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ON ACCRETIVE OPERATORS ON /~

H. BERENS AND L. HETZELT

To Professor H. G. Tillmann on the occasion of his 60 th birthday

It is the object of the paper to discuss the result of Crandall and
Liggett on m-accretive operators in 1% in greater detail.

1. Introduction. By Zorn's Lemma any accretive operator has a
maximally accretive extension. In this respect G. J. Minty [12] proved in
1962 that if H is a Hubert space the accretive (= monotone) operator
A c H X H is maximally accretive exactly when there exists a A E R +

such that (and consequently for all λ e R+)

(1.1) Vy e H x + λa = y has a (unique) solution in A,

i.e., I + XA defines a bijection of A onto H. In this case, A is said to be
m-accretive. See the following section for the relevant definitions and
notations.

In contrast to Minty's result, M. G. Crandall and T. W. Liggett [6]
showed in 1971 that for lξ, n e N, > 2 and 1 < p < oo, the class of
m-accretive operators coincides with the class of maximally accretive ones
exactly when p = 2, or oo. In particular, we want to reprove their

(1.2) THEOREM (Crandall-Liggett). In /*, n e N, the class of maxim-
ally accretive operators coincides with the class of m-accretive ones.

In the following section we do the necessary preliminary work, while
§3 is devoted to the proof of the theorem. In §4 we comment on the
theorem. Section 5, finally, deals with the domain and range of m-accre-
tive operators.

We would like to thank Professor K. Donner for the many valuable
discussions we had on this and related subjects.

2. Definitions, Notations, and Preliminaries. Let X be a finite
dimensional, real, normed vector space with || ||. It's elements are de-
noted by x9y,z, For a subset K of X, K, K, and dK denote its
closure, interior, and boundary, respectively. The open ball centered at x
with radius r E R + i s denoted by br(x).
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302 H. BERENS AND L. HETZELT

The semi-inner product ( , ) 5: X X X -> R is defined by

/-*0+ £ι

If i 7 denotes the duality map on X into its dual—F is the subdifferential
of || | | 2 /2: X-+R—then

(y,x)s = max{(y,w): w <Ξ F(x)}.

It follows that ( , ) s is upper semi-continuous on I X X Furthermore,
if X is strictly convex, then F(x) Γ) F(x') = 0 whenever x Φ x'. If X is
smooth, then F is single-valued and (j>, x)s is just the derivative of
|| | | 2/2 at x in the direction y. If, in particular, X is an inner product
space, the semi-inner product reduces to the inner product on X X X. For
lξ91 < p < oo,

xz : 1 < i < n, Ix/HUxlU}, p = oo,

For x, j e X, x Φ y9

C(y,x):= U bMx-yn(y + Mx
λ>0

denotes the co«^ of decrease of JC with vertex at y. C(y9 x) is the open
tangential cone of b^x_y^(x) at y. With use of the semi-inner product the
cone of decrease can be rewritten as

C{y9x) = { z e X: (y -z,x-y)s< 0 } .

If x = j ; C(^, x) is defined to be the empty set.
The set of intermediate points between x and y in X is defined by

Z(x,y):= [z ε X: ||x - z\\ + \\z -y\\ = \\x -y\\}.

A || ||-segment in X is a curve whose length equals the distance of its
endpoints.

We say that K c X is || ||-CO/II?̂ JC, if

Vk',k" <ΞK3k<ΞK, kΦk\ k" 3 k e Z(k\k").

If K is si closed subset of X there is a useful characterization of

|| ||-convexity, see [5, p. 29].

