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WEAK CONVERGENCE AND NON-LINEAR

ERGODIC THEOREMS

FOR REVERSIBLE SEMIGROUPS OF

NONEXPANSIVE MAPPINGS

ANTHONY TO-MING LAU AND WATARU TAKAHASHI

Let S be a semitopological semigroup. Let C be a closed convex
subset of a uniformly convex Banach space E with a Frechet differentia-
ble norm and y= {Ta; a e S} be a. continuous representation of S as
nonexpansive mappings of C into C such that the common fixed point
set F(S?) of y in C is nonempty. We prove in this paper that if S is
right reversible (i.e. S has finite intersection property for closed right
ideals), then for each x e C, the closed convex set W(x) Π F(5?)
consists of at most one point, where W(x) = f){Ks(x); s e S}, Ks(x)
is the closed convex hull of {Ttx\ t > s) and / > s means / = 5 o r / e & .
This result is applied to study the problem of weak convergence of the
net {Tsx; s e S}, with S directed as above, to a common fixed point of
Sf. We also prove that if E is uniformly convex with a uniformly Frechet
differentiable norm, S is reversible and the space of bounded right
uniformly continuous functions on S has a right invariant mean, then the
intersection W(x) Π F(S?) is nonempty for each x e C if and only if
there exists a nonexpansive retraction P of C onto F(Sf) such that
PTS = TSP = P for all s e S and P(x) is in the closed convex hull of
{Ts(x); s<ΞS}, x<=C.

1. Introduction. Let S be a semitopological semigroup i.e. S is a
semigroup with a Hausdorff topology such that for each s ^ S the
mappings s -> a s and s -> s a from S to S are continuous. S is called
right reversible if any two closed left ideals of S has non-void intersection.
In this case, (5, <) is a directed system when the binary relation " < " on
S is defined by a < b if and only if {a} U ~Sa D {b} U 56, a,b (Ξ S.
Right reversible semitopological semigroups include all commutative
semigroups and all semitopological semigroups which are right amenable
as discrete semigroups (see [13, p. 335]). Left reversibility of S is defined
similarly. S is called reversible if it is both left and right reversible.

Let E be a uniformly convex Banach space and y = {Γ5; ^ G S 1 } be
a continuous representation of S as nonexpansive mappings on a closed
convex subset C of E into C i.e. Tab(x) = TaTb(x), a, b e 5, x e C and
the mapping (s, x) -> Γ^(Λ:) from 5 X C into C is continuous when
S X C has the product topology. Let F(Sf) denote the set {JC G C;
Γ5(Λ:) = x for all s G S} of common fixed points of Sf in C. Then, as is
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well known, F(S?) (possibly empty) is a closed convex subset of C (see [2,
Theorem 8]).

Recently Lau [15] considers the problem of weak convergence of the
net {Ts(x)] s G S}9 x G C, to a common fixed point of S? when S is
right reversible and C is a closed convex subset of a Hubert space. When
T is a nonexpansive mapping of C into C and 5^= {Γ"; w = 1,2,...},
this problem is equivalent to that of weak convergence of the sequence
{Tn(x); n = 1,2,...} to a fixed point of T considered by Z. Opial in [18]
and A. Pazy in [19]. However, the proofs employed by Lau [15] (Lemma
2.1, Lemma 2.2 and Theorem 2.3) do not extend beyond uniformly convex
Banach spaces satisfying OpiaΓs condition (see [18, Lemma 1] and [15,
Lemma 2.1]).

In §3 of this paper, we prove that (Theorem 1) if E is uniformly
convex with a Frechet differentiable norm and S is right reversible, then
for each J C G C , the closed convex set W(x) = Π{Ks(x); s G S}9 where
Ks(x) is the closed convex hull of {Tt(x); t > s}9 contains at most one
common fixed point of £f. This result is used to prove that (Theorem 3) if
\\Tgs(x) ~ ^(*)ll "* 0 f°Γ e a°h fi^d S i*1 a generating set of S, then the
net {Ts(x); s ^ S] converges weakly to an element in F(S?). We also
prove that (Theorem 7) if E is uniformly convex with a uniformly Frechet
differentiable norm, S is reversible and the space of bounded right
uniformly continuous functions on S has a right invariant mean, then the
intersection W(x) Π F(£P) is nonempty for each x G C if and only if
there exists a nonexpansive retraction P of C onto F(S?) such that
TSP = PTS = P and P(x) is in the closed convex hull of {Tsx; s G S} for
all x G C. This improves an ergodic Theorem of Hirano-Takahashi [12,
Theorem 2] for discrete amenable semigroups. Our proofs employ the
methods of Hirano-Takahashi [12], Bruck [3], [4], Lau [15], Pazy [19],
Reich [21] and Takahashi [24].

