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ON EXISTENCE CRITERIA FOR CAPILLARY

FREE SURFACES WITHOUT GRAVITY

LUEN-FAI TAM

Consider a cylinder of homogenous material closed at one end by a
base of general cross section Ω and partly filled with liquid. We want to
find conditions under which in the absence of gravity the liquid can cover
Ω and is in mechanical equilibrium.

If the liquid can cover Ω, then the liquid surface is a graph over the
base. In general, the surface has constant mean curvature and makes
constant angle with the bounding wall. Even if Ω is convex analytic, such
a surface may not exist. However, it is the case when Ω is piecewise
smooth that interests us. In this case, the interior angles at the corners
play an important role. It turns out that the existence of the liquid
surface as a graph over the base can be characterized by the nonex-
istence of a certain subsidiary variational problem.

1. Introduction and preliminary results. Let Ω be a bounded do-

main in Rw, n > 2. The problem of minimizing the following functional
has received much attention:

(1.1) Φ(w; γ) = ί VI +\Du\2 + [ Hudx - cosγf udHn_λ

for u G BV(ίl), the space of functions of bounded variation in Ω, where
7r/2 > γ > 0 is a constant and Hy = (|3Ω|/|Ω|) cosγ.

In order to study the problem, we also consider the subsidiary
functional:

(1.2) G(A;y)=J \DφA\ +j HyφAdHn - c o s γ / φAdHtι_1

where A c Ω is a Caccioppoli set (or set of locally finite perimeter), and
φA is the characteristic function of A. The following necessary condition
for the existence of (variational) solution of Φ(w; γ) was obtained by
Concus-Finn[2]:

(1.3) G(A; γ ) > 0 for all A c Ω, A Φ 0 or Ω.

As for sufficiency, Giusti [9] gave the following general criterion: if
there exists ε > 0, such that

(1.3)' ( 1 - β ) / \DφA\ +j HyφAdHn-cosy f φAdHn_ι>0
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for all A c Ω, A Φ 0 or Ω, then Φ(w; γ) has a solution. Finn [5] proved
that in some cases we need only the weaker condition (1.3). To be more
precise, Finn proved that if n = 2, Ω is a piecewise smooth domain,
2α = smallest interior angle and ττ/2 > a > τr/2 — γ at each corner,
then (1.3) is also sufficient for the existence of soltion of Φ(u; γ). In fact,
he proved that in this case (1.3) implies (1.3)'.

The case α + γ = m/2 is more delicate, because in that case there
exists no ε > 0 so that (1.3)' is true. In this case, Finn [6] introduced some
additional conditions on 3Ω.

Specifically, if Ω satisfies the following hypothesis, then (1.3) still
guarantees the existence of a solution:

Hypothesis α(γ). At each vertex P with interior angle 2α, it is
possible to place a lower hemisphere υ{x\ γ) of radius Rγ = 2H~ι, with
equatorial circle Q passing through P in such a way that at each point of
3Ω interior to Q and to some neighborhood NP of P there holds
Tv - v > cosγ, where v is the outward normal of 3Ω.

The results of Finn are restricted to n = 2. The methods of proof do
not extend readily to higher dimensions. In this paper, it is our aim to
generalize those results to higher dimensions by using another method,
and at the same time give a new proof of Finn's result. Moreover we shall
also show that even if Ω does not satisfy hypothesis α(γ) (but satisfies
(1.3)), we still can find a solution of

= Hy in Ω

Du
(1.4)

Tw v = cosγ weakly on 3Ω.

We shall use the idea of generalized solution introduced by M.
Miranda [16]. This idea has ben employed to deal with different problems,
for example see [10], [11], [16] and [17].

The functional Φ(w; γ) is related to the following functional:

(1.5) F(U;y)=[ \D*O\+ ( HfadxΛ - cosγ / φvdHn
ΏxR

where U c Ω X R is a Caccioppoli set.