(2.1) LEMMA. Lei K be a closed set in X. K is || \\-convex exactly when
every two points in K can be joint by a \\ \\-segment completely contained in
K.
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If X is strictly convex, then || ||-convexity reduces to the classical
notion of convexity. For l\—this is the case we are particularly interested
in—the intermediate points of x and y are given by the parallelepiped
spanned by x and y. And [0, \\y — JC||X] ^ t »-> z(t) defines a || l̂ -segment
joining x and y, if it is a continuous curve with x and y as endpoints
which is monotone in each component zt(t), 0 < t < \\y — x\\v

A set-valued map A from X into itself is called an operator on X. It
is convenient to identify A with its graph in X X X. D(A):= {x G X:
(x,α) G ̂ 4} and i?(^4):= {α e X: (x,α) G ̂ 4} denote the domain and
range of A, respectively. A~ι := {(a, x ) e l x l : (JC, a) G Λ}. If Λ1 and
yl2 are two operators on X, A1 + ^42 := {(x, a1 + a2) e X X X: (x, α1) G
Λ1 and (JC, α2) e A2}, and for λ e R + λ^ := {(JC, λa) G X X X: (x, α)

The operator yί is said to be accretive if

V ( x , a), (x\ af)^A 0 < (a - a\ x - x')s.

This is equivalent to the fact that

V λ e R + (/ + λ^4)~ defines a contraction from X to itself,

i.e.,

||x - jcr|| <||(JC + λa) -(x' + λflOl, Vλ G R\

4̂ is said to be m-accretive if A is accretive and if for all λ G R+ / + \A
is surjective. (It follows trivially from the accretiveness of A that I + λA
is injective, thus if A is m-accretive for each λ G R+ / + λ̂ 4 is bijective.)
An m-accretive operator on X is a maximal element within the class of
accretive operators on X ordered by inclusion.

If X is an inner product space it is common to speak of monotone
operators instead of accretive ones.

3. Proof of the Theorem. The key to our proof is

(3.1) THEOREM. Let A be a finite accretive set in I™ X /^, then

VJC G /* BA(x):= {a G /«: <α' - ^,JC7 - x)s > 0 V ( J C > ' ) ^ }

is nonempty, closed, and \\ 1̂ -co/iι ex. // β^ denotes the smallest closed
parallelepiped1 in I™ containing R( A), then even B$(x):= QA Π BA(x) is
nonempty, compact, and || \\λ-convex.

1The faces of QA are assumed to be parallel to the main axes.
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Let A := {(x\ a1),... ,(xm

? am)}, m G N, and let x G /J3. Setting

C 7 := C{aj,aJ + xJ - x)9 1 <y < m,

Theorem 3.1 claims that

^ Λ W = Π Cc y is # 0 , closed and || ||i-convex.
7 = 1

Let us introduce some further notation

I{:= [1 < i < n: x{ - x. = ±\\xJ - x\\oo} and Γ := I{u It.

To prove Theorem 3.1 we start with

(3.2) LEMMA.

V1 < j , I < m Cj Π Cι is a cone.

Proof. It is an easy exercise to verify that

Cj nCι = {z G /~: zt > aJ

i9 i e I

Π{z e /-: z,. > max(β/,fl{), / e /{n /!,}

n{z e /«: z,. < min(α/,αί), i G / > n /

Π{z G /«: a{<z{< a\, i G /{n /!_}

Hence, if C-7' Π Cz ¥= 0

C ' Π C7 is a cone iff /{n /!_= 0 and /^Π Iι

+= 0 .

But if i <Ξ I{n /7_, then

xj - x\= (xί - Xt) -(xli~Xi)

I vi γ _ 1 — I "V* "V* γJ γ '
| |Λ -Λ'j|θθ'^||-/^' •A' II oQ | | ^ V •Λ' II 0 0 ?

and consequently,

(3.3) (a{ - aft{xj - x<) = (* - a1, xj - x')s > 0
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implies a\ < a{, or Cj Π C' = 0 . Similarly, if i e Iin /'+, then */ - x\
= - ||xy - x'll^, by (3.3) α/ < a\ which again implies ^ 0 ^ = 0 . D

Proof of Theorem 3.1. We prove the theorem by induction on m =
card(^4). For m = 1 there is nothing to prove. Let us assume that for all
accretive sets of cardinality m — 1 the theorem holds true.

If x = xj for some 1 <j < m, we are done. Let us therefore assume
that x Φ xJ\ 1 <j < m.

