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GENERIC COVERING PROPERTIES
FOR SPACES OF ANALYTIC FUNCTIONS. II

DAVID A. STEGENGA AND KENNETH STEPHENSON

It is known that for 0 < p < oo the Hardy space Hp contains a
residual set of functions, each of which has range equal to the whole
plane at every boundary point of the unit disk. With quite new general
techniques, we are able to show that this result holds for numerous other
spaces. The space BMOA of analytic functions of bounded mean oscilla-
tion, the Bloch spaces, the Nevanlinna space and the Dirichlet spaces Da

f or 0 < a < 1/2 are examples. Our methods involve hyperbolic geome-
try, cluster set analysis and the "depth" function which we have used
previously for determining geometric properties of the image surfaces of
functions.

Denote by D(a, r) the open disc in C centered at a and of radius r.
Denote by D the unit disc D(0,l) and let Δ(a,r) = D Π D{a,r) for
a e 3D. Brown and Hansen [4] proved that each Hardy space Hp

9 for
0 < p < oo, contains a residual set of functions f(z) with the property
that for each a e 3D the range of / at a, denoted i?(/, a), covers the
plane C, with the possible exception of at most a point. Here R(f,a) =
Π{ /(Δ(a, r)): r > 0} is the set of values taken on by / in every neighbor-
hood of a. The one point restriction was later removed by others [3].

The techniques used in these papers do not extend to the space of
functions of bounded mean oscillation, which we denote as BMOA, nor
the space of Bloch functions, which we denote as B.

Our paper devoted to generic covering properties of spaces such as
H°° [14] suggested a new approach which would lead to the same
conclusion in these and more general situations.

Our setting will be a linear space of analytic functions M defined on
the unit disc. M will be an jF-space, that is a topological vector space with
a complete translation invariant metric d. We will denote d(O,f) by | |/ | |
although || || is not in general a norm. We will assume the metric on M
induces a topology on M which is finer than that of H{D)y i.e., the
inclusion map from M to H(D) is continuous. Here H(D) is the usual
space of holomorphic functions on the unit disc D with the topology of
uniform convergence on compact subsets.
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For a e Z), let ba(z) = z(a — z)/(l — dz) be a two-fold Blaschke
product mapping D onto itself and let Ca: f -* f°ba denote the corre-
sponding composition operator on H(D). Let N denote the space of
normal functions. As an example of our results we have the following
theorem:

THEOREM 1. If M satisfies:

(i) M Π N is a dense subspace of M,

(ii) (a) sup{ | |Cβ/||, a e D) < oo for all / e M, arcd
(b) M contains a function f with f(D) = C,

*Ae« {/ e M: R(f, a) = C /or 0// 0 e 3D} is a dense Gδ-set in M.

We observe that the hypothesis (i) is mild since typically M Π H°° or
M Π BMOA is dense in M. Certainly this is the case for the Hardy space
and BMOA examples. Also, hypothesis (ϋ)(a) is easily verified for Hp or
BMOA using subordination. Finally the hypothesis (ii)(b) is a starting
point for finding functions which map onto at every boundary point.

Our methods involve hyperbolic geometry, cluster set analysis, and
the "depth" function which we have used previously for determining
geometric properties of the image surface for a function.

Part of this research took place while the second author held a visiting
position at the University of Hawaii and he expresses his appreciation for
their fine hospitality. Both authors would like to thank George Csordas
for helpful conversations on the material presented here.

1. Preliminaries. The pseudohyperbolic metric p is defined on D
by p(<2, b) = \<pa{b)\ where ψa(z) = (a — z)/(l — dz) is a Mόbius trans-
formation of D onto D. The pseudohyperbolic disc of radius r > 0,
centered at a e D is denoted by Dp(a, r) = {z e D: p(a, z) < r}. By the
Schwarz-Pick lemma, if / is an analytic mapping of D into D, then
P(f(a)>f(b)) < p(β, b) for all α, b e D, with equality holding if and only
if / is a Mόbius transformation. Since φ"1 = φa it follows that
φa(Dp(a,r)) = Dp(0,r) = D(09r) forO < r < 1.

