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ON THE SINGULAR K-3 SURFACES
WITH HYPERSURFACE SINGULARITIES

MlKIO FURUSHIMA

Let Abe a singular K-3 surface with hypersurface singularities. If A
has singularities other than rational singularities, then the minimal
resolution of A is a ruled surface over a non-singular algebraic curve of
genus q (0 < q < 3), and further, under the additional conditions q Φ 0
and dim H2(A\ R) = 1, the global structure of M can be determined.

Introduction. Let A be a protective algebraic normal Gorenstein
surface, namely, the canonical line bundle on the set of regular points of
A is trivial in a neighbourhood of each singular point. Then we can define
the canonical line bundle on A. We assume here that A has always
singularities. Such a surface is called the singular del Pezzo surface (resp.
singular K-3 surface) if the anti-canonical line bundle on A is ample (resp.
trivial) on A. The study of the singular del Pezzo surface (resp. singular
K-3 surface) was done by Brenton [4] and Hidaka-Watanabe [7] (resp.
Umezu [11]). In particular, Umezu had an interesting result on the
singularities of a singular K-3 surface.

On the other hand, these surfaces are also closely related to the study
of a complex analytic compactification of C3 (see [4], [5]). Let (X, A) be a
non-singular Kahler compactification of C3 such that A has at most
isolated singularities. Since X is a non-singular 3-fold, A has at most
isolated hypersurface singularities. Further, we can see that Pic^ί = Z and
A is isomorphic to either P 2 , or a singular del Pezzo surface, or a singular
K-3 surface. In the case where A is isomorphic to P 2 or a singular del
Pezzo surface, the structure of (X, A) is determined in [6] (see also [4]).

Now, in this paper, we shall consider the singular K-3 surface. Let A
be a projective algebraic singular K-3 surface and m\ M -> A be the
minimal resolution of singularities of A. Then M is a non-singular K~3
surface or a ruled surface over a non-singular algebraic curve R of genus
q = dim Hι(M\ OM). Let S be the set of singularities of A which are not
rational singularities. Then S Φ 0 if and only if M is a ruled surface over
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R. Taking into account that Pic ̂ 4 s Z implies S Φ 0 , we shall study here

the singular K-3 surface A with S Φ 0 .

In §1, we discuss the structure of M as a ruled surface (see Proposi-

tion 3). In §2, we show that if the singularities of A are hypersurface

singularities, then we have 0 < q < 3 (see Propositions 5 and 6). Finally,

in case of q Φ 0 and dim H2(A; R) = 1, we determine the global structure

of M (see Theorem).

The author would like to thank Prof. Masakazu Suzuki for his

suggestions and encouragement and also thank the referee for pointing

out mistakes in the original version.

1. Preliminaries.

1°. Let A be a prqjective algebraic normal Gorenstein surface (see

Introduction). Then we can define the canonical divisor KA on A. We call

A the singular K-3 surface if (i) the singular locus of A is not empty, (ii)

KA = 0, (iii) H\A; OA) = 0. Let A be a singular K-3 surface and S be

the set of singular points which are not rational double points. Let π:

M -> A be the minimal resolution of the singular points of A and put

π~\S) = C = U Lx Q. Then we have

PROPOSITION 1 (Umezu [11]). Assume that S Φ 0 . Then

(1) the canonical divisor KM = — Σ/iχ ni - Ci (nt > 0) απd thus M is a

ruled surface over a non-singular compact algebraic curve R of genus

q = dim Hι(M\ OM) {namely, M is birationally equivalent to Pι-bundle

over R).

(2) // q Φ 1, then S consists of one point with pg = dim( R}ττ*OM)s =

9+1.

(3) if q = 1, then S consists of either one point withpg = 2 or two points

with pg = 1. Moreover, in second case of (3), both of the two points are

simple elliptic.

