C which intersects C,. Thus, by
Proposition 1, we must have C = C, and — K, = C;,.

By Lemma U, U,, the case (iii) can not occur. Assume that M = M.
Then the case (i) cannot occur. In fact, since M = M is a P!-bundle over a
non-singular elliptic curve in this case, 0 = (—K,,)% Thus, (C; + C,)? =
C2 + C? = 0. Since C is an exceptional curve, this is a contradiction. In
case (ii), since (C; - f) = 0 (i # i,), C,’s (i # i,) are all fibres of M, which
are not exceptional. Therefore we must have C = Cil, and this is a section
of M. This proves (1). The assertions (2) and (3) follow from the above
facts (i) and (i1). |

2°. We shall prepare some notations and results from the local theory
of normal two dimensional singular points (see Laufer [9], Yau [13], [14]).
Let A, m: M — A, C be as in 1°. Let Z be the fundamental cycle of the
singular points S with respect to the resolution 7: M — A. Let U be a
strongly pseudoconvex neighbourhood of C inM. A cycle D on U is an
integral combination of the C,, D =%d,C; (1 <i<s,), with d; an
integer. We let supp D = |D| = UC,, d; # 0, denote the support of D. We
put Op:= O,/0,(—D) and x(D) = dim H*(U; 0,) — dim H'(U; Op).
By the Riemann-Roch theorem [10], we have

(1.1) x(D)= -3(D-D+D-Ky),

where K, is the canonical divisor on U. Let g; be the genus of the
desingularization of C; and p, be the “number” of nodes and cusps on C..
Then, we have [10]

(1.2) CK,=—-C;-C,+2g,—2+2p,
For two cycles D and E, we have, by (1.1),
(1.3) x(D+E)=x(D)+x(E)—D-E.

3°. Next, we shall study the anti-canonical divisor — K,, on M.
Lemma 1. K, = K.
PROPOSITION 3. Assume that S + . Then

(I) S = {one point }
(1) ifg=0, then —K,,=Z
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(i) If g # 0, then —K,, = Z + C;, where C, is a section of M in
Proposition 2-(2).
(II) S = {two points} (thus ¢ = 1). Then, —K,, = C, + C,, where C,
and C, are two disjoint sections of M in Proposition 2-(3).

Proof. By a theorem of Laufer [9] and Lemma 1, we have (I)-(i). The
assertion (II) follows directly from Proposition 2-(3). We shall show the
assertion (I)-(ii). Since (—K,, — C,) - C, <0 (1 <i<sy), by definition
of the fundamental cycle, —K, — C, > Z. Now, let us assume that
—Ky=2Z+ C, + D, where D > 0. For a general fiber f of M, 2 =
—(Kyf)=Z-f+C, -f+D-f Since C,C|Z|, Z-f=1=C, -f
and D - f = 0. This means that D is contained in the singular fibres of M.
Since H*(M; O,,(—Z)) = H°( M, Oy(=C, — D)) = 0and H*(M; Oy)
= (, by the Riemann-Roch theorem, we have

0> —dimHYM; 0,,(-2Z)=%Z-Z+Z-K,,)+1—q.

By Lemma 1, and (1.1), we have the inequality x(Z) > 1 — g. Since
H°(U; 0,) = C by Laufer [9], x(Z) =1 — dim H(U; 0,) < 1. Since S
does not contain rational singularities, x(Z) # 1 by [1]. Therefore we
have

(1.4) 1-¢9g<x(Z)<0

Since 1 —¢=x(C)=x(-Ky— G)=x(Z+D)=x(Z)+x(D) -
D-Z,

(1.5) x(Z)= -x(D)+1—-g+D-Z.

By (1.4)and (1.5), D - Z > x(D).Since D - Z < 0, x(D) < 0.