DEFINITION 1.1. A Caccioppoli set U c Ω X R is said to be a solution
of Φ(w; γ) if for any T > 0, and for any Caccioppoli set V c Ω X R with
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support of φσ — φv contained in Ω X [— Γ, T] we have

(1.6) FT(U; γ) < FT(V; γ)

where

Fτ(U;y)=( \Dφv\
JQ,X[-T,T]

+ f Hφudxdt-co&yί ΦudHn.
JΩx[-T,T] JdΩx[~T,T]

D E F I N I T I O N 1.2. A function u: Ω -» [— oo, oo] is said to be a gener-
alized solution of Φ( u\ γ) if its subgraph U = {(x, O ^ Ω x R | / < M ( X ) }
is a solution of F(U; γ ) .

DEFINITION 1.3. A c Ω is a solution of G(^4; γ) if G(A; γ) <
; γ) for any Caccioppoli set E c Ω.

The relation between Φ(w; γ) and i^ί/; γ) is the following theorem
by M. Miranda [16], see also [11] and [17].

THEOREM 1.1. Let Ω be a Lipschitz domain and u e 5F(Ω), then u is a
solution of Φ(u; γ) if and only ifu is a generalized solution of φ(u; γ).

REMARK 1.1. In the definitions of Φ(w; γ) and F(u; γ), Definition
1.1-1.3 and Theorem 1.1 there is no need to restrict γ so that 0 < γ < π/2.

By Theorem 1.1, in order to find a solution of (1.2) we may first find
a generalized solution and then prove that it actually belongs to BV(Ώ).

We need several lemmas. First of all, we say that an open portion Γx

of 3Ω has Lipschitz constant L if for any point x G Γ1? there exists a ball
Bp(x) such that Bp(x) Π 3Ω = graph g for some Lipschitz function g:
i c R""1 -^ R with A open and the Lipschitz constant of g is L.

LEMMA 1.1. Let Ω be a bounded Lipschitz domain in R", Γ\ is an open
portion of 3Ω with Lipschitz constant L. Suppose Γ is a closed subset of Tv

then there is a constant δ 0 > 0 such that for all 0 < δ < δ 0 we can find a
constant Cλ depending only on δ, Ω, Γ1? and Γ such that for any T > 0

(1-7) / \f\dHn<h + L2( \Df\

+ CJ \f\dxdt
JQX(-T,T)
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for all / e BV(ti X ( - Γ, Γ)), where Ω5 = {x e Ω |dist(x, 3Ω) < δ}. Note
that δ0 and Cx do not depend on T.

The proof of the lemma is the same as the proof of Lemma 1.1 in [3],
so we omit it.

LEMMA 1.2. With the same assumptions as in Lemma 1.1 and let {f }
be a sequence of functions in i F ( f i X ( - Γ , Γ ) ) , T > 0, such that
the functions fj converge in Lι(Ώ X ( — T9T)) to some function / e
BV(ίl X (-T,T)). If cos yh + L2 < 1 then

(1.8) / |D/|-cosγ/ fdHn

< lim inf / I Df I — cos γ / / dHn .
y-*oo \^x(-r,r) Jτx(-τ,T) /

. (See [11].) Define

\Du\ — cosγ / udHn_λ.
T,T) Jγχ(-T,T)

By Lemma 1.1, there are constants δ0 and Q not depending on j , such
that for any 0 < δ < δ0 if Σ8 = Ω - Ωδ,

\Df\-f \Dfj\

+ cosγf \f~fj\dHHJΓX(-Γ,Γ)

li/
Ωx(-T,T) JΩX(-T,T)

+ cosγ/ΓTΪ7

Cιcosyί \f-fj\
;Ωx(-r,η

dx

ί
Σδx(-τ,T)

+ 2( \Df\ + cJ \f-fj\dx:
•/Ωδx(-rΓ) Ώx(-r,Γ)
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where we have used the fact cosγ/l + L2 < 1. Since fj converge to / in

L\Ω X ( - Γ, T)\ by semicontinuity Theorem 1.9 of [12] and let ./ -> oo

we get

\Df\-
J-+oo

Since / e BV(Q X ( - T, Γ)), let 8

-TyT)

0 the lemma follows. D

In application, we need a refined version of Lemma 1.2. Let us
assume 3Ω satisfies

there is an ε0 > 0 such that for all 0 < ε < ε0 we can
(19) find Lε such that 9Ω has Lipschitz constant Lε and

/ΓTZJ(cosγ - ε) < 1.

