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WEAK CONVERGENCE AND NON-LINEAR
ERGODIC THEOREMS
FOR REVERSIBLE SEMIGROUPS OF
NONEXPANSIVE MAPPINGS

ANTHONY TO-MING LAU AND WATARU TAKAHASHI

Let S be a semitopological semigroup. Let C be a closed convex
subset of a uniformly convex Banach space E with a Fréchet differentia-
ble norm and &= (T,; a € S} be a continuous representation of S as
nonexpansive mappings of C into C such that the common fixed point
set F(&) of & in C is nonempty. We prove in this paper that if S is
right reversible (i.e. S has finite intersection property for closed right
ideals), then for each x € C, the closed convex set W(x) N F(&)
consists of at most one point, where W(x) = N{ K (x); s € S}, K (x)
is the closed convex hullof {7 x; t > s} and f > s means t = sor ¢t € Ss.
This result is applied to study the problem of weak convergence of the
net {T,x; s € S}, with S directed as above, to a common fixed point of
. We also prove that if £ is uniformly convex with a uniformly Fréchet
differentiable norm, S is reversible and the space of bounded right
uniformly continuous functions on S has a right invariant mean, then the
intersection W(x) N F(&) is nonempty for each x € C if and only if
there exists a nonexpansive retraction P of C onto F(%) such that
PT,=T,P =P for all s €S and P(x) is in the closed convex hull of
{T,(x); s€ S}, xeC.

1. Introduction. Let S be a semitopological semigroup i.e. S is a
semigroup with a Hausdorff topology such that for each s € § the
mappings s — a - s and s — s - a from S to S are continuous. S is called
right reversible if any two closed left ideals of S has non-void intersection.
In this case, (S, <) is a directed system when the binary relation “ < ” on
S is defined by a < b if and only if {a} U Sa D {b} U Sh, a,b € S.
Right reversible semitopological semigroups include all commutative
semigroups and all semitopological semigroups which are right amenable
as discrete semigroups (see [13, p. 335]). Left reversibility of S is defined
similarly. S is called reversible if it is both left and right reversible.

Let E be a uniformly convex Banach space and = {T; s € S} be
a continuous representation of S as nonexpansive mappings on a closed
convex subset C of E into C i.e. T,,(x) = T,T,(x), a,b € S, x € C and
the mapping (s,x) = T,(x) from § X C into C is continuous when
S X C has the product topology. Let F(&) denote the set {x € C;
T.(x) = x for all s € S} of common fixed points of % in C. Then, as is
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well known, F(.%) (possibly empty) is a closed convex subset of C (see [2,
Theorem 8§]).

Recently Lau [15] considers the problem of weak convergence of the
net {T,(x); s €S}, x € C, to a common fixed point of ¥ when S is
right reversible and C is a closed convex subset of a Hilbert space. When
T is a nonexpansive mapping of C into C and &= {T"; n =1,2,...},
this problem is equivalent to that of weak convergence of the sequence
{T"(x); n=1,2,...} to a fixed point of T considered by Z. Opial in [18]
and A. Pazy in [19]. However, the proofs employed by Lau [15] (Lemma
2.1, Lemma 2.2 and Theorem 2.3) do not extend beyond uniformly convex
Banach spaces satisfying Opial’s condition (see [18, Lemma 1] and [15,
Lemma 2.1}).

In §3 of this paper, we prove that (Theorem 1) if E is uniformly
convex with a Fréchet differentiable norm and S is right reversible, then
for each x € C, the closed convex set W(x) = N{ K(x); s € S}, where
K (x) is the closed convex hull of {T)(x); ¢ > s}, contains at most one
common fixed point of .#. This result is used to prove that (Theorem 3) if
I7,,(x) — T,(x)|| = O for each fixed g in a generating set of S, then the
net {T,(x); s € S} converges weakly to an element in F(.%). We also
prove that (Theorem 7) if E is uniformly convex with a uniformly Fréchet
differentiable norm, S is reversible and the space of bounded right
uniformly continuous functions on S has a right invariant mean, then the
intersection W(x) N F(&) is nonempty for each x € C if and only if
there exists a nonexpansive retraction P of C onto F(.%) such that
T.P = PT,= P and P(x) is in the closed convex hull of {T,x; s € S} for
all x € C. This improves an ergodic Theorem of Hirano-Takahashi [12,
Theorem 2] for discrete amenable semigroups. Our proofs employ the
methods of Hirano-Takahashi [12], Bruck [3], [4], Lau [15], Pazy [19],
Reich [21] and Takahashi [24].