If 1 < p < 2 and 2 < p < + oo, then none of the Banach space
Lp[0,2π] satisfy OpiaΓs condition (see [18, p. 596]). However, they are
uniformly convex with Frechet differentiable norm.

The first nonlinear ergodic theorem for nonexpansive mappings was
established in 1975 by Baillon [1]: Let C be a closed convex subset of a
Hubert space and T a nonexpansive mapping of C into itself. If the set
F(T) of fixed points of T is nonempty, then for each x G C, the Cesaro
means
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converge weakly to some y G F(T). In this case, putting y = Px for each
x G C, P is a nonexpansive retraction of C onto F(T) such that PΓ =
TP = P and PJC G CO{ Tnx: n = 1,2,...} for each x G C, where cô 4 is
the closure of the convex hull of 4̂. In [24], Takahashi proved the
existence of such a retraction for an amenable semigroup of nonexpansive
mappings in a Hubert space. Recently, Hirano-Takahashi [12] extended
this result to a Banach space.

2. Preliminaries. Throughout this paper, we assume that a Banach
space is real. We also denote by R the set of all real numbers.

Let E be a Banach space and E* its dual. Then, the value of / G E*
at x G E will be denoted by (.*,/). With each x e £, we associate the
set

Using the Hahn-Banach theorem, it is immediately clear that J(x) Φ 0
for each x e E. The multivalued operator /: E -» 2?* is called the
duality mapping of E. Let B = {x e E: \\x\\ = 1} be the unit sphere of
E. Then the norm of E is said to be Gateaux differentiable (and E is said
to be smooth) if

U m II* + σ\\ - 11*11

exists for each Λ: and y in 5. It is said to be Frechet differentiable if for
each x ί n f i , this limit is attained uniformly for y in B. Finally, it is said
to be uniformly Frechet differentiable (and E is said to be uniformly
smooth) if the limit is attained uniformly for (JC, y) in B X JS. It is well
known that if E is smooth, then the duality mapping / is single value. It
is also known that if E has a Frechet differentiable norm, then / is norm
to norm continuous. (See [2] or [7] for more details.) Let K be a subset of
E. Then we denote by d(K) the diameter of K. A point x G K is a
diametral point of Jί provided

svφ{\\x-y\\:y<ΞK) = d{K).

A closed convex subset C of a Banach space E is said to have normal
structure, if for each closed bounded convex subset K of C, which
contains at least two points, there exists an element of K which is not a
diametral point of K. It is well known that a closed convex subset of a
uniformly convex Banach space has normal structure and a compact
convex subset of a Banach space has normal structure.
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If A is a subset of a Banach space E, then cô 4 will denote its closed
convex hull in E. When {xa} is a net in E, then xa -> x (resp. xa-*x)
will denote norm (resp. weak) convergence of the net {xa} to x.

3. Weak convergence of {Tsx: J G S ) , Unless other specified, S
denotes a semitopological semigroup and 5?= {Ta: a ̂  S} & continuous
representation of S as nonexpansive mappings from a nonempty closed
convex subset C of a Banach space E into C. If S is right reversible and S
is directed as in §1, then for each x e C, let ω(x) denote the set of all
weak limit points of subnets of the net { Tax: a e S}.

LEMMA 1. Let C be a closed convex subset of a uniformly convex Banach
space E and assume that F(Sf) Φ 0. Let x e C J e F ^ O < a < β <
1 and r = infaGS\\Tax —/| | . 7%e«, /or 0«y ε > 0, ίΛere is a positive

number d such that

\\Ta(λTbx + (1 - λ ) / ) ~(XTaTbx + ( l

for allb (= S with \\Tbx - f\\ < r + d, a e S and λ G i? w/YΛ a <λ< β.

Proof. Let r > 0. Then we can choose d > 0 so small that

where δ is the modulus of convexity of the norm and

c = min{2λ(l - λ): a < λ <: β}.