By the induction hypothesis
m-l

(3.4) Π CC7 * 0 , closed, and || ||i-convex.
7 = 1

Obviously, BA(x) is closed. First, we prove that it is nonempty. In
contrast to our claim, let us assume that BA{x) = 0 . Consequently,

(3.5) Ccm c U CΛ
7 = 1

W.Lo.g. let Im = {1,2,..., s}, 1 < 5 < n. We define

/ 0 : = {1 <j <m- 1: C7 Π S w * 0 } ,

where S w = {6 e /^: bι? = αf2, /G/" 1} is the vertex set of C w . Since
S m c Cc m , by (3.5) J0Φ 0 . We claim,

(3.6) 370 e Jo 3 J* c J*.

If not, then /0 = U^+iD 1", where D' = D'+U Z)L and Dz

±= {y e /0:
i G /{}, We select a sub-manifold So

m c Γ subject to the following
restrictions. For s + 1 < i < n and Dι Φ 0 we set bf = min{α/: 7 e
Z>'+ }, in case D\Φ 0 , otherwise = max{^/: 7 G ΰ ' . } . In the first case, if
DL# 0 too, for all / e DL αj < Z?,0, for, if for some 7 e D^ and some
/ e Z)zl a{ < a\, then C7 Π Cι Φ 0 while I{n Iι_Φ 0 , contradicting
Lemma 3.2.

We define 5™:= {b e 5 W : 6,. = Z>°, 5 + 1 < i < n, Dt Φ 0 } . By
construction Sg1 c Zcj for all 7r e D\ s + 1 < i < n, hence for all
7 e /0. Trivially, 50

m c C c w and SΌm c Cc7' for all 1 <y* < m - 1 not
belonging to Jo. Thus S™ c ^ ( c), which contradicts the assumption that
BA(x)=0.

Hence there exists an index j 0 e 70 such that Ijo c Im. Since Ĉ ° Π
Cm Φ 0 , by use of Lemma 3.2 /{°n I! 2 and I-Ϊ2Π I™ are empty, i.e.,
/i° c /^ and Ij» c /^. But this implies that Cm c C °̂, and consequently,
BA{x) = Πy~ι Zcj which is nonempty by the induction hypothesis (3.4),
again in contradiction to our assumption that BΛ{x) = 0 .
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To prove that BA(x) is || |̂ -convex, let us assume there exist two
points in BA(x) which have no proper intermediate points. W.l.o.g. we
may assume that 0 and a are these points where ax > 0, 1 < i < s and
aif = 0, s + 1 < i < w, for some 1 < s < n. Hence

/

z(o,a) n BA(X) = {z(oya) nZcm) n\z(o,a) n p

Since by the induction hypothesis (3.4) (λjlχ CcJ is || ||Γconvex, it
follows that

{0,a} c dCm and Z(0, fl)nCw^0

—indeed, any || (^-segment in Π jZi CC7 connecting 0 and a belongs to
Cm except for the two endpoints. Consequently, there are two indices z'o
and ia, 1 < ι0, ia < s, i0 Φ ia (by use of Lemma 3.2) such that i0 G 7™
and ia G /^. W.l.o.g. we may further assume that ι0 = 1.

Consider the point

bε := (ε, α 2 , . . . , an) in Z(0, ύr), 0 < ε < aτ.

It is a proper intermediate point of 0 and a located on 3Cm. Since by
assumption Z(0, a) Π ̂ ( J C ) = {0, a}, there exists an index j \ 1 <j <
m - 1, such that 2>ε e Cy. Obviously, Cm Π CJ Φ 0 . By Lemma 3.2
7™ Π 7^ and 7^ Π 7{ are empty.

If 1 £ 7y, then a e Cy, contradicting α e ^ ( J C ) . Hence 1 e IK If
1 G /{, then again a G Cy, contradicting a ̂  BA(x). Hence 1 G / ( .
Since 1 e 7+, this is in contradiction to 7+ Π 7^= 0. Thus any given two
points in ^ ( x ) have proper intermediate points in BA(x) with respect to
the || Ih-norm.