If 1<p<2and 2 <p < + o0, then none of the Banach space
L,[0,27] satisfy Opial’s condition (see [18, p. 596]). However, they are
uniformly convex with Fréchet differentiable norm.

The first nonlinear ergodic theorem for nonexpansive mappings was
established in-1975 by Baillon [1]: Let C be a closed convex subset of a
Hilbert space and T a nonexpansive mapping of C into itself. If the set
F(T) of fixed points of T is nonempty, then for each x € C, the Cesaro
means

S, (x)= %Z;:
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converge weakly to some y € F(T). In this case, putting y = Px for each
x € C, P is a nonexpansive retraction of C onto F(7') such that PT =
TP = P and Px € E{T"x: n=12,...} for each x € C, where cod is
the closure of the convex hull of A. In [24], Takahashi proved the
existence of such a retraction for an amenable semigroup of nonexpansive
mappings in a Hilbert space. Recently, Hirano-Takahashi [12] extended
this result to a Banach space.

2. Preliminaries. Throughout this paper, we assume that a Banach
space is real. We also denote by R the set of all real numbers.

Let E be a Banach space and E* its dual. Then, the value of f € E*
at x € E will be denoted by (x, f). With each x € E, we associate the
set

J(x) = {fe E*(x,f) =IxI" =1 /1}.

Using the Hahn-Banach theorem, it is immediately clear that J(x) # &
for each x € E. The multivalued operator J: E — E* is called the
duality mapping of E. Let B = {x € E: ||x|| = 1} be the unit sphere of
E. Then the norm of F is said to be Gateaux differentiable (and E is said
to be smooth) if

i 1 1= %l
r—0 r

exists for each x and y in B. It is said to be Fréchet differentiable if for
each x in B, this limit is attained uniformly for y in B. Finally, it is said
to be uniformly Fréchet differentiable (and E is said to be uniformly
smooth) if the limit is attained uniformly for (x, y) in B X B. It is well
known that if E is smooth, then the duality mapping J is single value. It
is also known that if E has a Fréchet differentiable norm, then J is norm
to norm continuous. (See [2] or [7] for more details.) Let K be a subset of
E. Then we denote by d(K) the diameter of K. A point x € K is a
diametral point of K provided

sup{[|lx —y|l: y € K} = d(K).

A closed convex subset C of a Banach space E is said to have normal
structure, if for each closed bounded convex subset K of C, which
contains at least two points, there exists an element of K which is not a
diametral point of K. It is well known that a closed convex subset of a
uniformly convex Banach space has normal structure and a compact
convex subset of a Banach space has normal structure.
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If A is a subset of a Banach space E, then coA will denote its closed
convex hull in E. When {x,} is a net in E, then x, - x (resp. x,— x)
will denote norm (resp. weak) convergence of the net { x,} to x.

3. Weak convergence of {7T.x: s € S}. Unless other specified, S
denotes a semitopological semigroup and &= {T,: a € S} a continuous
representation of S as nonexpansive mappings from a nonempty closed
convex subset C of a Banach space E into C. If § is right reversible and S
is directed as in §1, then for each x € C, let w(x) denote the set of all
weak limit points of subnets of the net { T,x: a € S}.

LEMMA 1. Let C be a closed convex subset of a uniformly convex Banach
space E and assume that F(¥) + . Letx € C, f€ F(¥),0<a < B <
1 and r=inf,_||T,x — f||. Then, for any € > 0, there is a positive
number d such that

IT.(ATx +(1 = 0)f) ~(ALT,x +@ - A)f) | <e
forallb € Swith|T)x —fl|l<r+d,a€ Sand A € Rwitha <\ < f.

Proof. Let r > 0. Then we can choose d > 0 so small that

(r+ d)(l - e85 d))

where 8 is the modulus of convexity of the norm and
c=min{2A(1 = A): a <A < B}.