Suppose that | |Γβ(λΓ6x+.(1 - λ)/) - (λΓβΓ6x + (1 - λ)/) | | £ ε for
some b with (|T6JC - f\\ < r + d, a e 5 and λ e R with α < λ < β.
Put M = (1 - λ)(Γαz - /) and v = λ(TaTbx - Taz), where z = λ 7 > +
(1 - λ)/. Then IMI < (1 - λ)||z - / | | = λ(l - λ)\\Tbx - f\\ and ||ι;|| <
λ\\Tbx - z\\ = λ(l - λ)||7;x - f\\. We also have that \\u - υ\\ =
\\Taz - (λTaTbx + (1 - λ)/) | | > ε and λu + (1 - λ)υ = λ(l - λ)
{TaTbx — / ) . So by using the Lemma in [9], we have

λ(l-λ)||Γ.Γfcx-/B-||λιι+(l-λ)ι;||

- / | | 1 -2λ(l-λ)δί
τbχ-f\\

-λ)(r + rf)(l-cβ(-J-;))<λ(l-λ)r
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and hence \\TaTbx - f\\ < r. This contradicts r = vnίa<BS\\Tax - f\\. In

the case when r = 0, for any a,b e S, f e F(S^) and λ <= R with

0 < λ < 1,

+ ( i - λ)/) -

< λ\\xτbx +(i - λ)/- v | | +(i - λ)\\\τbx

So, we obtain the desired result.

LEMMA 2. Let C be a closed convex subset of a uniformly convex Banach

space £, S right reversible and F(S?) Φ 0 . Let x e C, f e F(S?) and

0 < a < β < 1. Then for any ε > 0, //zere w b0 ^ S such that

\\τa(xτbx +(i - λ)/) -(ΛT Γ ^ +(i - λ)/)|| < β

for allb e 5 w//Λ b > bQ, a <Ξ S and λ G R w/ϊΛ a <λ < β.

Proof. Let r = inf5 e 5 ||Γ5x - /| | . Then, we have

r = i n f s u p \\Tbx -f\\.
a a<b

In fact, for any ε > 0, there is ao_e_S such that \\Ta(x - f\\ < r + ε. Let

b > a0. Then, since J G {# O } U SaQ, we may assume Z? e S^o. Let {5 α}

be a net in 5 such that saa0 -> fe. Then, for each α,

JV) - v l ̂ 11V -/llV
Hence, | |2^JC - ^ | | < ||ΓβoJC - j ; | | . So, we have suVa^b\\Tbx - y\\ < r + e

and hence

inf sup \\Tbx - y\\ < r + ε .
a a<b

Since ε > 0 is arbitrary, we have

inf sup||V-/||<r= inf||7>-/||.
a a<b a

The reverse inequality is obvious. Since r = 'mίaswpa<b\\Tbx — / | | , for

any positive number d, there is a0 G S such that

sup | | Γ , x - / | | <r + d.
ao<b

So, by using Lemma 1, we obtain Lemma 2.



282 ANTHONY TO-MING LAU AND WATARU TAKAHASHI

Let x and y be elements of a Banach space E. Then we denote by
[JC, y] the set {λx + (1 - λ).y: 0 < λ < 1}.

LEMMA 3. Let C be a closed convex subset of a Banach space E with a
Frechet differentiable norm and {xa} a bounded net in C. Letz G Γ\βCθ{xa:
a > β}y y G C and {ya} a net of elements in Cwithya e [y, xa] and

\\ya-z\\ =min{| |w-z| | : w

ifya -*y

Proof. Since / is single-valued, it follows from Theorem 2.5 in [8] that
(u — ya9 J(ya - z)) > 0 for all u e [y9 χa]m Putting u = xa, we have

(1) < * β - Λ , / ( Λ - * ) > * 0 .

Since ya -> y and {xa} is bounded, there exist K > 0 and a0 such that
||JCΛ - y\\< K and \\ya - z\\ < K for all a > a0. Let ε > 0 and choose
δ > 0 so small that 28K < ε. Since the norm of E is Frechet differentia-
ble, we can choose aλ > a0 such that \\ya — y\\ < 8 and \\J(ya — z) —
J(y — z)\\ < 8 for all a > <xv Since for a > aλ

~ z)) - (*«-y, J(y - z))\

- *)) - {*<* - y, )

(χa-y> J(y«- z)) - (χa-y, J(y - z))\

< 28K < ε,

by using (1), we have

(xa - y> J(y - 2)) > (xa - ya9 J(ya - z)) - ε > 0 - ε = -ε.