Let QA be the smallest closed parallelepiped containing R(A). To
prove that even

QA ^ BA(x)is nonempty, compact, and || ||i-convex,

we extend A via

where for each 1 < / < n

xu±:= x ± rei9

et being the ith unit vector in /* and r = 2max{||x - xj\\^ 1 <j < m},
and

ali±^ QAy a)& := max a{ and a\~ := min a{.
l<j<m l<j<m
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By definition, Aext is accretive and BAJ^x) = QA Π BA(x). D

(3.7) PROPOSITION. Let A be a maximally accretive operator on /*.
A{x) is closed and || \\λ-convex.

Proof. By the maximality of A and by the u. semi-continuity of the
semi-inner product for each x e D{A) A{x) is closed.

To see that ^4(JC) is || |̂ -convex, let Γ be the net of all finite subsets
Aγ = {(x\aι)9...,(xmy9a

my)}, my e N, of A subject to the restriction
that xj Φ x, 1 <j < mΊ\ γ < γ' if Aγ c 4γ,. Clearly,

Λ(x) c ΛU(JC):= Π {& e /»: <*' - b , x ' - x)s > 0}

x'Φx

= lim JB, (JC).

We show that BA(x) is || l̂ -convex. Indeed, take bf and b" in ^ ( x ) ,
and for each γ e Γ let [0, Hft7' - 6'HJ 3 / -> 6γ(/) be a || ||Γsegment in
BA(x) connecting b' and b". By definition, by is Lipschitz-continuous,
i.e.γ,

V0 < t' < t"ί\\b" - b'\\u \\bΎ(t") - by(t')l = t"- t'.

By the theorem of Arzela-Ascoli, any accumulation point of the net {by:
γ e Γ ) defines a || |̂ -segment in BA(x) connecting bf and b".

By the maximality of A, however, A(x) = BA(x). D

(3.8) PROPOSITION. Let A be an accretive operator with R(A) c β, a
compact parallelepiped.

If A is maximal with respect to all accretive operators with range in Q,
then Vx e /* A(x) is nonempty, compact, and || \\λ-convex.

Proof. By use of the notation introduced in the proofs of Theorem 3.1
and Proposition 3.7, for each x Ξ /~

A(x) c Bβ(x):= Π {b^Q: (a' - b,x'- x)s > 0}
(x',a')*=A

x'Φx

= lim B9(x).

By Theorem 3.1 for each γ G Γ B$(x) is nonempty, compact and || | | Γ

convex, and so is B$(x) by a compactness argument. The maximality of
A again implies that for each x A(x) = B$(x). D
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Next we want to prove that under the assumptions of Proposition 3.8
an accretive operator is m-accretive. The proof rests upon a theorem of
surjectivity for set-valued mappings (J. M. Lasry and R. Robert [11,
Corollaire 1.18, p. 98]): Let Γ: Rn -» Rn be an upper semi-continuous,
compact-valued, acyclic mapping. If Γ is coercive, then it is
surjective.—For each x e Rrt, let y(x) = min{(y, x): y e Γ(JC)}. Γ is
said to be coercive if γ(x)/| |* | | -» oo when ||JC|| -> oo.

Let A be an accretive operator on /^ satisfying the assumptions of
Proposition 3.8, and let λ e R + b e fixed. By maximality / + XA is upper
semi-continuous, and Proposition 3.8 assures that

VJC e /* A(x) Φ 0 , compact, and || ||rconvex.

In [1] the authors proved

(3.9) LEMMA. A nonempty, compact, || [{^convex set in I™ is a Rδ-set,
i.e., it is the intersection of a decreasing sequence of compact sets which are
contractible in itself.

By J. M. Lasry and R. Robert [11, Proposition 2.1, p. 110] iίg-sets in
Rw are acyclic (in the sense of Cech-cohomology).

Since R(A) is contained in the compact parallelepiped Q, I + XA is
trivially coercive. Thus the conditions of the theorem of surjectivity are
fulfilled, giving

(3.10) PROPOSITION. Let A be an accretive operator on I™ with R(A) c
<2, a compact parallelepiped.

If A is maximal with respect to all accretive operators with range in Q,
then A is m-accretive.