REMARK 1.2. If 3Ω has Lipschitz constant L with cosγ/l + L2 < 1,
then 3Ω obviously satisfies (1.9). If 3Ω is smooth and γ = 0 then there
will be no L such that 3Ω has Lipschitz constant L and cos γ/l + L2 < 1.
However 3Ω satisfies (1.9). Also if n = 2, 3Ω is piecewise smooth and the
smallest interior angle 2 a satisfies a + γ = π/2 (we assume every interior
angle is less than π) then 3Ω again satisfies condition (1.9).

LEMMA 1.3. Same assumptions as in Lemma 1.2 except that now we
only assume I\ = 3Ω satisfying (1.9). // / Γ x ( _ Γ > Γ ) fjdHn are uniformly
bounded, then the conclusion of Lemma 1.2 is still true.

Proof. By assumption, there is a constant M > 0 such that

(1.10) fdHn
< M for all j .

JTX(-T,T)

Let J(u) be the functional defined in Lemma 1.2. For any 0 < ε < ε0,

J(f)-J{fj)<f \Df\-(cosy-ε)f fdHn
i ί Λ ^ — 1 ) 1 ) L S \ \ 1 , 1 )

-j \Dfj\ + (cosy-B)( fjdHn

+ ε j^_ττfdHn
TX(-T,T)

fjdHn

00By Lemma 1.2, (1.9) and (1.10), let j
/ ( / ) - Uminf/(/7)<εM.

j-*ao

Since ε can be arbitrary small, the lemma follows.
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2. Existence of generalized solution.

LEMMA 2.1. Suppose Ω is a bounded Lipschitz domain in Rn satisfying
(1.3), then Φ(w; β) has a bounded solution uβ for all π/2 > β > γ.
Furthermore uβ is analytic and satisfies div Tuβ = Hβ in Ω.

Proof. Since G(^4; γ) > 0 for all A Φ 0 or Ω, for such an A

Hence,

(l-e)[ \DφA\+ ί HβφAdx-cosβ[ φAdHn_λ>0

COSjβ
for ε = 1 > 0.

cosγ

From [9], we conclude that Φ(w; γ) has a bounded solution uβ which is in
C2(Ω) and satisfies άiw Tuβ = Hβ in Ω. Since Hβ is a constant, therefore
uβ is analytic. D

THEOREM 2.1. Lei Ω be a bounded Lipschitz domain satisfying (1.3)
α«J (1.9). For 0/ιy sequence τr/2 > γ̂  > γ αwd γ̂  \ γ, z/wy w β solution of
Φ(w; γ.) /or eachj, then we can find a subsequence of Uj which converges
pointwise almost everywhere to a generalized solution of Φ(w; γ).

Proof. (See [11].) Since Ω satisfies (1.3), the solutions Uj of Φ(w; γy.)
exist by Lemma 2.1. Let Uj be the subgraph of uJ9 Uj is a solution of
F(ί/; γy) by Theorem 1.1. For any T > 0, compare Ĉ  with Ujf - Ω X

I f j I ί Hφvdxdt
aχ[-τ,τ] J Jax[-τ,τ] J J

-cosyjf <>„.</#„ < 2 | Ω | .