If G is an open connected subset of C, let H(G) denote the space of
analytic functions on G with the usual topology of uniform convergence
on compact subsets of G. For / e H{G) let f(G) = {w = /(z): z e G}.
If G' c G has compact closure in G we write G' <§ G. Suppose / e H(G),
a G G, b = f(a)9 and r > 0. Let ΩΛ(r) denote the component of
f~ι(D(b,r)) in G which contains α. If Ωα(r) ^ G then the argument
principle implies that there is a positive integer k for which / maps Ωβ(r)
/c-to-1 onto £>(&, r) and / maps 9Ωα(r) /c times onto dD(b9 r).
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DEFINITION. Let G be an open connected set in C. If / e H(G) and
w ^ C then the depth function for f on G is defined at w by

δ(w,/,G) = sup{r: Ωa(r) <= G for some a ^f~1(w)}.

We simplify this notation to 8f(w) or δ(w,/) when G is implied by the
context.

In geometric terms, 8f(w) is the supremum of the radii of (ramified)
discs centered at w which lie in the image surface of /. Thus, it tells how
deeply w is " buried" in the range of /, but in a local sense. The essential
properties of 8f were established in [14]; we repeat the statement here for
completeness.

LEMMA 1. Let G be an open connected set in C and let f e H(G) be
nonconstant. Then

(i) either δ, is identically equal to -f oo or else is finite at all points,
(ii) 8f(w) > 0 if and only ifw e /(G),

(iii) given a compact set K c /(G), there is an η > 0 and an open set
G' <& G with 8( w, /, G') > η for every w e K, and

(iv) given g e H(G)

sup \8f(w) - 8g(w) I < sup \f(z) - g(z) |,
C G

with the understanding that the finiteness of the right-hand side implies that

8f = + oo only when 8g = + oo.

The following properties follow immediately from the definition and
will be used subsequently.

REMARK 1.

(i) For w0 e C, 8(wJ,G) = δ(w - woj- wo,G).
(ϋ) If Gx c G2 then 8(wJ,Gλ) < δ(w,/,G2).

(iii) If GVG2 are plane domains, φ ^ H(Gλ) with φ(Gx) = G2 and φ
is a proper mapping on Gl9 then δ( w, /, G2) = δ( w, / ° φ, Gx).

2. Main Theorem. Let M be an î -space of analytic functions in
H(D) as described in the introduction. Recall that | |/ | | denotes the
distance in M from / to the zero function.

THEOREM 2. Let M be an F-space in H(D) that satisfies:
(i) for each a e 3Z>, r > 0, there is a dense subset M(a, r) c M with the

property that for eachf e M(a, r), either
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(b) there is a sequence {an} in Δ(α, r) with an -> af G 3D, \a' — a\

< r, and there is a w0 G C with the property that f ° φGn -> w0 m

//(D), and
(ϊί) for every R > 0, ε > 0, //*ere exists r = r(R, ε) /π //z£ interval (0,1),

αrcd η = η ( i ? , ε ) > 0 w//A the property that: given a e D /Aere exists

gΛ G M with \\ga\\ < ε and such that

S(w9 ga o φa9 D(0, r)) > η, \w\ < R.

Then the set, Mθ9 of all f in M with /?(/, a) = C /or every a G 3D w tf

dense Gδ-set in M.

Proof. Let / be a countable dense subset of 3D. For α G / and

positive integers y, fc set U(a9j9k) = { / G M: D(0, fc) <ε /(Δ(fl, y"1))}.

The proof will follow from the Baire category theorem once we establish

that U(a9 j9k) is a. dense open set in M; for the countable intersection of

the t/(#, y, /c)'s for a G /, and y, fc = 1,2,... is precisely M o.

In order to prove that U(a, j\k) is an open set in M it suffices to

prove that it is relatively open in H(D). Lemma 1 yields a short proof;

Let / G ί/(fl, y, fc), ^ equal to the closure of D(0, k)9 and G = Δ(α, y - 1 )

in Lemma 1 (iii). The lemma provides η > 0 and G' <ε G with δ( w, /, G')

> TJ for w G K. If g G i/(D) satisfies |/(z) - g(z) | < η for z G Gr then

Lemma 1 (iv) implies that δ(w, g, G') > 0 whenever w ^ K and hence

Lemma 1 (ii) yields that D(09k) <ε g(G') c g(Δ(α, y"1)). Therefore an

η — G' neighborhood of / is contained in f/(α, y, /:) and it is an open set.