REMARK 1. Let b+(A) be the dimension of positive eigenspace with

respect to the cup product pairing H2(A; R) X H2(A; R) ->

H\A; R) = R. Then b+(A) = 1 if S Φ 0 . In fact, if S Φ 0 , then

pg(M) = 0 since M is ruled. By Kodaira equality b+(M) = 2pg(M)

+ 1, where /?g = dimi/ 2(M; OM), we have b+{M) = 1. By Brenton [3],

b+(A) = Z?+(M), thus we have the claim.
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In case of S Φ 0, let M be the relatively minimal model of M and

μ: M -> M be the birational moφhism. Then M is a P1-bundle over R.

Then we have the following

PROPOSITION 2. Assume that S Φ 0.IfqΦθ, then we have either

(1) M = M and C is irreducible (in fact, C is a section of'M)9

(2) there exists an irreducible component Ci of C such that Ci is a

section of M and the rest C — Ct =\JiΦi C{ is contained in the singular

fibres of M, or

(3) C consists of two disjoint irreducible components Cx and C2 which

are the sections of M.

LEMMA UX ([11]). Let M = M0^M1-^ ^ Mn = M be a se-

quence of blow-downs obtaining a relatively minimal model M of M. Then

there exists Dt e | - KMJ (0 < / < n) such that

(i) supp(D0) is the union of the exceptional sets of π which correspond

to the singular points in S,

(ii) μι is the blow-up with center at a point on supp(Z) ) for 1 < i < n9

(iiϊ) μi(Di_1) = Di for I < i < n.

LEMMA U2 ([11]). Assume q > 1. Then \ — KM\ contains no irreducible

curve.

(Proof of Proposition 2). By Proposition 1, M is a ruled surface over a

nonsingular compact algebraic curve R of genus q > 0 and — KM = Σ, «ZCZ

(nt > 0). Applying the adjunction formula for a general fibre / of Λf, we

have

2 = (-**•/)= Σ>,(ς /)
i

Thus we have the following

(i) There exist two irreducible components Cv C2 of C such that

nλ = n2 = 1, ( Q -/) = (C2 •/) = 1, and (Crf) = 0 for / > 3. Applying

the adjunction formula for the curve Ci (i = 1,2), we have that the curve

Ci (i = 1,2) is a non-singular elliptic curve with ( Q C2) = 0 and there

exists no other irreducible component of C which intersects Ct (i = 1,2).

Thus, by Proposition 1, we must have C = Q U C 2 and -KM = Q + C2.

(ii) There exists an irreducible component Ci such that nt = 2 ,

(C,. / ) = 1 and (C, / ) = 0 (i Φ iλ). Thus, -KM = 2Ch + Σ, # , nfi,.
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(iii) There exists an irreducible component Cx of C such that nλ = 1,
(Cι - f) = 2 and (Cj? /) = 0 (/ Φ 1). Applying the adjunction formula for
the curve Cv we have that Cλ is a non-singular elliptic curve and there
exists no other irreducible component of C which intersects Cv Thus, by
Proposition 1, we must have C = Cλ and — KM = C\.

By Lemma Ul9 U2, the case (iii) can not occur. Assume that M = M.
Then the case (i) cannot occur. In fact, since M = M is a P1-bundle over a
non-singular elliptic curve in this case, 0 = (-KM)2. Thus, (Cλ + C 2) 2 =
C 2 + C2

2 = 0. Since C is an exceptional curve, this is a contradiction. In
case (ϋ), since (Ct, f) = 0 (/ Φ iλ), C/s (i # /x) are all fibres of Λf, which
are not exceptional. Therefore we must have C = Ci9 and this is a section
of M. This proves (1). The assertions (2) and (3) follow from the above
facts (i) and (ii). D

2°. We shall prepare some notations and results from the local theory
of normal two dimensional singular points (see Laufer [9], Yau [13], [14]).
Let A, π: M -> A, C be as in 1°. Let Z be the fundamental cycle of the
singular points S with respect to the resolution TΓ: M -> A. Let U be a
strongly pseudoconvex neighbourhood of C inM. A cycle D on U is an
integral combination of the Ci9 D = Y,diCi (1 < / < so)9 with dt an
integer. We let suppD = \D\ = UC, , J7 # 0, denote the support of D. We
put OD:= Oυ/Oυ(-Ώ) and χ(D) = dim/ίo(ί/; O^) - dim/Z^ί/; OD).
By the Riemann-Roch theorem [10], we have

(1.1) χ(D)= -±(D D + D Kυ)9

where Kυ is the canonical divisor on CΛ Let gi be the genus of the
desingularization of Ci and μi be the "number" of nodes and cusps on C,.
Then, we have [10]

(1.2) qκυ= -q q + igt-i + iμ;

For two cycles D and E, we have, by (1.1),

(1.3) χ{D + E) = χ(D) + χ{E)- D • E.