On the other hand, we have just seen that the support |D| of D is
contained in the singular fibres of M. We can easily find that the
contraction of |D| in M yields rational singularities. Thus, we have
x(D) = 1. This is a contradiction. Therefore D = 0, namely, —K,, =
Z+C,. O

COROLLARY 1. In the case (1)-(ii) of Proposition 3, we have
MHC -Z=2-2q
z-2<C -C
BzZz-Z<2-2q

Proof. Since =Ky, =72+ C,, —(C, - Ky)=C, -C, +C, - Z. By
the adjunction formula, C;, - C; + C, - K, = 2g — 2. Thus, we have
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C, - Z =2 — 2q. This proves (1). Since —K,, = 2C, + X, A,C; (A, >
0) (see (ii) in the proof of Proposition 2), we can represent Z — C; =
Yizi Nt C(A; > 0). Then

(Z - Cil)(Z + Cil) = "KM( Z >\i ) Ci) = - Z )\i(ci ) KM) <0.
i*i i*i
Therefore Z - Z < C, - C,. This proves (2). By the Noether formula,
Ky -Ky=2-2+XZ-C)+C,-C,, we have, by (1) and (2), 10 —-
8q — b,(M)>2AZ-Z)+ 41 — q), namely,
(1.6) 2<b,(M)<6—-4g—-2(Z-Z).
Therefore —(Z - Z) > 2q — 2. This proves (3). O

2. Singular K-3 surfaces with hypersurface singularities.

1°. Throughout this section, we will assume that 4 is a singular K-3
surface with hypersurface isolated singularities. Let the notations S, M,
C, G, Z, etc. be as in §1. Let us denote by mult (O, ) the multiplicity of
the local ring O, , at the point x of 4. Then,

PROPOSITION 4. Assume that S consists of one point x € A. We put
n = mult(O, ). Then,

(1) (Wagreich [12)): Z - Z > —n.

(2) (Yau [14)): p, = 3(n — 1)(n — 2).

PROPOSITION 5. Assume that S # &. Then 0 < g < 3.

Proof. We may assume that S consists of one point. Then p, = g + 1.
By Proposition 4-(2), we have

(2.1) 0<n<33+/9+8qg).

By (1.6), —2(Z - Z) = 4q — 6 + b,(M). Thus, by Proposition 4-(1), we
have 2n > 49 — 6 + b,(M). We have, together with (2.1),

(2.2) 2<b,(M)<9—-4g+ 9+ 8q.
Thus, 9 — 49 + {9 + 8¢ = 2, namely, g < 3. O

COROLLARY 2.

(1) g =3 = b,(M) =2, namely, M = M.
2)g=2=2<b(M)<6.
B3)g=1=3<b(M)<8.

(4 ¢g=0=11<b,(M) < 13.
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Proof. The assertions (1), (2) and (3) follow directly from Proposition
4-(1), (2.1) and (2.2). In case (3), b,(M) # 2. In fact, if b,(M) = 2, then
M = M, since b,(M)=2. Since g=1and M= M, K,,- K,,=0. On
the other hand, by Proposition 1-(1) K, - K,, =X, ;n;n,(C,C;) < 0, since
n; > 0 and the intersection matrix (C, - C,) is negative definite. This is a
contradiction. Next, if ¢ = 0, then —K,, = Z, by Proposition 3-(1). Since
S is a hypersurface singularity, by Laufer [9], 0 < —(Z - Z) < 3. By
Noether formula, K,, - K,, = 10 — b,(M). Therefore 10 < b,(M) < 13.
This proves (4). O

2°. Finally, we shall determine the structure of the singular X-3
surfaces with hypersurface singularities whose second Betti numbers are
equal to 1. Let us denote by Sing A the singular locus of A. Then
Sing A — S consists of rational double points. We put B = 7~ (Sing A4)
< C=Us, C and s:= dim H%(B; R).

LemMA 2. Ifb,(A) = 1, then S consists of one point and b,(M) = s + 1.

Proof. Let us consider the following exact sequence of cohomology
group (see [3]):

— H'(A;R) > H'(M; R) »> H'(B;R) - H?(A; R)
™ H*(M;R) > H*(B; R) - 0.

Since H'(A; O,) =0, we have H'(A4; R)=0. Since A is projective
algebraic, M is also projective algebraic. Thus 1 = b,(A4) = b*(A4) =
b*(M) = 2p, (M) +1 =1, thatis, b*(A) = 1, and thus ker #* = 0. This
implies H'(M; R) = H'(B; R) and b,(M) = s + 1. Now, let us assume
that S consists of two points with p, = 1. We have then C = C, U G,,
and C/’s (i = 1,2) are non-singular elliptic curves (see Proposition 2 and
(i) in the proof). We have also seen that C,’s are two disjoint sections
there. Thus M is a ruled surface over a non-singular elliptic curve, that is,
2 = dim H'( M; R). On the other hand,

dim H'(M; R) = dim H'(B; R) > dim H*(C; R)
2
= Y dim H(C;R) = 4.
i=1

This is a contradiction. Therefore S consists of one point. O
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Let C; be the section of M as in Proposition 2-(2), and put the
self-intersection number C; - C; = e < 0. Then, by Proposition 3, Pro-
position 5, Corollary 2 and Lemma 2, we have the following