REMARK. TO prove Proposition 3.10, instead of the theorem of surjec-
tivity due to Lasry-Robert we may use a set-valued version of the theorem
of the invariance of domain (A. Granas and J. W. Jaworowski [8]): Let U
be an open subset of Rn and let φ: U -> ΈLn be an upper semi-continuous,
compact-valued, acyclic mapping such that Φ(x) Π Φ(x') = 0 whenever
x Φ x\ then Φ(ί/) is open. Indeed, for each λ G R+ / + λ i satisfies the
assumptions of the theorem.

Now we are ready to prove the Theorem.

Let A be a maximally accretive operator on /^. W.l.o.g. let (0,0) G A.



ON ACCRETIVE OPERATORS ON /J° 309

For each m e N, we define the restriction ^4W = {(x, α) G A: \\a\\n
< m) of A. Let J?w be a maximal extension of Am subject to the
restriction that for all (x9 b) G Bm \\b\\n < m. By Proposition 3.10 Bm is
m-accretive.

Let λ 6 R + be fixed. Assume that / + \A is not surjective. We take
a point in /~, say j>, contained in the complement of (/ + \A){1™). Since
for each m G N F i s m-accretive

>> = xm + λό w for some (JCW, bm) G £ m .

Since | | ^ m | | 0 0 < | | ^ | | 0 0 , there exists a convergent subsequence, say Km jXmJ
= x. Consequently, KmjbmJ = (y - x)/λ =:b. Take a pair (*', α') G A.
For /ny > llα'Hoo (x',a') ^ Bmj and by the u. semi-continuity of the
semi-inner product

0 < M j ( b m J - a\ xmJ - x')s < ( b - a ' , x - x')s.

By construction, (x, b) ί A. Hence A U (x, δ) properly extends A, which
contradicts its maximality. D

REMARK. The proof of Crandall and Liggett runs as follows:
Let A be a maximally accretive operator on I™.
Fix an element y G /~. They claim that j> G i?(/ + 4̂) (λ is set to be

equal to 1). To prove their claim they define

\/{x\a')eA V(x',a') = {z e /«: ( y - z - a ' 9 z - x')s > 0 } .

If Π{ F(jcr, ̂ r ) : (x\ a') ^ A} is not empty, say z° belongs to the intersec-
tion, then by the maximality of A (z°, y — z°) G ̂ 4, giving y = z° 4-
(j> — z°). For each (x\ a') G ̂ 4 F(jcr, α7) is nonempty and compact. Thus
it remains to verify that {V(x\ a'): (x\ a') G ̂ 4} has the finite intersec-
tion property.

To do this, let B = {(x\ bι\..., (xw, fem)}, m G N be a finite accre-
tive operator and let D β be the smallest closed parallelepiped which
contains y - bJ\ 1 <j < m. Define T: DB -> DB by

Z)β 3 x * T(x) = [z G ZV ((>; - z) - 6>, x - *;>, > 0, 1 <j < m).

The crucial part of their proof is the verification of the following

(3.11) LEMMA.

ΰ β T(x) Φ 0 9 compact, and contractible in itself.
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Obviously, T is upper semi-continuous. By the fixed point theorem of

Eilenberg and Montgomery T has a fixed point in DB. This proves that

{ V(x\ af): (x\ a') e A) has the finite intersection property.

4. Remarks about the Theorem. The counterpart to Theorem 3.1 in

Rn was formulated and proved by G. J. Minty [13] in 1962.

(4.1) THEOREM. Let A be a finite monotone set in Rn X Rn. Then

Vx e R " BA(X):= {αGR": (a' - a,xf - x) > 0V(x',a')eA} is non-

empty, closed and convex.

If QA

 = coia' G R " : (*'><*') G }̂> Λ̂e/ι ê e/i ίλe intersection QA Π
^ ( x ) is nonempty, compact, and convex.

To be more precise than above, the first statement of the theorem is

due to Minty, its extension was proved by H. Debrunner and P. Flor [7] in

1964, and the proof of Minty's maximality theorem given in H. Brezis [3,

Theorem 2.1, p. 23f] is based on their extension.