3°. Next, we shall study the anti-canonical divisor — KM on M.

LEMMA 1. KM = Kυ.

PROPOSITION 3. Assume that S Φ 0. Then
(I) S = {onepoint}
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(ϋ) // q Φ 0, then -KM = Z + Ciχ9 where Ciχ is a section of M in

Proposition 2-(2).

(II) S = {twopoints) (thus q = 1). Then, -KM = Q 4- C2,

C2 are /wo disjoint sections of M in Proposition 2-(3).

Proof. By a theorem of Laufer [9] and Lemma 1, we have (I)-(i). The

assertion (II) follows directly from Proposition 2-(3). We shall show the

assertion (I)-(ii). Since (-KM- Ch) Ciχ < 0 (1 < i < so)9 by definition

of the fundamental cycle, - KM - Ciχ > Z. Now, let us assume that

-KM = Z + Ch + Dy where D > 0. For a general fiber / of M, 2 =

-(KM f) = Zl.f+Ciι f+D-f. Since Ch c | Z | , Z f=l = Ck f

and D f = 0. This means that D is contained in the singular fibres of M.

Since i/ 2(M; O ^ - Z ) ) = H°(M; OM{-Ciλ - D)) = 0 and # 2 ( M ; OM)

= 0, by the Riemann-Roch theorem, we have

0 > - d i m i / ^ M ; OM(-Z)) = \(Z Z + Z # M ) + 1 - 9.

By Lemma 1, and (1.1), we have the inequality χ(Z) > 1 — q. Since

i/0(£/; Oz) s C by Laufer [9], χ(Z) = 1 - dimH\U\ Oz) < 1. Since S

does not contain rational singularities, χ(Z) Φ 1 by [1]. Therefore we

have

(1.4) l - ί < X ( Z ) < 0

Since l - q = χ(C( i) = χ{-Ku - C,χ) = χ ( Z + D) = χ(Z) + χ ( P ) -

D Z,

(1.5) χ ( Z ) = -χ(D) + l - q + D-Z.

By (1.4) and (1.5), DZ> χ(D). Since Z> Z < 0, χ ( D ) < 0.

On the other hand, we have just seen that the support \D\ of D is

contained in the singular fibres of M. We can easily find that the

contraction of \D\ in M yields rational singularities. Thus, we have

χ(D) > 1. This is a contradiction. Therefore D = 0, namely, -KM =

Z + C,. D

COROLLARY 1. In the case (I)-(ii) of Proposition 3, we have

(1) Ch • Z = 2 - 2?

(2) z z ^ c(i q
(3) Z Z < 2 - 2q.

Proof. Since -tf M = Z + C/χ, -(C,, KM) = C(i C(i + Ck Z. By

the adjunction formula, C, C( + C(i ^Γw = 2q — 2. Thus, we have
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Ch - Z = 2 - 2q. This proves (1). Since -KM = 2Ch + Σiφiι λ ,.<:,. (λ, >
0) (see (ii) in the proof of Proposition 2), we can represent Z — Ci =

(z - c,)(z + c,) = - * J Σ λ, c,\ = - Σ λ,(c, κM) < o.

Therefore Z - Z < C^- Ciχ. This proves (2). By the Noether formula,
KM - # M = Z Z + 2(Z - C7i) + q - q , we have, by (1) and (2), 10 -
8# - b2(M) > 2(Z Z) + 4(1 - q)9 namely,

(1.6) 2 < b2(M) <6-4q-2(Z Z).