Suppose that ||T,(AT,x + (1 = A)f) = (AT, T,x+ (1 —A)f)||=¢ for
some b with |T,x —f||<r+d, a€ S and A € R with a <A < 8.
Put u=(1 - A)T,z—f) and v = N(T,T,x — T,z), where z = AT, x +
(1 =A)f. Then |lul| <1 = A)llz = fIl = A1 = M)||Tx — f|| and ||v]| <
AM|T,x — z|| = A1 = A)||T,x — f|. We also have that |u — v|| =
T,z = (AT,T,x+ 1 —=AN)f)||=¢ and Au+ (1 —-ANovo=AX1-]A)-
(T, T,x — f). So by using the Lemma in [9], we have

AL =MIT,Tx = fl =IAu +(1 = A)o

<A1 = A)||Tpx —f"(1 - 21 - }‘)B(W—x—_fn))

<A1 =A)(r+ d)(l - ca(;{g)) <A1 =2)r
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and hence ||T,T,x — f|| < r. This contradicts r = inf,_¢||T,x — f|. In
the case when r =0, for any a,b € S, f€ F(¥) and A € R with
0<Ac<l,

IT.(ATyx +(1 = 2)f) =(AT,Tox +(1 = X)f) |
<M T,(AT,x +(1 = N)f) — T,T x|
+(1 = MN|TATx +(1 = A)f) = /]
SAMAT,x +(1 = A)f— Tpx|| +(1 = A)|AT,x +(1 = A)f— £
=21 - M)[Tyx - £

So, we obtain the desired result.

LEMMA 2. Let C be a closed convex subset of a uniformly convex Banach
space E, S right reversible and F(¥)+ @. Let x € C, f € F(¥) and
0 < a < B < 1. Then for any ¢ > 0, there is b, € S such that

IT.(AT,x +(1 = AN)f) ~(AT,Tx +(1 = A)f)| <e
forallb € Swithb > by, a € Sand A € Rwitha <\ < B.

Proof. Let r = inf, _ ¢ ||T,x — f||. Then, we have
r = inf sup ||T,x — f|.
4 a<b
In fact, for any & > 0, there is a, € S such that |7, x — f|| < r + e. Let
b > a,. Then, since b € {a,} U Sa, we may assume b € Sa,. Let {s,}
be a net in S such that s, a, — b. Then, for each a,

T, .x—f| =|T(T.x) - T.f

Sqd0

| <]

T,x— f||

Hence, ||T,x — y|| < ||IT,x — y|l. So, we have sup, _,[|T,x —yl|<r+e
and hence

inf sup |T,x — y|| <r+e.

2 a<b
Since & > 0 is arbitrary, we have
inf sup |T,x — f|| <r= inf |T,x — f]|.
a a<b a
The reverse inequality is obvious. Since r = inf sup,_,||T,x — f||, for
any positive number d, there is a, € S such that

sup |Tyx — fll <r+d.

apg<b

So, by using Lemma 1, we obtain Lemma 2.



282 ANTHONY TO-MING LAU AND WATARU TAKAHASHI

Let x and y be elements of a Banach space E. Then we denote by
[x, y]theset {Ax + (1 —A)y: 0 <A <1}

LEMMA 3. Let C be a closed convex subset of a Banach space E with a
Fréchet differentiable norm and { x,} a bounded netin C. Let z € Ngco{ x,:
a>p}, y€ Cand{y,} anetof elementsin C withy, € [y, x,] and

o = zIl = min{jlu = z||: u € [y, x,]}.

Ify, >y, theny = z.

Proof. Since J is single-valued, it follows from Theorem 2.5 in [8] that
(u = Var J(yy — z)) > 0 for all u € [y, x_]. Putting u = x_, we have
1) (Xo = Yar J(ya— 2)) 2 0.
Since y, — y and {x,} is bounded, there exist X > 0 and «a, such that
I, =yl < K and ||y, — z|]| < K for all @ > &,. Let ¢ > 0 and choose
8 > 0 so small that 26K < e. Since the norm of E is Fréchet differentia-

ble, we can choose a; > a, such that ||y, — y|| < é and ||J(y, — 2) —
J(y — 2)|| < & for all @ > a,. Since for @ > a,

(X0 = Yar J(ya = 2)) = (x0 =y, I(y = 2))|
=|(X4 = Ver J(yu = 2)) = (X0 =y, J(ya — 2))
+ <xa—y’ J(ya—Z)> - <xa~ya J(y_ Z)>|

<N ya = zllya =1 +lxa = yIH1T(ya = 2) = I(y = 2) ||
< 28K < &,
by using (1), we have
(x,—, J(y=2)) 2 {(xg =y J(ya—2)) —£20—¢= —&.