Since z e Π^co{xα: a > β}, we have (z — y, J(y - z)) > -ε. This
implies -\\z - y\\2 > 0 and hence z = y.

By using Lemmas 2 and 3, we can prove the following:

LEMMA 4. Let C be a closed convex subset of a uniformly convex Banach
space E with a Frechet differentiable norm, S right reversible, and F(S?) Φ
0 . Let x e C. Then for any z e ϊ\s^^x>{Ttx\ t > s} Π F(S?) andy e
F(Sf), there is ί0 e S such that

(Ttx-y,j(y-z))<0

for every t > t0.
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Proof. Let z e Γ[s^scό{Ttx: t > s) n F(S?) and j> e F(.$"). If j =

z, Lemma 4 is obvious. So, let y Φ z. For any ί e S, define a unique

element yt such that .y, ^ [ j , T̂  c] and \\yt — z|| = min{||w — z||: w e

[>>, Ttx]}. Then since j> # z, by Lemma 3 we have >>, +» }>. So, we obtain

c > 0 such that for any / e 5, there is ί' e 5 with /' > t and | | ^ - _y|| > c.

Setting

^ = atTt,x + ( 1 - fl,,)^, 0 < at, < 1,

we also obtain c0 > 0 so small that #,, > c 0. (In fact, since Tt, are

nonexpansive and y e F(Sf), we have

c < | | Λ , - jμ|| = α,,||Γ,,x - y\\ < at,\\x - y\\.

So, put c 0 = c/\\x — j;||.) Since the limit of \\Ttx — y\\ exists as in the

proof of Lemma 2, putting k = lim||Γ,x — y% we have A: > 0. If not, we

have Ttx -» j and hence ^ -• ̂ , which contradicts yt -** y.

Now, choose ε > 0 so small that

-*[•&))<*•
where 8 is the modulus of convexity of the norm and R = ||z - y\\. Then

by Lemma 2, there exists tQ e 5 such that

(2) ||Ϊ;(CO2;X +(1 - C O )J0 - ( C O Γ ^ X +(1 - c o ) 7 ) | | < ε

for all s e S and ί > ί0. Fix ί' e S with *' > ί0 and ||JV - y\\ > c. Then

since at, > c0, we have

c0T(,x +(1 - co)y e [y9at,Tt.x +(1 - α,,).y] = [ j , ^ ] .

Hence

||c0Γ,x +(1 - co)>; - z|| < max{||z - 7 | | , ||z -Λ, | | } =| |z - j | | = Λ.

By using (2), we obtain

\\cQTsTt,x +(1 - co)y - z|| <||7;(co7;,χ +(1 - co)y) - z\\ + ε

<||CO7;JC +(1 - co)j; - z|| + ε < R + ε

for all 5 G S. On the other hand, since \\y - z\\ = R < R + ε and

||co7;7;,x +(1 - co)y -y\\ = co | |Γ sΓ^ - y\\ > cok

for all ί G S, we have, by uniform convexity,

> +(1 - co).y - z) +(y - z))\
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and hence

for all ί e S , This implies that if

c

then

\\ue + a(y-uM)-z\\>\\y-z\\

for all a > 1. By Theorem 2.5 in [8], we have

(us + a(y - w,) - 7 , /(>> - z)) > 0

and hence (iι, - j , / ( J - z)) < 0. Then (c 0Γ,Γ^ - coy, J(y - z)) <
0. Therefore

{TsTt.x-y,J{y-z)) <0 for all 5 ES,

Let t > t\ Then, since there exists a net {,sα} in S with s ^ -> /, we
obtain

(Ttx - y9 J{y - z)) < 0 for all / > t'.

We are now ready to prove one of our main theorems.

THEOREM 1. Let C be a closed convex subset of a uniformly convex
Banach space E with a Frechet differentiable norm, S right reversible, and

Φ 0 . Letx e C. Then, the set

Π c
seS

consists of at most one point.