w | < 2|Ω| + cosγy f φ^.J//M < 2|Ω| + 2Γ|3Ω| V
J Jmx[-ττ] J

Also / Ω x t _ Γ j Γ ] φv dxdt < 2Γ|Ω|. Hence

(2.1) / \DΦu]+ f Φudxdt
JQX[-T,T] J JΩX[-T,T] J

< (2 + 2Γ)(Ω( + 2Γ|3Ω| for all j .
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By compactness Theorem 1.19 of [12], we can select a subsequence of
φa which converges almost everywhere in Ω X (— T, T) to the characteris-
tic function of some set. Take a sequence Tk -> oo, and use diagonal
process, we can find a subsequence of φUm, which we also call it φa,
converging almost everywhere to the characteristic function of some set w,
which may take the valeus -oo or +00, and l im^^w, = w almost
everywhere in Ω. By (2.1) and semicontinuity, we know that W is a
Caccioppoli set.

It remains to prove that w is a generalized solution of Φ(w; γ). Note
that for almost all T > 0,

(i) the traces of φUm and φw on Ω x { - Γ , Γ ) are φa and φw

i/π-almost everywhere;

\ = /ΩX{-ΓJ } \Dφw\ = 0; and

{ } \φy - φw\dHn = 0.
(i) and (ii) follow from the fact that Uj and W are Caccioppoli sets

and (in) follows from the fact that l i m ^ ^ fςιX[-TyT] \Φu. — φw\dHn = 0
for all T > 0.

For any T > 0 satisfying (i), (ϋ) and (iii), and for any Caccioppoli set
F c Ω x R , F = ΪΓ outside Ω X [- Γ, Γ], define

_ jUj outside Ω x [ - Γ , Γ ] ,
J~\V i n Ω x [ - Γ , Γ ]

Then

/ | J / H φvdxdt - cosγ, ( φυdHn

[ \Dφv\ + / Hyφvdxdt
ΩX[-T,T] J JίlX[-T,T] J J

-cosγ Γ <S>VjdHn.
•/3ΩX[-Γ,Γ] J

Therefore

(2.2)

-cosγf ΦadHn +(cosγ - cosγ) /"
JdQx[-T,T] J JdQx[-T,T]

ί \Dφv\ + [ Hώvdxdt
JΩX[-T,T] JQX[-T,T] J

-cosγ,/ ΦvdHn+ f/
/3QX[-Γ,Γ]
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Since T satisfies (ϋ) and (iii), by Lemma 1.3 with Γ = Γx = 3Ω and

the fact that l i m ^ ^ γ̂  = γ, let j -> oo in (2.2):

(2.3) [ \Dφw\+ [ Hyφwdxdt
JΩx[-T,T] JΩx[-T,T]

JdtiX[-T,
-cosγ

J[-T,T]

[ \Dφv\ + ί Hώvdxdt
QX[-T,T] JΩx[-T,T]

cosγΓ ΦvdHn.
JdΩx[-T,T]

(2.3) is true for almost all T > 0, so it is easy to see that (2.3) holds

for all T > 0. Therefore w is a generalized solution of Φ(u; γ). D

Take any sequence γy \ γ, since the solution Uj of Φ(w; γy) is unique

up to an additive constant, we normalize Uj in Theorem 2.1 by

| { χ e Ω | M y ( x ) > 0 } | > | Ω | / 4 and

By passing to a subsequence, lim^ _ ̂  Uj, = w almost everywhere in Ω

where w is a generalized solution of Φ(w; γ). In the remaining part of this

paper we always assume Ω satisfies (1.3) and (1.9), <z#d we fix the sequence

Uj and the function w described above unless otherwise specified.

Let P = {x e Ω | W ( J C ) = +oo}, and ΛΓ = (JC e Ω|W(JC) = - o o } .

Then we have:

LEMMA 2.2. P is a solution of G(A; γ) and N is a solution of

G(A; m - γ) .