Since z € ﬂﬁa{xa: a > B}, we have (z—y, J(y — z)) = —e. This
implies —||z — y||*> > 0 and hence z = .

By using Lemmas 2 and 3, we can prove the following:

LEMMA 4. Let C be a closed convex subset of a uniformly convex Banach
space E with a Fréchet differentiable norm, S right reversible, and F(&) #
&. Let x € C. Then for any z € ﬂses&;{T,x: t>2s}NF(F) and y €
F(&), thereis t, € S such that

(Tx—y,J(y—12)) <0

foreveryt > t,.
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Proof. Let z€ N, cgco{T,x: t > s} NF(¥)and y € F(¥). If y =
z, Lemma 4 is obvious. So, let y # z. For any ¢ € S, define a unique
element y, such that y, €[y, T,x] and ||y, — z|| = min{||u — z|: u €
[y, T,x]}. Then since y # z, by Lemma 3 we have y, » y. So, we obtain
¢ > Osuch that forany ¢ € S, thereist’ € S with ¢’ > rand ||y, — y|| = c.
Setting

ye=aTx+(1-a,)y, 0<a, <1,

we also obtain ¢, > 0 so small that a, > ¢,. (In fact, since 7, are
nonexpansive and y € F(%), we have

c<lly, =yl = alTx =yl < a/fx - y|.
So, put ¢, = ¢/||x — y||.) Since the limit of ||7,x — y|| exists as in the
proof of Lemma 2, putting k = lim ||7,x — ||, we have k > 0. If not, we

have T,x — y and hence y, — y, which contradicts y, +» y.
Now, choose € > 0 so small that

(R + e)(l - S(Rc‘fe)) <R,

where § is the modulus of convexity of the norm and R = ||z — y||. Then
by Lemma 2, there exists #, € .S such that

(2) "Ts(cof;x +(1 - Co))’) —(COTsT;x +(1 - Co))’)“ <e

forall s € S and ¢ > ¢,. Fix t' € § with ¢’ > ¢, and ||y, — y|| = ¢. Then
since a, > c,, we have

cTyx+(1=cp)y €[y, aTx+(1-a,)y] =[]
Hence

leoTox +(1 = ¢o)y — 2| < max{l|lz = yll, |z =y} =llz =y = R.
By using (2), we obtain
leoTTox +(1 = o)y — 2| <[|Ti(coTx +(1 = co)y) —z| + e
<leoTrx +(1 —¢co)y —z]| +e<R+e
for all s € S. On the other hand, since ||y — z]l = R < R + ¢ and
leoT,Tox +(1 = ¢o)y =yl = ol LTx — y|| = ¢ok

for all s € S, we have, by uniform convexity,

3T Ts +( - c)y = 2) +(r - 2)|

<(R+ e)(l - S(Rc‘fs)) <R
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and hence

<R

% _ Sy, =
FTTx+(1- 3y -2

for all s € S. This implies that if

_ % _ %
us 2TsTt’x+(1 2)y,

then
lu, + a(y — u,) = 2] 2[ly — 2|
for all @ > 1. By Theorem 2.5 in [8], we have
(u,+a(y—u) =y, J(y—-2)) 20
and hence (u, —y,J(y —z)) < 0. Then (¢, T.T,x — coy,J(y — z)) <
0. Therefore
(T.T,x —y,J(y —2)) <0 foralls€S.

Let ¢ > ¢’. Then, since there exists a net {s,} in S with s t" — ¢, we
obtain

(Tx —y,J(y—2)) <0 forallz>1¢"

We are now ready to prove one of our main theorems.

THEOREM 1. Let C be a closed convex subset of a uniformly convex
Banach space E with a Fréchet differentiable norm, S right reversible, and
F(%)+ @. Let x € C. Then, the set

N co{Tx: t = s} N F(¥)

sES

consists of at most one point.