Proof. Let y, z e F ( ^ ) Π Π j e 5 c o ^ x : t > s). Then, since
(y 4- z)/2 e F ( y ) , it follows from Lemma 4 that there is t0 e S such
that

for every ί > /0. Since y e co{ Γrx: / > t0}, we have

and hence (y — z, J(y — z)) < 0. This implies y = z.
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By using Theorem 1, we now study the problem of the weak conver-
gence of {Tax: a e S).

THEOREM 2. Let C be a closed convex subset of a uniformly convex
Banach space with Frechet differentiable norm, S right reversible and
F{&>) Φ 0 . Let x<ΞC. If ω(x) c F(ST)9 then the net {Tax: a e S)
converges weakly to somey

Proof. Since F{&) Φ 0, {Tax: a e S} is bounded. So, {Tax: a e S}
must contain a subnet {Ta x} which converges weakly to some z e C.
Since ω(x) c F(t$") and z έ fl^^coi^jc: ί > 5}, we obtain

n

Therefore, it follows from Theorem 1 that { Tax: a e S} converges weakly
to z e F ( ^ ) .

A subset G of S is called a generating set if elements of the form

SiS2 '" gm> 8v g2> >8nGG9 is dense in S.

COROLLARY. Let C be a closed convex subset of a Hilbert space, S right
reversible, and F(S?) Φ 0 . Let x e C. Then Tax-^y e C if and only if
Tgax — Tax -* 0 for all g in a generating set G of S.

Proof. We need only prove the " i f part. Let {Tax} be a subnet of
{Tax; ae S} with Tax - z. If u e F(ST), then we have

= \\Tax - uf + 2(Tax -u,u-z)+\\u- zf -\\Tgax - u

-2(Tgax-u,u-Tgz)-\\u-Tgz\\2

'IK* - "ΐ-\\T8ax - 4 + 2(Tax - u,Tgz - z)

+ 2{Tax - Tgax,u- Tgz) +\\u - zf-\\u - Tgz\\\

and hence by letting a tend to infinity

0 < 2(z - u,Tgz - z) +| |« - zf -\\u - Tgzf = -\\z - Tgz

(note that \\Tax - u\\2 is a decreasing net and hence

Urn \\Tax- uf = Urn ||Γχβx - uf = lim||7> - uf).
a • g"
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Consequently z e F{5?) and ω(x) c F(^). By Theorem 2, the net {Tax:
a & S} converges weakly to some y ^ F(Sf).

The following theorem is a generalization of Lau's result ([15, Theo-
rem 2.3]), which has been proved in the case when E is a Hubert space.
Note that Lau's proof does not apply beyond Banach spaces for which
OpiaΓs condition is valid (e.g. Lp[0y 1], 1 < p < 2 and 2 < p < oo). See
[18, p. 596].

THEOREM 3. Let C be a closed convex subset of a uniformly convex
Banach space with a Frechet differentiable norm, S right reversible and
F{^)Φ 0 . Letx e C. // limβ \\Tgax - Tax\\ = 0 for all g in a generating
set G of S, then the net { Tax: a e S) converges weakly to somey ^ F(S?).

Proof. By Theorem 2, it suffices to show that ω(x) c F(&). Let
{Ta x} be a subnet of {Tax\ a e S) converging weakly to some y e C.
Let"g E G a n d Γ = Tg. Write xa = Tax. Then ||Γxα - xa\\ -> 0. For each
«, choose αM such that \\Txa - jcβ|| < l//i for all a > an. Since y e
Π α co{^ ; α < j8}, there is xn e co{^; αn < j8} such that | | j; - x j | <
l//i. Let JCM = Σjl1aixβi, βt > an. Then we have

ί - l

r 1 - + -
\ / n

where r: R + ^ R is a continuous, strictly increasing, convex function with
r(0) = 0 such that for any {ul9...,uk} c C and λ 1 ? . . . , λ^ > 0 with

ηΣλ,«, - Σλ,τ«,. max (||wz - uj\\ -\\TUi-

(the existence of such an r follows from Theorem 2.1 of Bruck [6].) In fact

Σ */Γ*A "
m m

i-l /-I
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and
m

iXr, ~ / . a,ix max 11| x f t - xβj \\ - || Γxft - Txβj

Since r * is continuous and r 1(0) = 0, we have r ι(2/n) + 1/Λ -> 0 as

^ -> oo. Therefore, | |7xn - x j | -> 0 as « -> oo. Since \\xn — y\\ -> 0, we

have j = 7 j . Since G is a generating set of S and g e G is arbitrary,

). This implies CO(JC) c

The next result is also a generalization of Lau's result [15, Proposition

2.4].