Proof. For any positive integer j 9 w — j is also a generalized solution

of Φ(w; γ) . As in the proof of Theorem 2.1, we can find a subsequence of

w - j which converges to a generalized solution w' of Φ(w; γ). But the

subgraph of w' is P X R. Therefore P x R i s a solution of F(U; γ). Since

P X R is a cylinder, so P is a solution of G(A; γ). By considering — w

which is a generalized solution of Φ(w; m — γ), one can similarly prove

that ΛΓ is a solution of G(A; π - γ). D

COROLLARY 2.1. w is finite almost everywhere.
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Proof. By Lemma 2.2, G(P; γ) < G(Ω; γ) = 0. By (1.3) we conclude
P = 0 or Ω. But each Uj satisfies (2.4) so P = 0 . Similarly we can prove
N = 0 . D

3. Boundedness of w: case when cosγ/l 4- L2 < 1.

LEMMA 3.1. Let U be a solution of F{U\ β) and I\ be an open portion
of 9Ω. Assume (i) I\ = 0 or I\ Λ&s α Lipschitz constant L with
|cos/ft/l 4- L 2 | < α < 1; Λ«ί/ (ii) |/^ | < b. For any subdomain Ωr of Ω

stίΩ^ΘΩ - I\) > σ > 0, we can find constants C3 > 0 and r0 > 0,
/cλ depend only on n, b, σ, and Ω // Γx = 0 α«J depend also on Γ1? L

// Γx =£ 0 , ŵcΛ /Λαί /or all (JC0, /0) £ ίl ' X R, /Λ̂  following are

true:

(3.1) i/ \Ur(x0,t0)\ = |Cr(x0,/0) n C/| > 0/orα/Zr > 0, then

\Ur(x0,t0)\>C3r"+1 forallr<r0;

(3.2) // \Ur\x0,t0)\ = | C r ( j c 0 , ί 0 ) -U\> 0 for all r > 0, ίΛeu

|ί//(x 0 )ί 0) |>C 3/-"+ 1 forallr<r0,

where C r ( x 0 , t 0 ) = { ( x , t ) e R " + 1 | \x - x o \ < r and \t - to\< r ) .

Note. We define the distance between a set and the empty set to be
+ oo.

Proof. The proof is essentially the same as the proof of Theorem 3.2
in [11]. Let us first assume I\ Φ 0 . For simplicity we write r = Ur(x0, t0),
Cr = Cr(x0, t0) and H = Hβ. Now compare U with U - Cr,

(3.3) f | £ < ί v l + ( Hφudxdt-cosβf φudHn
/(ΩxR)ncr •'(ΩxRjnς J(dΩxR)ncr

< f φvdHn.
he,

So for almost all r > 0,

(3.4) / i D φ ^ l + f HφUrdxdt-cosβ( φUrdHn

•ΏxR ΏxR •'aΩxR

he,
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Let Γ = {x e
then by Lemma 1.1,
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:,3Ω - I\) > σ/2}. Suppose 0 < r < σ/2,

(3.5) ΦυdHn = f \DφUr\ + Cx\Ur\

where Cx is the constant in Lemma 1.1 which depends only on σ, Ω and
Γ1? and k(n + 1) is the isoperimeteric constant in Rn+1. In the last
inequality we have used the isoperimetric inequality Corollary 1.29 in [12].
Now choose rλ > 0 small enough such that

(3.6) rx < σ/2 and Cλ k{n + l ) | ς . | 1 / ( n + 1 ) < 1/2.

Since / \DφUr\ = / Ω x R \DφUr\ + fdQxRφUrdHn, so from (3.5) and (3.6)
we have

and

0.8)

for all 0 < r < rv

By Lemma 2.1 of [11]:

(3.9) ί Hφvdxdt= ( Hdxdt> -k{n)-b \Cr\
1/n( \Dφv\.

•ΏxR •'ί/r

 J

Combining (3.7)-(3.9):

(3.10) f Hφudxdt~ cosβ ί ΦυdHn

•ΏXR r •'aaxR r

ΏxR

for almost all 0 < r < rv
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The expression in the whole bracket above tends to cos/?/l 4- L2 as

r -> 0. Since cosβvl + L2 < a < 1, we may choose 0 < rQ < rλ such that

the expression in the bracket is less than (1 + a)/2 for all 0 < r < r0. We

see that r0 depends only on n, a, b, σ, L, Ω, and Tv By (3.4), (3.6), (3.8)

and (3.10) we get

1 + a
f I I l ^ J .