Proof. Let y,z € F(¥)NN,cgco{Tx: t > s}. Then, since
(y +2)/2 € F(¥), it follows from Lemma 4 that there is ¢, € S such
that

<7:x_y;-z’J(y-;z —z)>sO

for every ¢ > t,. Since y € co{ T,x: t > t,}, we have

<y_yﬁ2Lz’J(yJ2rz —z)>so

and hence (y — z, J(y — z)) < 0. This implies y = 2.
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By using Theorem 1, we now study the problem of the weak conver-
genceof {T,x: a € S}.

THEOREM 2. Let C be a closed convex subset of a uniformly convex
Banach space with Fréchet differentiable norm, S right reversible and
F(#)+ &. Let x € C. If w(x)C F(¥), then the net {T,x: a € S)
converges weakly to some y € F(%).

Proof. Since F(&) + &, {T,x: a € S} is bounded. So, {T,x: a € S}
must contain a subnet {7, x} which converges weakly to some z € C.
Since w(x) € F(&¥)and z € N, gco{T,x: t = s}, we obtain

ze F(£)N N cof{Tx: t>s).

SES

Therefore, it follows from Theorem 1 that {7, x: a € S} converges weakly
to z € F(%).

A subset G of S is called a generating set if elements of the form
818" &m> 81582 ---»8, € G,isdensein S.

COROLLARY. Let C be a closed convex subset of a Hilbert space, S right
reversible, and F(¥) # &. Let x € C. Then T,x -y € C if and only if
T,,x — T,x =0 for all g in a generating set G of S.

Proof. We need only prove the “if” part. Let {7, x} be a subnet of
{T,x; ac Sy with T, x —z. If u € F(&), then we have

2 2
0< ” Taax - Z" - "Tgaax - ng ”
=||Taax - u”2 + 2<Taux —u,u— z> +|lu— z||2 —”Tgaax - u||2
~2Tppx —uyu = T,z) ~[u = Tz |
=\Tox = u] = | T — | + 2T, x — u, T,z — 2)
+2<Taax = T x,u— ng> +ju — z"2 ~|lu - T,z ”2,
and hence by letting a tend to infinity
0<2(z—uTz—z)+|u— 2| —|u - ngll2 = —|z - nguz
(note that ||T,x — u||? is a decreasing net and hence

lim | T, x — | = lim | T, x — u|| = tim | T,x — u|]*).
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Consequently z € F(&) and w(x) C F(&). By Theorem 2, the net { 7, x:
a € S} converges weakly to some y € F(%).

The following theorem is a generalization of Lau’s result ([15, Theo-
rem 2.3]), which has been proved in the case when E is a Hilbert space.
Note that Lau’s proof does not apply beyond Banach spaces for which
Opial’s condition is valid (e.g. L,[0,1], 1 <p <2 and 2 < p < 0). See
[18, p. 596].

THEOREM 3. Let C be a closed convex subset of a uniformly convex
Banach space with a Fréchet differentiable norm, S right reversible and
F(&)# @. Letx € C. If lim||T,,x — T,x|| = 0 for all g in a generating
set G of S, then the net {T,x: a € S} converges weakly to somey € F(%).

Proof. By Theorem 2, it suffices to show that w(x) C F(¥). Let
{T,x} be a subnet of {T,x; a € S} converging weakly to some y € C.
Let g € G and T = T,. Write x, = T, x. Then ||Tx, — x,|| = 0. For each
n, choose a, such that ||Tx, — x || <1/n for all @« > a,. Since y €
N,co{ xg; a < B}, there is x, € co{ x4 @, < B} such that ||y — x,[| <
1/n. Let x, = X" a;xp, B; 2 a,. Then we have

m
+1X aTxg — x

i=1

m
Tx,— ), aTxg
i=1

< r'l(%) L1
n n

17x, = x| <

n

where r: R*— R is a continuous, strictly increasing, convex function with
r(0) = 0 such that for any {u,...,u,} € C and Ap,...,A, >0 with
Zf'(=1 Ai=1,

r < max (lu =l =|Tu, - Tu,)

k k
T( Z Aiui) - Z ATy,
i=1

i=1

(the existence of such an r follows from Theorem 2.1 of Bruck [6].) In fact

m
Y a;Ixg — x,
i=1

m m
Z a,-TxBi — Z a;xg
i=1 i=1

e 1
< Ya|Txg - x) < n
i=1
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and
Tx, — Y a,Tx, | < r—l(l max (|lx, = x| =[5 — T, “))
i=1 <i,j<m J ' J
-1 . _
<r (15122});m(“x3' Txg || + || Txp — x4 H))
< r‘l(g).
n

Since r~! is continuous and r~(0) = 0, we have r~1(2/n) + 1/n — 0 as

n — oo. Therefore, ||Tx, — x,|| = 0 as n = oo. Since ||x, — y|| = 0, we
have y = Ty. Since G is a generating set of S and g € G is arbitrary,
y € F(%). This implies w(x) C F(¥).