Therefore - ( Z Z) > 2qr - 2. This proves (3). D

2. Singular X-3 surfaces with hyper surf ace singularities.

1°. Throughout this section, we will assume that A is a singular ίΓ-3
surface with hypersurface isolated singularities. Let the notations S, M,
C, Cz, Z, etc. be as in §1. Let us denote by mult (OA x) the multiplicity of
the local ring OA x at the point x of A. Then,

PROPOSITION 4. Assume that S consists of one point x e i We put
n = mult(OAx). Then,

(1) (Wagreich [12]): Z Z> -n.
(2)(Yau[U]):pg>^(n-l)(n-2).

PROPOSITION 5. Assume that S Φ 0 . Then 0 < q < 3.

Proof. We may assume that S consists of one point. Then pg = q + 1.
By Proposition 4-(2), we have

(2.1) 0 < 7i < ψ + /9 + Sq).

By (1.6), - 2 ( Z Z) > 4^ - 6 + b2(M). Thus, by Proposition 4-(l), we
have 2n > Aq - 6 + b2(M). We have, together with (2.1),

(2.2) 2 < 62(M) < 9 - 4^ 4- /9 + 84.

Thus, 9 - Aq + /9 + 8# > 2, namely, ^ < 3. D

COROLLARY 2.

(1) $ = 3 =* 62(Aί) = 2, /uimdy, M = M.
(2) q = 2 => 2 < b2(M) < 6.
(3) q = 1 => 3 < b2(M) < 8.
(4) q = 0 =» 11 < b2(M) < 13.
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Proof. The assertions (1), (2) and (3) follow directly from Proposition
4-(l), (2.1) and (2.2^ In case (3), b2(M) Φ 2. In fac^if b2(M) = 2, then
M = M, since b2(M) = 2. Since q = 1 and M = M, KMKM=0. On
the other hand, by Proposition 1-(1) KM KM = Σ / i 7 n^n^C^) < 0, since
Λ. > 0 and the intersection matrix (Cz Cu) is negative definite. This is a
contradiction. Next, if q = 0, then — Λ^ = Z, by Proposition 3-(l). Since
S is a hypersurface singularity, by Laufer [9], 0 < — (Z Z) < 3. By
Noether formula, KM KM = 10 - 62(M). Therefore 10 < 62(M) < 13.
This proves (4). D

2°. Finally, we shall determine the structure of the singular K-3
surfaces with hypersurface singularities whose second Betti numbers are
equal to 1. Let us denote by Sing A the singular locus of A. Then
Sing A - S consists of rational double points. We put B = Tr'^
<- C = UJixQand s:= dimH2(B; R).

LEMMA 2. Ifb2(A) = 1, then S consists of one point and b2(M) = s + 1.

Proof. Let us consider the following exact sequence of cohomology
group (see [3]):

^ Hι(A\ R) ^ //X(M; R) -> i / 1 ^ ; R) -> # 2 ( , 4 ; R)

^ ; R) -^ H2(B; R) -> 0.

Since Hι(A; OA) = 0, we have H\A\ R) = 0. Since A is projective
algebraic, M is also projective algebraic. Thus 1 = b2(A) > b+(A) =
b+(M) = 2/?g(M) + 1 > 1, that is, b+{A) = 1, and thus kerTΓ* = 0. This
implies H\M; R) = H\B; R) and b2(M) = s + 1. Now, let us assume
that S consists of two points with pg = 1. We have then C = Cλ U C2,
and C/s (i = 1,2) are non-singular elliptic curves (see Proposition 2 and
(i) in the proof). We have also seen that C/s are two disjoint sections
there. Thus M is a ruled surface over a non-singular elliptic curve, that is,
2 = dim H\M\ R). On the other hand,

dimHι(M; R) = dimH\B\ R) > dimH ι(C; R)

2

This is a contradiction. Therefore S consists of one point.
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Let Cj be the section of M as in Proposition 2-(2), and put the
self-intersection number Ciχ Ciχ = e < 0. Then, by Proposition 3, Pro-
position 5, Corollary 2 and Lemma 2, we have the following