}ur\
ΦudHn>( \Dφ \-λ±*f

ΩxR

I - a . |«/(π+i)

for almost all 0 < r < r0. If \Ur\ > 0 for all r > 0, then we have |ί/r| >

C 3 r w + 1 for all r < r0 where C3 depends only w, ^, and L, which can be

computed explicitly.

If I\ = 0 , then there is no need to estimate boundary term

fdΩxRΦu dHn So in this case we do not need the inequality cosβvl + L2

< a < 1, the rest of the proof is similar. Hence (3.1) is true. Similarly by

considering ί/' = Ω x R - U, we can also prove (3.2). D

THEOREM 3.1. Suppose Ω is a bounded Lipschitz domain satisfying (1.3)

and (1.9). Le/ γ , u and w be as before, and let I\ be an open portion of

9Ω such that either Tx = 0 or I\ Aαs α Lipschitz constant L with

c o s γ / l + L2 < 1. Then for any subdomain Ω ' c Ω w//Λ dis^Ω^ΘΩ - ϊ \ )

> 0, /Λ r̂̂  exists a constant C4 independent of j such that

(3.11) sup In,.I < C4

(3.12) sup IwI < C4

Proof. We assume Γx Φ 0 , the case when I\ = 0 can be proved

similarly. Suppose the functions uj are not uniformly bounded above in

Ω'. Since each Uj is bounded in Ω, by passing to a subsequence if

necessary, we can find Xj e Ω', hiΆj^^Xj = x 0 G Ω' and limy ^ ^ Uj(xj)

= + oo. Let Cλ and r0 be the constants in Lemma 3.1 corresponding to

α = cosγ/l 4- L 2 and b = Hy. For any t > 0, we hae UJ(XJ) > t and

|jcy - jco| < r o/2 if j is large enough. Let JJj be the subgraph of Uj. Then
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Uj is a solution of F(U\ γ ), and if j is large enough \Ujr(xj,t)\ =

\Uj Π Cj.(Xj,t)\ > 0 f or all r > 0, because Uj is regular in Ω. Since

cosγ^Vl 4- L2 < a and 0 < Hy < b, by Lemma 3.1 if j is large enough

then

Let y -> oo, we conclude that

i
where JF is the subgraph of w. Since t is arbitrary, this contradicts

Corollary 2.1 that w is finite almost everywhere. Therefore Uj are uni-

formly bounded above in Ω'. Similarly we can prove that Uj are uniformly

bounded below in Ω', and (3.11) is proved. (3.12) is an immediate

consequence of (3.11) because Uj converge to w almost everywhere in Ω. D

THEOREM 3.2. Let Ω be a bounded Lipschitz domain having Lipschitz

constant L with cosγ/l 4- L2 < 1. // Ω satisfied (1.3), then Φ(u; γ) has a

bounded solution which is analytic in Ω.

Proof. By Theorem 3.1 with I\ = ΘΩ, we conclude that w is bounded

and hence is a bounded solution of Φ(w; γ). As in the proof of Lemma

2.1, we see that w is analytic in Ω. D

If Ω only satisfies (1.9) (and (1.3)) then w may be unbounded. For

example, if Ω is smooth and γ = 0, then w may be unbounded, see [10].

However we have the following:

THEOREM 3.3. Let Ω be a bounded Lipschitz domain satisfying (1.3)

and (1.9), then Φ(w; γ) has a locally bounded generalized solution which is

analytic and satisfies div Tw = Hγ in Ω.

Proof. By Theorem 3.1, for any subdomains Ωr c c Ω" c c Ω, there

exists a constant C4 not depending of j such that supΩ~ \Uj\ < C4 for all j .