The next result is also a generalization of Lau’s result [15, Proposition
2.4].

THEOREM 4. Let C be a closed convex subset of a uniformly convex
Banach space E, S right reversible, and F(¥) #+ @. Let P be the metric
projection on E onto F(). Then, for each x € C, the net { PT,x; a € S}
converges in norm to some z € F(.%).

Proof. Let x € C. Observe that
I1PT,x — Tx|| <[ PT,x — T,x]|
forany a,b € S.If a > b and a # b, let {s,b} be a net converging to a.
Then for each a,

|PT,x — T, x| =|T. PT,x — T, T,x|| <||PT,x — T,x|.
So, if a > b, we have
(3) | PTyx — T,x|| <[ PTyx — T,x|.
Hence, if a > b, then |PT,x — T,x|| < ||PT,x — T,x||. This implies that
the limit ||PT,x — T,x|| exists. Now, we show that { PT,x: a € S} is a
Cauchy net in C. Let r = lim ,||PT,x — T, x||. If r =0, then for ¢ > 0,

there is ¢ € S such that |PT,x — T,x|| <e/4 for a > c. So, if a,b > c,
then by (3)

IPT.x — PT,x|| <|PT,x = PT.x| +|PT.x - PT,x||
<|PTx - T,x|| +|T,x — PT x|
+[|PT,x — Tpx| +[|Tyx — PTx|
<||PTx - T,x|| +|T.x — PTx||
+ | PT,x — Tyx|| +|T.x — PT.x|| < e.
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This implies that { PT,x: a € S} is a Cauchy net in the case when r = 0.
Let r > 0. Then { PT,x: a € S} is also a Cauchy net. If not, there exists
¢ > 0 such that for any s € S, there are a, b € S with |PT,x — PT,x|| > ¢
and a, b > s. Choose d > 0 so small that

€
(r+a)(1-8(5)) <
and s, € S so large that

r<|PTx —Tx| <r+d
for all ¢ > s,. For this s, € S, there are a,b € S with ||P,x — PT,x|| > ¢

and a, b > s,. Since (S, >) is a directed system, thereis c € S withc > a
and ¢ > b. For this ¢ € S, we have by (3)

|PTx - Tx| < PTx - Tl <r +d

and
|PT,x — T.x| <||PTyx — Tpx|| <r + d.

Since E is uniformly convex, we have

PT,x + PT,x

r<|PTx - Tx| < 3

< (r+d)(1 —S(r:d)) <r,
which is a contradiction.

4. Nonexpansive retraction. Let = {T; a € S} be a continuous
representation of a semitopological semigroup S as nonexpansive map-
pings from a nonempty closed convex subset C of a Banach space E into
C. We study in this section the existence of a nonexpansive “ergodic”
retraction of C onto the common fixed point set F(&) of & in C. We
begin with the following simple observation:

LEMMA 5. Let C be a nonempty closed convex subset of a reflexive
Banach space E. Let {W,: a € I} be a decreasing net of subsets contained
in a bounded set of E. Let A be the asymptotic center of {W,: o € 1} with
respect to C, i.e., A= {x € C: r(x) =r}, where r(x) = inf{r(x): a €
I}, r(x)=sup{|ly — x|: y € W,} and r = inf{r(x): x € C}. Then A4
is nonempty, bounded, convex and closed.

Proof. That A is closed and convex follows from Lim [16]. To see that
A is nonempty, we observe that

A"={xEC:r(x)sr+;lz-}
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is a nonempty weakly compact convex subset of E. Indeed, it suffices to
show that 4, is bounded. Let x € 4, then for some a,, 7, (x) < r + 2/n.
Hence ||y — x||<r+2/n for each y € W, , ie., |[x||<r+ 2/n+|y|
for each y € W, . Itis obvious that 4 =N3_, 4,

THEOREM 5. Let C be a closed convex subset of a reflexive Banach space
with normal structure and S left reversible. If there exists x, € C such that
{T,x,: a € S} is bounded, then

(a) C contains a common fixed point of & .