THEOREM 4. Lei C be a closed convex subset of a uniformly convex

Banach space E, S right reversible, and F(S/?)Φ 0 . Let P be the metric

projection on E onto F(S?). Then, for each x e C, the net { PTax; a e S)

converges in norm to some z

Proof. Let x e C. Observe that

for any a,b ̂  S.lf a > b and a Φ b, let {sαZ>} be a net converging to #.

Then for each α,

II P T v — T Y II — II T PT Ύ — T T r II < II P T Y — T Y II

\ \ r i b X 1sab
X\\ ~\\1sa

tlbX 1sa

1bX\\ ^ \ \ r i b X 1bX\\

So, if a > b, we have

(3) \\PTbx - Tax\\ <\\PTbx - Tbx\\.

Hence, if a > b, then | |PΓβx - Γβx|| < \\PTbx - Tbx\\. This implies that

the limit \\PTax - Γβx|| exists. Now, we show that {PTax: a e S} is a

Cauchy net in C. Let r = \ima\\PTax - Tax\\. If r = 0,then for ε > 0,

there i s c e S such that \\PTax - Tax\\ < ε/4 for α > c. So, ϊί a,b> c,

then by (3)
— P T Y II -I- II PT Y — PT Y II

Γ1CX\\ T\\Γ1CX Γ 1 bX \\

T r II + I I T Y — PT x II^β ^ l l^ l i 1 ^-^ Γ I c x\\

— T Y II - 4 - I I T Y — PT Y II
\ \ b IbX\\^\\IbX r i c X \ \

<\\PTax-Tax\\+\\Tcx-PTcx\\

+ \\PTbx - Tbx\\ +\\Tcx - PTcx\\ < ε.
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This implies that {PTax: a e S} is a Cauchy net in the case when r = 0.
Let r > 0. Then { PTax: a e S) is also a Cauchy net. If not, there exists
ε > 0 such that for any S G S , there are a, b e S with ||PΓβA: - PTbx\\ > e
and a,b > s. Choose d > 0 so small that

and ί0 G S so large that

r <\\PTtx - Ttx\\ < r + d

for all t > s0. For this s0 G 5, there are a,b <Ξ S with | |P a x - PTbx\\ > ε
and a,b > s0. Since (5, > ) is a directed system, there i s c e S with c > a
and c >b. For this c £ S , w e have by (3)

| |P7> - Tcx\\ <\\PTax - Tax\\ <r + d

and

| |P7> - 7>| | <\\PTbx - Tbx\\ <r + d.

Since E is uniformly convex, we have

which is a contradiction.

4. Nonexpansive retraction. Let ^ = {Γfl; α G S J b e a continuous
representation of a semitopological semigroup S as nonexpansive map-
pings from a nonempty closed convex subset C of a Banach space E into
C. We study in this section the existence of a nonexpansive "ergodic"
retraction of C onto the common fixed point set F(S?) of £? in C. We
begin with the following simple observation:

LEMMA 5. Let C be a nonempty closed convex subset of a reflexive
Banach space E. Let {Wa: a e /} be a decreasing net of subsets contained
in a bounded set of E. Let A be the asymptotic center of {Wa: a e /} with
respect to C, i.e., A = {x e C: r(x) = r}, wλere r(x) = inf{rα(.x): α e
J}> r«(*) = sap{\\y - JC||: ^ G Wς} α«ώ? r = inf{r(x): x G C}. ΓΛe« A
is nonempty, bounded, convex and closed.

Proof. That A is closed and convex follows from Lim [16]. To see that
A is nonempty, we observe that
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is a nonempty weakly compact convex subset of E. Indeed, it suffices to
show that An is bounded. Let x e An, then for some a0, rao(x) < r + 2/n.
Hence \\y - x\\ < r + 2/#i for each y e Wαo, i.e., ||JC|| <°r + 2/n + \\y\\
for each y e ϊFΛo. It is obvious that Λ = Π^=i^ r t.