Since each Uj is analytic and satisfies divΓw = Hy in Ω. By Corollary

15.7 of [8], we can find a constant C5 not depending on j such that

sup|jD3w7 | < C5,
Ώ

for all j . By passing to a subsequence, wy, Όuj and D2Uj converge

uniformly in Ω'. Hence w e C2(Ω') and satisfies div Tw = Hy, so w is

analytic in Ωr. Since Ωr can be any subdomain of Ω such that Ωr c Ω, the

theorem follows. D



EXISTENCE CRITERIA FOR CAPILLARY FREE SURFACES 481

Now we are going to investigate the boundary behavior of w. Follow-
ing [7] and [13] we have the following definitions:

DEFINITION 3.1. We say a family of domains Ω* exhausting Ω if
dίlk e C\ Ώk c Ώk+ι and ΌkΏk = Ω.

If Ω is Lipschitz we can always find such an exhausting sequence by
[14].

DEFINITION 3.2. Let Ω be a Lipschitz domain, u e C2(Ω) is said to
satisfy Tu v = cosγ weakly on 3Ω if for any exhausting sequence Qk of
Ω,

(3.13) lim / fΓwvkάHΛ_λ= f fcosydH^

for any function / belonging to the Sobolev space WU(Ω), wher vk is the
outward normal of 3ΩΛ.

THEOREM 3.4. // Ω satisfies (1.3) and (1.9), and if Uj and w are as
before, then w satisfies Tw v = cosγ weakly on 3Ω.

Proof. For each j , Uj is a variational solution of Φ(w; γy). By the
proof of Lemma 2 in [7], for all / e Whl(Ω), we have

(3.14) / D/ ^ Λc + / i f f ώ - / fcσ&yjdH^ = 0.
Ω̂ / l + \Duj\2 yΩ y yaΩ

From the proof of Theorem 3.3, by passing to a subsequence
l i m ; ^ Duj = Dw in Ω. As \Duj/ ^1 + |Dwy |

2 | < 1 in Ω for all 7, noting
that lim^^^cosγ^ = cosγ and timj^^H = //γ, let y ' ^ 00 in (3.14), by
Lebesgue dominated convergence theorem, we get

(3.15) / / ) / . ^ dbc 4- / fHγdx - f fcσ&ydH^ = 0.
Ω̂ /l + \Dw\2 y Ω ^ Ω

Let Ωk be an exhausting sequence of Ω. Multiply div Tw = Hy by /
and integrating by parts over ΩΛ:

(3.16) f Df η=M==dx+ f fHydx-
\ /l + |DM;|2 \
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By Lebesgue dominated convergence theorem again,

lim / Df - — dx = / Df - = dx and

lim f fHydx = ( fHdx.

Therefore combine (3.15) and (3.16), we have

lim / fΓw vkdHH_λ = ί fcosydHn_v

4. Boundedness of w: general case. As we noted before, if there is
no L with cosγvl + L2 < 1 such that Ω has Lipschitz constant L, then
the generalized solution w may fail to be bounded. However, if we impose
some reasonable assumptions on 3Ω, we can still prove that w is bounded
and hence w is a solution of Φ(w; γ).

As before we assume Ω satisfies (1.3) and (1.9). In addition we assume
9Ω = Γ' U Γ" such that

(4.1) Γx is an open portion of 3Ω with Lipschitz constant L,
cosγ/l + L2 < 1;

(4.2) Γ" = Γ1 U Γ2 U - UΓ", each Tk is closed;

(4.3) for each k = 1,..., N> there is an open set Ok c RΛ containing
Γ* such that dist(Ofc, ΌmΦkT

m) > 0, Ok Π Ω is Lipschitz and connected;
also there are functions υψ and υψ belonging to C2(Rn) and satisfying:

(i) div Tυψ = div Tυφ = Hγuι0kΠ Ω; and
(ϋ) Tυφ - v > cosγ > Tυψ v i/w_Γalmost everywhere on Ok Π 3Ω.
vft and υ^ will serve as upper and lower comparison surfaces for w

respectively. In some cases, for example, n = 2 and Ω is piecewise
smooth, lower comparison surfaces always exist, see [6]. Our assumptions
on 3 Ω is a generalization of the hypothesis α(γ) introduced in §1 to
higher dimensions.