PROPOSITION 6. Assume that b2(A) = 1. Then we have
(1) if q = 3, then Z Z = —4 ΛWJΛ = 1.
(2) if q = 2, ίλeπ — 2 < Z Z < —4 αwd

(i) Z Z = - 4 =* (e9s) = (-3,4), (-4,5).
(ii) Z Z = - 3 =>(<?,*) = (-3,3)

(iii) Z Z = - 2 =>(<>,*) = (-2,1)
(3) # = 1, then Z Z> -3 and

(i) Z Z = - 3 =* (e,5) = (-3,7), (-2,6), (-1,5)
(ii) Z Z = - 2 => (e,s) = (-2,5), (-1,4)

(iii) Z - Z = - 1 => ( ,̂.y) = (-1,3)
(4) # = 0, then Z Z > — 3 α« J

(i) Z Z = - 3 => j = 12
(ii) Z Z = - 2 = > ^ = 11

(iii) Z Z = - 1 =>^ = 10.

Next, let us see the structure of M as a ruled surface in case of q Φ 0.

PROPOSITION 7. Assume that b2(A) = 1. If q Φ 0, ίλeH e/YAer M = M,
or there exists unique exceptional curve of the first kind in every singular
fibre of M and then another irreducible components of singular fibre are all
contained in B.

Proof. Assume that M Φ M. Since q Φ 0, by Proposition 2-(2), there
exists an irreducible component C7 of C such that the rest B — Ci is
contained in the singular fibres of M. Let Fv...,Fr be the singular fibres
of M, 1 + ai (α7 > 0) the "number" of the irreducible components of Fi

and δ, the "number" of the irreducible components of Fi which are not
contained in B. Then we have

r

l + j = b2(M) = 2+ Σ«ί

ί ( l + a l - δ , ) + l - s

Thus we have Σ[= 1(l — δ,) = 0. Since each singular fibre Fi contains at
least an exceptional curve of the first kind, we have δ, > 1 (1 < / < r),
thus δ = ! ( ! < / < r). This completes the proof. D
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By Proposition 6 and Proposition 7, we have

THEOREM. Let A be a singular K-3 surface with hypersurface singulari-

ties. Assume that b2(A) = 1. Let S be the set of singular points which are

not rational singular points, and IT: M —> A be the minimal resolution of

singularities of A. Then M is a ruled surface over a non-singular compact

algebraic curve R of genus q (0 < q < 3), and S consists of one point.

Moreover, if q Φ 0, then the dual graph of all the exceptional curves in M

can be classified as Table I.

TABLE I

(4)
[3]

( 4 )

( 2 )
[ 2 ]

( 3 )

[ 2 ]

( 5 )

( 6 )

( 8 )

( 7 )

(12)

[1] (ID

^y<>Oθ<yθ^)
[ 1 ]

(14)

(15)

(16)

D
[1]
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NOTATION. In Table I, the vertex

represents a non-singular compact algebraic curve of genus g with self-in-
tersection number - k, @ a non-singular rational curve with self-inter-
section number —k, and we denote (2) by O

REMARK 2. In case of q = 0, since ~(KM # M ) = Σ«Z(CZ KM) and
(^TM KM) = — 1, -2 , or —3, repeating the adjunction formula, we can
determine the integers n/s and the dual graph Γ(C) of the exceptional
curve C (see Laufer [9]).

REMARK 3 (see [6]). Let (X9A) be a non-singular Kahler compactifi-
cation of C 3 and A has at most isolated singular points. Then A is purely
two dimensional compact analytic subvariety of X with hypersurface
singular points and the canonical divisor Kx = —r A (1 < r < 4). In
case of r > 2, the structure of (X, A) is determined in [6]. But in case of
r = 1, it is still unknown. In that case, A is a singular K-3 surface with
hypersurface singular points and b2(A) = 1. Applying the theory of
Iskovskih [8] and our theorem to the paire (X9A), we can obtain some
detailed informations on (X, A). This will be discussed elsewhere.
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