To prove that U = U(a, j\k) is a dense subset let F be an open set in

M. By (i) there is a function / in V Π M{aJ~ι/2). If (i)(a) holds then

f ^ U Γ\ V and we are done. We assume therefore that (i)(b) holds and

that a\ w0, and {an) are obtained from that hypothesis. Let R = k + |wo|

and ε > 0. From hypothesis (ii) we get 0 < r = r( i ϊ , e) < 1, TJ = τ;(i?, ε)

> 0, and for each fceflwe have a function gh & M with ||g^|| < ε and

δ( w, g © φ/?9 D(0, r)) > η for |w| < R. By Remark 1 (i), our choice of R

implies that

(1) δ(w,goψh- w09 D(0,r)) > TJ, |w| < it.

For b we take /> = an where « is large enough that (by (i)(b))

(2) s u p | / o φ 6 ( z ) - w o | < TJ, Dp(b9r) c Δ ( α , y - 1 ) .

Let g = gh from above and pick ε small enough so that / 4- g is still in V.

The proof will be complete once we show that / -h g G U. For this it

suffices to show that D(0,k) <e (f + g)(Dp(b,r)) since Dp(b,r)<z

Δ(<2, y" 1). But the remark following Lemma 1 along with Lemma 1 (ii)
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makes it plain that we need δ(w,(/ + g)° φb9 D(0, r)) > 0 whenever
M < k.

Finally, Lemma 1 (iv) and (2) yields:

< sup\foφh- wo|< η.
\z\<r

Combined with (1) this gives for |w| < k that δ( w, (/ + g) © φ^ Dp(6, r))
> 0 and the proof is complete.

REMARK 2.

(i) The hypotheses of Theorem 2 need only be satisfied by some dense
subspace.

(ii) The continuity of scalar multiplication in an F-space was not used
in the above proof. Thus, the theorem remains valid for subspaces
of H(D) whose topology is determined by a complete translation
invariant metric.

3. The proof of Theorem 1. We will need some lemmas in order to
establish Theorem 1 as a consequence of Theorem 2. The space of normal
functions N is the set of all f & H(D) with the property that {f°φh:
b G D} is a normal family of holomorphic functions.

LEMMA 2. Let f be a normal function on D and a G 32). IfR(f, a) Φ C
then for each r > 0 there exist a sequence {an} in Δ(#, r), an a' e 3D with
\a' — a\< r, αm/ o 0 e C satisfying f ° φ -> w0 m H(D).

Proof. Assume first that /(Δ(α, rx)) = C \ {vv0} for some 0 < rx < r
and w0 G C. Then there exists {an} in Δ(α, rx) converging to a' ^ dD
and satisfying /(#„) -* w0. Since {/oφΛw} is a normal family we may
assume without loss of generality that there is a function /0 G ί f (ΰ) with
ίn = / ° (P«Π converging to f0 in H(D). Since

/0(0) = lim /n(0) = lim f(an) = w0
n-+ oo n-* oo

and since there is a neighborhood of 0 in which each fn omits the value w0

it follows from Hurwitz's Theorem that f0 = w0.
Finally, if / satisfies the hypothesis and omits two or more points in

C then by a known result / has finite nontangential limits on a dense
subset of 3D Π dΔ(a, r)9 see Corollary 22.1 [5] for example. The sequence
{an} can be chosen to converge nontangentially to any of these points,
and a standard argument gives the result. This completes the proof of the
lemma.
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REMARK. By taking M(a, r) = M Π N we see that the lemma implies
that hypothesis (i) of Theorem 2 follows from the corresponding hypothe-
sis of Theorem 1.

Recall that for a e D the function ba{z) is the Blaschke product

LEMMA 3. Given 0 < s < 1 there is a r = r(s) with 0 < r < 1 and such
that for any a e D:

(i)
K ) (ii)

Proof. Let 0 < *? < 1 and a e 2λ Pick / = /(#, s) to be the smallest
positive number satisfying |6α(z)| > s for all \z\ = /. It is evident that the
function t = t(a) is continuous for a e D. Furthermore, aba(z) tends to
z as |α| tends to 1 for any z G ΰ . As a result, t(a, s) tends to s as |α| tends
to 1 and hence

s < ts =

Finally, let r lie in the interval (ts,l). Since |6β(z)| = 1 for z G 3D
and |6β(z)| > ^ for |z| = ^(Λ, Λ1), we have that |6β(z)| > s for t(a, s) < \z\
< 1. In other words, statement (ii) is true. But ba(0) = 0 and hence the
argument principle implies that the closure of D(0, s) is contained in
ba(D(0, r)) and the proof is complete.