THEOREM 4.1. Suppose Ω satisfies (1.3), (1.9) and (4.1)-(4.3). Let Uj
and w be as before, then w is bounded and is a variational solution of
Φ(w γ).

Proof. By Theorem 3.1 and (4.1), we know that w is bounded in every
subdomain Ω' c Ω with dist(Ω',3Ω - Γr) > 0. It remains to prove that w
is bounded in OknQ for k = 1,..., N. Firstly, we want to prove that w
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is bounded above. For simplicity, we write O = Ok, Γ = Γ* and v = Ό£\
Let O ' c c O b e a n open set containing Γ, then dist(O - O\ Γ") > 0 by
assumption (4.3), and so dist((0 - O') Π Ω, Γ/r) > 0. By Theorem 3.1,
the functions wy are uniformly bounded in (O — O') Π Ω. By adding a
constant to υ, we may assume the Uj < v on (O - O') Π Ω. We assert
that w < v on O Π Ω.

From the proof of Theorem 3.1, we know that by passing to a
subsequence wy converge to w and Duj converge to Dw, both uniformly
on compact subsets of Ω. If v(x0) < w(x0) for some x 0 e O Π Ω, then
there exist positive numbers p, M, and a positive integer j 0 such that
5 p(^o) c Ω^ a n d w e h a v e 0<Uj-v<Min Bp(x0), for 7 > j 0 . Define

ί
θ w7 - 1; < 0

wy - y 0 < Uj - v < M in O Π Ω.

M M <Uj- v

Extend wy to be zero in Ω — O. Since wy = 0 in (O — O') Π Ω and
dist(Ω - 0 , 0 ' ) > 0, so Wj G JΓ^HQ). From the proof of Lemma 2 of [7]:
(4.4) ί Dw; Uj dx

JO p^
WjCθsyjdHn_ly

bearing in mind that w7 = 0 in Ω — 0. On the other hand by assumption

Dv_

~\Dυγ

> - j HγWjdx + J WjCθsydHn_v

Subtracting (4.5) from (4.4):

(4.5) f Dwr . DV -dx
•ΌnΩ /l + \Dυ\2

(4.6) / Dwj
Dυ

+ \Duj\2 V1 + \Dv\2

< I [H — H )w dx + / wAcosy: — cosγ) dHn_1.
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By the definition of w and the particular structure of the operator
Tu, it is easy to see

DUl Dυ

\Duj\ \Dv\:
0.

By (4.6), for j>j0:

(4.7)
BΛx0)

D(uj-o)
Dυ

\Duj\ \Dυγ
dx

DUj Dυ

\Du\ \Dυ\
dx

< f (H -H )Wjdx+ [ w(cosγ- cosγ) dHn_v

(4.8)

Let j -* oo, noting that 0 < Wj < M for all j ,

~/ , I Dw Dυ

\Dw\3

\Dυ\

But

D(w - υ)
Dw Dυ

^l + \Dw\2 A + \Dυ\2 J

>\Dw-Dυ\2 f1 Λ . . .

where ϋ, = ίw + (1 - O^ Therefore Dw - Dυ = 0 in 2?p(x0) and w =
υ + K there, where .fiΓ = w(x0) — v(x0) > 0.

Let A = {x e O Π Ώ\w(x) = v(x) + K). A is obviously closed in
O Π Ω since w and ϋ are continuous. Also from the proof above, we see
that A is open. Since A Φ 0, and by assumption O Π Ω is connected we
conclude that A = O Π Ω. This is impossible because i/y < ϋ in (O — O7)
Π Ω which is not empty. Hence w < v in O Π Ω, and w is bounded above
in Ω. Similarly, we can prove that w is bounded below. By Theorem 1.1, w
is a solution of Φ(w; γ). D
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