For lξ, 1 < p < oo, p Φ 2, Crandall and Liggett considered the

following operator A: Let {el9 e2} be the natural basis in Iξ, and let

A:= {(0,0),(el,e2),(e2,-el)}.

They pointed out that no maximally accretive extension of A on Iζ is

defined on the triangle {(ξl9 ξ2) e lξ: 0 < ξt < ξ29 ξτ + ξ2 < 1} if 1 < p

< 2, respectively on the triangle {(£1? £2) G lξ: 0 < £2 < ξ l5 £x + ξ2 < 1}

if 2 < /? < oo, in contrast to the fact that the closure of an m-accretive

operator on Iξ is convex, see Theorem 5.1 below.

In [2] the authors extended their result as follows:

(4.2) For the plane endowed with a strictly convex and smooth norm the

class of maximally accretive operators coincides with the class of m-accretive

ones exactly when the norm generates an inner product.

The stronger statement: In the normed plane the two classes coincide

exactly when the unit ball is either an ellipse or a parallelogram, as well as

the obvious extension for the rc-space, are still open, see also the com-

ments of Crandall and Liggett, loc. cit., on this subject.

We want to conclude the section with two statements on maximally

accretive operators on the normed plane, which are in the vein of our

paper.

Via the quadratic and skew-symmetric form

S(x,y):= i h ί 2 - frti x = ( i i ^ i ) a n d y = (V
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we define the so-called dual *norm

Vx H*:=

The unit ball of the plane w.r.t. the dual *norm is just the unit ball
w.r.t. the dual norm rotated by 90°, and || | |** = || ||. The following
lemma, due to H. Busemann, if of interest in connection with accretive-
ness on the plane.

(4.3) LEMMA.

Vx (y,x)s>Q~(x,y)s*>0.

We have

(4.4) Let A be a maximally accretive operator on the plane.

VΛ: G D(A) A(X) is closed and \\ \\*-convex.

(4.5) Let A be a maximally accretive operator on the plane.
If A is defined on the whole plane then A is m-accretive.

We do not want to give formal proofs of the two propositions. The
first one is not difficult to verify, while the second one follows from the
fact that under the assumptions of the proposition A is upper semi-con-
tinuous and

VΛ: A(X) is nonempty, compact, and contractible in itself.

5. On the domain and the range of an m-accretive operator. In the
following A is assumed to be m-accretive on X. Hence for each λ the
Yosida-resolvent / λ : = (/ + λ ^ ) " 1 defines a contraction on X.

Following H. Brezis [3, Theorem 2.2] and R. C. Bruck [4] it is not
difficult to prove

(5.1) THEOREM. Let A be m-accretive on X.

(5.2) Vy<ΞX 3X(ΞD(A)Ξ>0< (y - χ,χ- χ')s Vx' ^D(A).

Moreover, D(A) is \\ \\-convex.

IfXis strictly convex, D(A) is just convex. If X is smooth, then D(A)
is the range of a uniquely defined contractive projection, say P^ΪJ, and

zX lim Jλy = p-^y - x.

Proof. Take an element y e X.

VλeR+



312 H. BERENS AND L. HETZELT

By the accretiveness of A

0<(ax-a\xx-x')s V(x',a')eA9

or, multiplying the inequality by λ and replacing λaλ by y — jcλ,

0 < (y - xλ - λa',xλ - x')s V{x\a') G A.

On the other hand, ( i λ } λ > o i s bounded for λ -> 0 4- —indeed, for each
(x\ a') G A \\xλ - x'\\ < \\y - (x' + λa')\\. Since the semi-inner product
is upper semi-continuous, for any accumulation point x of {x\}x>0 f°