Using Lemma 3 we can prove that the hypotheses (ii)(a) and (ii)(b) of
Theorem 1 imply the corresponding hypothesis (ii) of Theorem 2 and
hence complete the proof of Theorem 1.

By the Banach-Steinhaus Theorem for F-spaces, see Theorem 2.6 [9],
it follows from (ii)(a) that there is a constant K < oo with

(4) \\f°ba\\<K\\f\\, f<ΞM,a<ΞD.

By (ii)(b) there is a function f in M with f(D) = C. Fix ε > 0 and
R > 0. Since scalar multiplication is a continuous operation in an F-space
we may assume that | |/ | | < ε/K. Choose 0 < s < 1 with D(0, R) <s
/(£>(0, s)) and using Lemma 3 pick r satisfying (3). Taking η =
inf{δ(w,/, D(0, s)): \w\ < R} we claim that hypothesis (ii) of Theorem 2
is satisfied with r(R, ε) = r and η(R, ε) = η.

Given a e D we take fa= f°ba. Note that fa°φa= fa since φa is its
own inverse. Using the remarks following Lemma 1 we conclude that

\w\ < R.
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Since | |/J | < ε by (4), we have shown that hypothesis (ii) holds and the
proof is complete.

REMARK 3. The above argument also reveals a variant on hypothesis
Theorem 1 (ϋ)(b), namely,

(iϊ)(by:for every R > 0, ε > 0, there exists f in M with \\f\\ < ε and

We combine the proof of Theorem 1 with an idea in the Brown and
Hansen paper mentioned in the introduction to obtain:

THEOREM 3. Let M be an F-space in H(D) that satisfies hypothesis of
Theorem 2(ii). Then the set of all fin M for which R(f,a) omits at most one
point for every a G dD is a dense G8-set.

Proof. Let {<zy} be countable dense subset of 3D. For positive
integers, j \ k, and m let A(j\k,m) = {/e M: there exists \wλ\ < m,
\w2\ < m, with \wx - w2\ > m~ι and wt ί / ( Δ ( α ; , A:"1)) for i = 1,2}. By
the Baire category theorem, it suffices to prove that each A(j\ k, m) is a
closed and nowhere dense set.

That A(j,k,m) is a closed set follows as in [4]. Let g ^ A(j\k,m)
and ε > 0. Since g(Δ(αy, k~1)) omits two points it must satisfy hypothesis
Theorem 2 (i)(b) with a = aj as was shown in Lemma 2. Since hypothesis
(ii) of Theorem 2 is assumed to be true it follows from the proof of
Theorem 2 that there exists an / in M with | |/ | | < ε and Z)(0, m) <s
(g + /)(Δ(αy, A:"1)). In particular, g + / is not in A(j, k, m). Since ε is
arbitrary this means that A(j,k,m) is nowhere dense and the proof is
complete.

REMARK 4. It seems reasonable that the one-point exception could be
removed in the above theorem.

4. Several Examples.

EXAMPLE 1. The spaces BMOA and B both satisfy the hypothesis of
Theorem 1. The metrics for these F-spaces are respectively (cf. [2], [1]):
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In addition, the space of normal functions N can also be characterized by
the finiteness of the quantity

and hence BMOA c B c N. So BMOA and B satisfy the hypothesis of
Theorem 1 (i). The composition operators Ca are contractions on BMOA,
see §4 [12], and as a consequence of the Schwarz-Pick lemma also on B.
Thus hypothesis (ii)(a) of Theorem 1 is satisfied for these two spaces.
Finally, we need a function in BMOA which maps onto C in order to
complete the verification that BMOA and B satisfy the hypothesis of
Theorem 1. However this is a well known result; see [13, p. 252] for a
geometric construction.