(b) There is a nonexpansive retraction r of C onto F(&) for which any
Sinvariant closed convex subset of C is r-invariant.

Proof. (a) For each s € S, let W, = T,#x,. Then (Wy:seS}isa
directed set with s < ¢ meaning sS 2 S and each W,, s € S is bounded.
Let A be the asymptotic center of { W,: s € S} with respect to C. Then
by Lemma 5 A4 is bounded, closed, convex and nonempty. Also 4 is
Linvariant. Indeed, if x € 4, s € S, given ¢ > 0, there exists z € S such
that 7,%x, C W, C B(x,r + ¢), where B(z,r)={x € E; ||z — x|| < r}.
So, W, C B(T,x,r + ¢). It follows that r(T.x) <r,(T,x)<r+e So
T.x € A. Since A has normal structure, it follows from Theorem 3 in [16]
that A4 contains a common fixed point of .#.

(b) We follow an idea of Bruck in [S]. Let G = {s: s is a nonexpan-
sive mapping of C into itself, F(s) 2 F(.%) and every Sinvariant closed
convex subset of C is s-invariant}. Then, G is a semigroup and compact
in the topology of pointwise weak convergence on C. We shall show that
Gx N F(G) # @ for x € C. In fact, since Gx is an Finvariant bounded
closed convex subset of C and has normal structure, by Theorem 3 in [16]
Gx contains a common fixed point of .# and hence a common fixed point
of G. By Theorem 3(a) in [5], there exists a retraction r € G of C onto
F(G) = F(%).

Let S be a semitopological semigroup. Let C(S) be the Banach
algebra of all continuous bounded real valued functions on S with the
supremum norm. Then, for each s € S and f € C(S), we can define r,f
in C(S) by r f(t) = f(ts) for all t € S. Let RUC(S) be the space of
bounded right uniformly continuous functions on S, i.e., RUC(S) is the
set of all f € C(S) such that the mapping: s — r,f is continuous. Then
RUC(S) is a closed translation invariant subalgebra of C(S) containing
constants; see [17] for more details.
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A linear functional m on RUC(S) is called a right invariant mean if
lm|| = m(1) =1 and m(r,f) = m(f) for all f&€ RUC(S), s€ S. In
general, S need not be right reversible even when the space of bounded
continuous functions on S has a right invariant mean unless S is normal.
See [13, p. 335] for details.

LEMMA 6. Let C be a closed convex subset of a reflexive Banach space E
and S be a semitopological semigroup for which RUC(S) has a right
invariant mean. Suppose that there is an element in C with bounded orbit.
Then there exists a nonexpansive mapping Q of C into itself such that Qx
€ coFx for each x € Cand QT, = Q forall s € .

Proof. Let x € C and observe thatif f € E*, then h(t) = (T)x, f) is
in RUC(S). In fact, if 5, — s,

|h(ts,) — h(1s)| <[(T,x — T,x, f)]
<|TT,x - TTx|||If| <|T.x - Tx|||f]| = 0

uniformly in ¢. So, let p be a right invariant mean on RUC(S) and
consider a functional F on E* given by

F(f) = p{Tx, f)

for every f € E*. Then F is bounded and linear. Since E is reflexive,
there is an x, € E such that

“t(Ttx’f> = <x0’f>
for every f € E*. Put Ox = x,. We shall show that Q has the desired
properties. That QT, = Q follows from the right invariance of p. Let
u, =2’ X8, be a net of convex combinations of point evaluations
converging to p in the weak*-topology of RUC(S)*, then for each
f€ E* (0x,f) =1lim(Xr, AT x, f) ie. Ox € co(x). Also if x, y €
C, fe E* |fll <1,then

(@« = @l = tim|{ £27x= Eazf)| <l -1

Hence ||Ox — Oyl < ||x — y||.
The following Theorem improves a result of Hirano-Takahashi [12,
Theorem 1].