PROPOSITION 6. Assume that b,( A) = 1. Then we have
VD ifg=3,thenZ-Z= —4ands = 1.
Q) ifg=2,then —2<Z-Z < —4 and
W) Z-Z=—-4=(e,s)=(-3,4),(—4)5).
i) Z-Z=-3=(e,5)=(-3,3)
(i) Z-Z= —-2=(e,s)=(—2,1)
Byg=1,thenZ-Z > -3 and
WDZ-Z=-3=(e,s)=(—-3,7),(—2,6),(—15)
i) Z-Z=-2=(e,5)=(—2,5),(-1,9
(i) Z-Z=—-1=(e,5)=(—13)
4 q=0,thenZ -Z > —3and
WN)Z-Z=-3=s5=12
i) Z-Z=-2=s5=11
(i) Z-Z=-1=s5=10.

Next, let us see the structure of M as a ruled surface in case of ¢ # 0.

PROPOSITION 7. Assume that b,(A) = 1. If ¢ + 0, then either M = M,
or there exists unique exceptional curve of the first kind in every singular
fibre of M and then another irreducible components of singular fibre are all
contained in B.

Proof. Assume that M # M. Since g # 0, by Proposition 2-(2), there
exists an irreducible component C; of C such that the rest B — C, is
contained in the singular fibres of M. Let F,..., F, be the singular fibres
of M,1 + a; (a; > 0) the “number” of the irreducible components of F;
and §; the “number” of the irreducible components of F, which are not
contained in B. Then we have

1+s=b(M)=2+ ) q,
i=1

Y(Q+a-8)+1=s

i=1

Thus we have X/_,(1 — §;) = 0. Since each singular fibre F; contains at
least an exceptional curve of the first kind, we have §, > 1 (1 <i <r),
thus §, = 1 (1 < i < r). This completes the proof. O
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By Proposition 6 and Proposition 7, we have

THEOREM. Let A be a singular K-3 surface with hypersurface singulari-
ties. Assume that by(A) = 1. Let S be the set of singular points which are
not rational singular points, and m: M — A be the minimal resolution of
singularities of A. Then M is a ruled surface over a non-singular compact
algebraic curve R of genus q (0 < q < 3), and S consists of one point.
Moreover, if q # 0, then the dual graph of all the exceptional curves in M
can be classified as Table 1.

TaABLE I

(1) ) 3 OO0

(3] (2] (2]

@ OO0k ® @_08@_@

[2] [2]

(6) .0.009. O—@—O—@

(®) O—O—-CD—@‘@ O_@_@_%_O_@
(10) ®—O—8—O—@ [
OO0

[1] (11)

(12) @—0—0—0—8—0—@ a3 O-0-O0—-0O00

[1]

(14 O-O—0-06--0—0O0O
’ (1

(15) @O—i—@—@—@—@@

[1]

Q
®

O
(16) 8.. QO
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NOTATION. In Table I, the vertex

®

[g]

represents a non-singular compact algebraic curve of genus g with self-in-
tersection number —k, (k) a non-singular rational curve with self-inter-
section number — k, and we denote 2) by ().

REMARK 2. In case of ¢ = 0, since —(K,, - K,,) = Xn,(C, - K,,) and
(Ky - Ky)= —1, =2, or —3, repeating the adjunction formula, we can
determine the integers n,’s and the dual graph I'(C) of the exceptional
curve C (see Laufer [9]).

REMARK 3 (see [6]). Let ( X, 4) be a non-singular Kahler compactifi-
cation of C> and A has at most isolated singular points. Then A is purely
two dimensional compact analytic subvariety of X with hypersurface
singular points and the canonical divisor Ky = —r-4 (1 <r<4). In
case of r > 2, the structure of (X, A) is determined in [6]. But in case of
r =1, it is still unknown. In that case, A4 is a singular K-3 surface with
hypersurface singular points and b,(A4) = 1. Applying the theory of
Iskovskih [8] and our theorem to the paire ( X, 4), we can obtain some
detailed informations on ( X, 4). This will be discussed elsewhere.
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