THEOREM 5. Let C be a closed convex subset of a reflexive Banach space
with normal structure and S left reversible. If there exists x0 e C such that
{Tax0: a e S} is bounded, then

(a) C contains a common fixed point of £f.
(b) There is a nonexpansive retraction r of C onto F(£?) for which any

^-invariant closed convex subset of C is r-invariant.

Proof, (a) For each s e S, let Ws = Γ^x 0 . Then { Wζ: ί e S ) is a
directed set with s < t meaning sS 2 tS and each Ŵ , 5 e S is bounded.
Let 4̂ be the asymptotic center of {Ws: s ^ S} with respect to C. Then
by Lemma 5 A is bounded, closed, convex and nonempty. Also A is
^invariant. Indeed, if x e 4̂, 5 G 5, given ε > 0, there exists / E S such
that Tt^x0 c ^ c £(x, r + ε), where £(z, r) = {x e £; ||z - JC|| < r}.
So, JP;, C B(Tsx,r + ε). It follows that /•(?>) ^ r , / ( ^ ) < ^ + ε. So
Γ5x e 4̂. Since 4̂ has normal structure, it follows from Theorem 3 in [16]
that A contains a common fixed point of «5*\

(b) We follow an idea of Brack in [5]. Let G = {s: s is a nonexpan-
sive mapping of C into itself,F(s) 2 F(S?) and every ^invariant closed
convex subset of C is ^-invariant}. Then, G is a semigroup and compact
in the topology of pointwise weak convergence on C. We shall show that
Gx Π F(G) Φ 0 for x e C In fact, since Gx is an ^invariant bounded
closed convex subset of C and has normal structure, by Theorem 3 in [16]
Gx contains a common fixed point of Sf and hence a common fixed point
of G. By Theorem 3(a) in [5], there exists a retraction r e G of C onto

Let 5 be a semitopological semigroup. Let C(S) be the Banach
algebra of all continuous bounded real valued functions on S with the
supremum norm. Then, for each s e S and / e C(S), we can define rj
in C(S) by rj(t) = f(ts) for all ί e S. Let RUC(S) be the space of
bounded right uniformly continuous functions on S, i.e., RUCKS') is the
set of all / e C(S) such that the mapping: s -> r̂ / is continuous. Then
RUC(S') is a closed translation invariant subalgebra of C(S) containing
constants; see [17] for more details.
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A linear functional m on RUC(S') is called a right invariant mean if
||m|| = m(l) = 1 and m{rj) = m(f) for all / e RUC(S), s e S. In
general, S need not be right reversible even when the space of bounded
continuous functions on S has a right invariant mean unless S is normal.
See [13, p. 335] for details.

LEMMA 6. Let C be a closed convex subset of a reflexive Banach space E
and S be a semitopological semigroup for which RUC(S) has a right
invariant mean. Suppose that there is an element in C with bounded orbit.
Then there exists a nonexpansive mapping Q of C into itself such that Qx
<Ξ co^x for each x e C and QTS = Qfor all s e S.

Proof. Let x e C and observe that if / e E*9 then h(t) = (Ttx, / ) is
in RUC(S). In fact, if sa -> s9

\h{tsa)-h{ts)\<\(Ttsx-Ttsxj)\

<\\τtτsx - τtτsx\\ ii/ii <\\τsx - τsx\\ ii/ii -> o

uniformly in t. So, let μ be a right invariant mean on RUC(S) and
consider a functional F on E* given by

F(f) = μt(Ttx,f)
for every / e E*. Then F is bounded and linear. Since E is reflexive,
there is an xQ e E such that

μt(Ttxj) = (xoj)

for every f & E*. Put βx = x0. We shall show that Q has the desired
properties. That QTS = Q follows from the right invariance of μ. Let
ua = Σ ^ λ δ, be a net of convex combinations of point evaluations
converging to μ in the weak*-topology of RUC(S)*, then for each
/ e £*, (βjc,/> = lim^ΣΓ.xλ^x,/) i.e. Qx e 3o^(x). Also if x, >> e

1, then

Hence \\Qx - Qy\\ £ \\x - y\\.
The following Theorem improves a result of Hirano-Takahashi [12,

Theorem 1].