THEOREM 6. Let C be a closed convex subset of a reflexive Banach space
with normal structure and S left reversible. If RUC(S) has a right invariant
mean and there exists an element in C with bounded orbit, then there exists a
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nonexpansive retraction P of C onto F(&¥) such that PT,= T,P = P for
every t € S and every Sinvariant closed convex subset of C is P-invariant.

Proof. Let r be a nonexpansive retraction obtained in Theorem 5 and
Q a nonexpansive mapping obtained in Lemma 6. Then P = rQ is a
nonexpansive retraction satisfying the conclusion of Theorem 6.

Similarly, we can prove the following theorem which generalizes
Theorem 2 in [12].

THEOREM 7. Let C be a closed convex subset of a uniformly convex
Banach space with a uniformly Fréchet differentiable norm and S a reversible
semitopological semigroup. If RUC(S) has a right invariant mean, then the
following are equivalent:

(@) N,csco{Tx: t > s} N F(F) + B, for each x € C;

(b) F(&) is nonempty and there is a nonexpansive retraction P of C
onto F(&) such that PT,= T,P = P for every t € S and Px € Eo-{ T,x:
t € S} for every x € C.

Proof. (b) = (a). Let x € C. Then Px € F(&). Also Px € N, co{ T)x:
t > s}. In fact,
Px=PTx €co{T,T,x:t€S} Cco{Tx:1>s5)}

for every s € S.

(a) = (b). By Theorem 5, there exists a nonexpansive retraction of C
onto F(&). Then from [23, Theorem 4.1] or [26, Theorem 1], there is a
sunny nonexpansive retraction r of C onto F(%). Let Q be as in Lemma
6 and P = rQ. Then P is a nonexpansive retraction of C onto F(%) such
that PT,= T,P = P for all t € S. Let x € C. Then since r is sunny, we
have by [22, Lemma 2.7]

(4) (0x — Px,J(Px — v)) 2 0
for every v € F(&). On the other hand, if
z€ () co{Tx: t =5} NF(&),

sES

from Lemma 4, there is 7, € S such that

<Tx_Px+z,J(Px+z —z)>50

o 2 2
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for every t € S. Hence
Px + z Px + z
)

=I‘¢<7;x_ Px+z’J(Px+z —z)>

2 2
Px +z Px+:z
=,u,<T,,0x— 2 ’J( 2 —Z)>
< sup<T"0x— Px2+z, J(Px2+z —z)> <0.
t

Therefore by using (4) we have
(z—Px, J(Px—2)) >0
and hence z = Px. This completes the proof.

THEOREM 8. Let S be right reversible and C be a closed convex subset of
a uniformly convex Banach space with Fréchet differentiable norm. The
following are equivalent:

(@) N,cgco{Tx: t =5} NF(F)+ D for each x € C.

(b) There exists a retraction P of C onto F(&) such that PT, = T,P = P
for every t € S and Px € E{T;x: t € S} forevery x € C.

Proof. (b) = (a). Same as Theorem 8.

(a) = (b). In this case, by Theorem 1, for each x € C, N, . sco{ T)x:
t > s} N F(&) contains exactly one point P(x). Clearly T,P = P for
each r € S. Let ¢, € S be fixed. We shall show that
(5) N cof T, x; t 25} 2 N cofTx; t > s}.

SES SES
When this is proved, then
N E{T,,ox; t2s}NF(&F)= ) cofTx; t =5} NF(&).
ses seS
In particular P(7; x) = P(x).

Let s € S be fixed. Then {T,x; u > st} 2 {T,, x; t > s} (since if
t>s, t€{s}USs; hence #, € {st,} USst, ie. 1, > st;) ie.
{T,x; u> st} 2 {T;, x; t = s}. On the other hand, if u > st,, then u €
{stg} U Ssto. If u=sty, then T (x)= T, (x)€ (T, (x);t>s} If u
€ Ssty, u = lim, a,st, for some net {a,} C S. So T,(x) = lim, T, ,, (x)
ie. T,(x) € {T,(x); t > s}. Hence T,(x) € {T,, (x); ¢ > s} also. Conse-
quently

co{T,x; u>sty} = Ea{T,,ox; 1>s}.
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Now if y € N,csco{T,x; t >s), then y €N, sco{T,x; u>st,} =
Nyesco{ T, x; t = s} ie. (5) holds.
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