We note that while the space of normal functions has similar proper-
ties to BMOA and B it is not a linear space. By a result of Lappin [8] the
sum of two normal functions need not be a normal function.

EXAMPLE 2. The Hardy spaces Hp, 0 < p < oo, are determined by the
finiteness of (cf. [7])

WP

ιι/ιU = sup|^jΓ2V(^)r^} .

For p > 1, these spaces are Banach spaces and for 0 < p < 1, they are
F-spaces with metric induced by || ||£. It is well known that BMOA is a
dense subspace of each of these spaces and hence the conclusion of
Theorem 2 holds by Remark 2 (i).

Closely related to these spaces is the Nevanlinna space of functions of
bounded characteristic. Here the metric is defined by (cf. [10])

d(f) =

The resulting topology is stronger than that of H(D) and addition of
functions is a continuous operation. However, as observed in [6, p. 146],
scalar multiplication is not a continuous operation so the Nevanlinna
space is not an F-space.

Nevertheless, the hypotheses of Theorem 2 are valid since nontangen-
tial limits exist almost everywhere and BMOA is a subspace. Thus, by
Remark 2 (ii) the conclusion of Theorem 2 is valid for this space.
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EXAMPLE 3. The Dirichlet spaces, Da for 0 < a < 1, are defined by
the norm

Il/L = 1/(0)1 + {/ίl/'(z)|2(i - \z\2)χ-2adm2(z)}
1/2

where m2 denotes area measure, see [11]. If f(z) = Σanz
n, then / is in Da

if and only if the comparable norm {Σ(l + n2)a\an\
2}ι/2 is finite.

Clearly, Da Π H°° (and hence Da Π N) is dense in Da. Let a e D,
then using the Schwarz lemma and the fact that ba{z) is a 2-to-l mapping
of D onto itself with ba(0) = 0 yields

\l - \z\ψ2a\b'a{z)\2dm2(z)]
1/2

,1/2

l/(0)|

1/2

< 1/(0)1 +{jf/ l/'(w)Γ(i - M 2 ) 1

Thus, with the possible exception of (ϋ)(b), the hypotheses to Theorem 1
are satisfied.

For a > 1/2, each function in Da must have range with finite area
because the Dirichlet integral (essentially | |/ | | 2

/ 2 ) must be finite. There-
fore the conclusion to the theorem cannot possibly hold; see [14] for an
analysis of the boundary behavior for the Dirichlet space Dι/2> For the
range 0 < a < 1/2 we will show that Da contains onto functions and
hence the conclusion to Theorem 1 holds for these spaces also.

LEMMA 4. For 0 < a < 1/2, Da contains a function mapping onto C.

Proof. Fix 0 < a < 1/2 and let 0 < β < ^(1 - α). Using the bi-
nomial theorem we see that g(z) = (1 - z)~β - 1 is in Da. The function
g is a schlicht function mapping D onto a region containing the sector
S = {w: |Argw| < jπβ}. By choosing the least integer n > 2/α, the
function f(z) = zg(zn) is also in Da. We leave as an exercise the fact that
the sector S* is contained in the range of /. Having said that, we are done,
since /(λz) = λ/(z) for any nth root of unity implies / maps onto C.
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EXAMPLE 4. The space H{D) is an F-space and satisfies the hypothe-
sis of Theorem 1.

EXAMPLE 5. The "little" Bloch space, denoted Bo, is the space of
analytic functions for which

| / ( ) | ( | | )

With the exception of (ii)(b) the hypotheses of Theorem 1 can be verified
as with B. Fix R > 0, ε > 0 and let g e B satisfy \\g\\B < ε and g(D) = C.
Clearly, gr(z) = g{rz) satisfies Z>(0, R) <Ξ gr(D) for some r < 1 and
hence by Remark 3 the conclusion to Theorem 1 holds for Bo. Observe
that the existence of a B0-function mapping onto C is now a consequence
of the Baire category theorem.

As a last example we give a simple class of spaces for which Theorem
3 applies but not Theorem 2.

EXAMPLE 6. Let h{r) be a nondecreasing function on [0,1) with
h(0) = 1. Let Mh be the space of holomorphic functions for which

I / ( Z ) |

is finite. These spaces satisfy the hypothesis of Theorem 3 but do not
satisfy any "nice" boundary conditions as in Theorem 2 (i).
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