THEOREM 6. Le/ C be a closed convex subset of a reflexive Banach space
with normal structure and S left reversible. If RUQS) has a right invariant
mean and there exists an element in C with bounded orbit, then there exists a
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nonexpansive retraction P of C onto F(5f) such that PTt = TtP = P for

every t e S and every Sf-invariant closed convex subset of C is P-invariant.

Proof. Let r be a nonexpansive retraction obtained in Theorem 5 and

Q a nonexpansive mapping obtained in Lemma 6. Then P = rQ is a

nonexpansive retraction satisfying the conclusion of Theorem 6.

Similarly, we can prove the following theorem which generalizes

Theorem 2 in [12].

THEOREM 7. Let C be a closed convex subset of a uniformly convex

Banach space with a uniformly Frechet differentiable norm and S a reversible

semitopologicalsemigroup. If R U Q S ) has a right invariant mean, then the

following are equivalent:

(a) ΠsGSco{Ttx: t > s} Π F{^) Φ 0 , for each J C G C ;

(b) F(Sf) is nonempty and there is a nonexpansive retraction P of C

onto F(Sf) such that PTt = TtP = P for every t e S and Px e co{Ttx:

t e S} for every x e C.

Proof, (b) =* (a). Let x e C. Then Px G F(S^). Also Px e f\co{ Ttx:

t > s}. In fact,

Px = PTsx <Ξ cό{TtTsx: / e S } c co{7>;: t > s}

for every s e S.

(a) ==> (b). By Theorem 5, there exists a nonexpansive retraction of C

onto F{y). Then from [23, Theorem 4.1] or [26, Theorem 1], there is a

sunny nonexpansive retraction r of C onto F ^ ) . Let Q be as in Lemma

6 and P = rQ. Then P is a nonexpansive retraction of C onto F ( y ) such

that PTt = TtP = P for all t e 5. Let J C G C . Then since r is sunny, we

have by [22, Lemma 2.7]

(4) (Qx- Px,J(Px- v)) > 0

for every v e F ( ^ ) . On the other hand, if

from Lemma 4, there is t0 e S such that
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for every / E S . Hence

_ Px + z (Px + z
Qx j — , J{—j z

I Px + z JPx + z
= μ t ( T t x /

I Px
9 [ 2

Px + z J Px + z

Therefore by using (4) we have

(z - Px, J(Px - z)> > 0

and hence z = Px. This completes the proof.

THEOREM 8. Let S be right reversible and C be a closed convex subset of

a uniformly convex Banach space with Frechet differentiable norm. The

following are equivalent:

(a) f \ e ί S c o { : Γ r ; t : t>s}D F(SP) Φ 0 for each x e C.

(b) There exists a retraction P of C onto F(S?) such that PTt = TtP = P

for every t e S andPx e co{ Ttx: t e 5} /or e^ry x G C.

Proof, (b) => (a). Same as Theorem 8.

(a) => (b). In this case, by Theorem 1, for each x e C,

/ > s) Π j p ( ^ ) contains exactly one point P{x). Clearly TtP = P for

each t e 5. Let ί0 e 5 be fixed. We shall show that

(5) Π cό{Γ,,ox; ί > ^} 2 Π cό{Ttx; t > s ) .

When this is proved, then

Π ™{Tttx;t>s}

In particular P{Ttx) = P(x).

Let 5 e S be fixed. Then {ΓMx; w > 5r0} 2_[r//ox; ί > s) (since if

ί > s, ί e { ί ) U_S^_hence /ί0 G {st0} U 5jί 0 i.e. « 0 > st0) i.e.

{ΓMx; w > stQ} 2 {r/iox; / > s}. On the other hand, if u > st09 then u e

Γ* If « =°^o ? then Tu(x) = Γ5ίo(x) G {ΓW Q(JC); ί > J } . If u

fla5/0 for some net {tfα} c 51. So Γtf(x)^ α a 0 { α } tf J v / o

i.e. Tu(x) e {Γ/ίo(jc); / > 5}. Hence Γw(x) G {Γ / / Q(Λ:); / > s} also. Conse-

quently

co{Tux; u>st0} = co{TttQx; t>s}.
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Now ή_ y e (Ί, e 5 co{7;x; / > s}, then j> e n j e S c o { r M x ; U > st0} =

n, e sCθ{Γ ί f o x; ί > * } i.e. (5) holds.
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