Γ

0 < (y - x,x - x')s Vx' e D(A),

Since { x λ } λ > 0 c D{A\ x G D{A).
The inequahty (5.2) implies that

/c o\ II _ / II ^ / . / /\

V^ /̂ I I Λ Λ II — \ .Λ Λ , Λ Λ y 5

<||v-x'||||x-jc'||, Vx'

from which we easily derive that D(A) is || ||-convex. Indeed, let x' and
JC" be elements of D(A). If y = (x' + x")/2 G D ( ^ ) , we are done. If
not, let x G D(y4) be such that (5.2) holds. By (5.3),

| | x - * Ί I * | b - * 1 and' ||x-x''| |<||.y-x''| |,

but | |^ - x'll = | | j; - jcr/|| = \\x' - x"\\/2 which implies that x Φ x\ x"
and that

x is consequently a proper intermediate point between xf and x" 'mD(A).
If JC is smooth then the semi-inner product is linear in its first

variable. Let y e X and JC1? x2 e i)(^4) be such that

0 < {y-x^Xt

for all x' e Z>(̂ 4), ΐ = 1,2. It follows that

- (y-

Thus for each y ̂  X there exists at most one element x G D(A) satisfy-
ing the inequality in (5.2). By (5.2) there exists such an element, namely,

lim / λ v = x. D
λ o +
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Let K be a proper closed nonempty subset of X. In connection with

his study of the fixed point set of contractive mappings, F. E. Browder

introduced the so-called approximation region A(y; K) between y ( e X)

zndK:

A(y; K)={ztΞX:O<(y-z,z- k)sVk e K).

If for each j G l , A(y; K) Π K Φ 0 then K is said to be a co-sun, a

notion which was introduced by P. L. Papini and I. Singer in connection

with problems within the theory of best approximation, see L. Hetzelt [10]

and U. Westphal [14] for details. With use of this notion, for an ra-accre-

tive operator on X the closure of its domain is a co-sun.

We want to state a few facts about co-suns which seem to be of

relevance in connection with accretive operators, see [9] for proofs.

(5.4) A subset in RΛ is a co-sun exactly when it is closed and convex,

and the metric projection onto it is the uniquely defined contractive retraction

of Rn onto it (F. O. L. Klore).

(5.5) A subset in the normedplane is a co-sun exactly when it is closed

and || \\-convex which in turn is the range of a contractive, ray retraction

(L. A. Karlovitz, P. Gruber, L. Hetzelt).

In 1941 F. Bohnenblust characterized those subspaces in /£, 1 < p <

oo, p Φ 2 which are the ranges of contractive linear projectinos. He

proved, a hyper-subspace is the range of a contractive linear projection

exactly when its normal vector contains at most two nonzero coefficients,

and concluded that a subspace has this property when and only when it

can be written as the intersection of such hyper-subspaces. The second

named author extended Bohnenblust's characterization as follows.

(5.6) Let Un denote the set of unit vectors in R" which have at most two

nonzero coefficients. A subset in /£, 1 < p < oo, p Φ 2, is a co-sun exactly

when it is the intersection of a family of closed half spaces the normal vectors

of which belong to Un.

For l\ and likewise for /~ those subspaces which are the ranges of

linear contractions have been characterized, but as far as we know there

are no descriptions of co-suns for these spaces.

Also there is not much known about the ranges of m-accretive

operators.
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If X is an inner product space and A a maximally monotone operator
on X, so is A ~1 and, consequently, the closure of R{A) is convex. This
result has its counterpart for the normed plane.

(5.7) If A is accretive on the normed plane, then, by Lemma 4.2, A~ι

is accretive with respect to the dual *norm. Consequently, if A is m-accretive
then R(A) is \\ \\*-convex.

Note added in proof. Professor S. Reich kindly pointed out to the
authors that A. Cernes [Israel J. Math. 19 (1974), 335-48] already proved
(4.2) even for n-spaces. In the plane he further verified that the two
notions of accretiveness coincide exactly when the unit ball is either an
ellipse or a parallelogram. In [J. Funct. Anal. 26 (1977), 378-95] S. Reich
among others extended Cernes first statement to smooth spaces.

Finally, following Reich's ideas on approximating zeros it is not
difficult to prove: Let A be m-accretive on X,

\fy €= X3a e R(A) Έ$ 0<{a- a', y - a)s Vα' e R{A),

i.e., R(A) is a sun in the setting of best approximation.
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