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EXTENSIONS OF REPRESENTATIONS OF
LIE ALGEBRAS

JOHN GERARD RYAN

Let ψ: Lx -» L2 be a morphism of finite-dimensional Lie algebras
over a field of characteristic zero. Our problem is this: given a finite-di-
mensional L1-module, V say, when does V embed as a sub Lx-module of
some finite-dimensional L2 -module? The problem clearly reduces to the
case in which ψ is injective. We provide here (Thm. 3.6) a solution in two
separate cases: (i) under the assumption that ψ maps the radical of Lx

into the radical of L2, or (ii) under the assumption that Lλ is its own
commutator ideal.

0. Introduction. A theorem of Bialynicki-Birula, Hochschild, and
Mostow ([1, Thm. 1]) gives conditions for a finite-dimensional module for
a subgroup of an algebraic group to embed as a submodule into a
finite-dimensional module for the whole group. It is with a modification
of this result that we obtain criteria for modules of Lie algebras.

Throughout this paper, k will denote a field of characteristic zero,
and K will be an algebraic closure of k. For a Lie algebra L over k, U(L)
will denote the universal enveloping algebra of L; H(L) will denote the
Hopf algebra of representative functions associated with L. All of our Lie
algebras, modules, and representations are taken to be finite-dimensional
unless otherwise specified. We will regard a module for a Lie algebra L as
also a left [/(L)-module or as a right i/(L)-comodule, and vice versa.

The author wishes to thank Professor G. Hochschild for his generous
and invaluable assistance in the suggestion of the topic and in the writing
of the doctoral dissertation on which this paper is based.

1. Reduction of the problem to representative functions.

DEFINITION. Let φ: Hλ -» H2 be a morphism of coalgebras over k. φ
induces an if2-comodule structure on any i^-comodule ψ: V -> V ® Hλ

by following up ψ with (/ ® φ), where / is the identity map. We say that
an i/2-comodule £: U -> U ® H2 is extendable to Hλ if there is an
i^-comodule ψ: V -> V 0 Hx and a linear injection j : U *-* V such that
U ® 0 ° ί = (' ® Φ)°Ψ°y.
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Clearly, a necessary condition for £ to be extendable is that ξ(U)
should be contained in U Θ ΦiH^. We say that φ is manageable if, for all
7/2-comodules U, the above condition is also sufficient.

Note. [1, §6] contains examples of morphisms φ that are not managea-
ble.

We remark that, if H is a bialgebra, then the multiplication map on
H enables us to construct an i/-comodule structure on the tensor product
of two comodules. If H is commutative, then the i/-comodule structure
on the tensor algebra ® V of an //-comodule V factors to give an
//-comodule structure on each homogeneous component of the exterior
algebra AV built on V. Finally, we note that, if H is a Hopf algebra, then
the antipode map on H enables us to construct an //-comodule structure
on the linear dual V° of an //-comodule V.

The following is a generalization of [1, Thm. 1].

LEMMA 1.1. Let φ: Hλ -> H2 be a morphism of commutative Hopf

algebras over k. Then φ is manageable if and only if, for every one-dimen-

sional H2-comodule that is extendable to Hv the dual comodule V° is also

extendable to Hv

Proof. The necessity of the condition is clear. Now, suppose that the
condition on one-dimensional H2-comodules is satisfied. Let £: U -> U ®
H2 be an H2-comodule, and let us assume that ξ(U) is contained in
U ® Φ(#i) Then, U is isomorphic with a subcomodule of the direct sum
of finitely many copies of ΦiH^, where the (locally finite-dimensional)
H2-comodule structure on φ(Hλ) is given by the restriction of the comulti-
plication of H2.

If we take inverse images under the map that sends Hλ Θ θ Hλ to
φ(Hι) ® Θφ(H1), we can choose a finite-dimensional sub ^-comod-
ule Z of Hλ θ ΘHλ and a sub H2 -comodule X of Z that maps onto U
(in φ(7/1) θ θφ(//1)) with kernel 7, say. Let n be the dimension of
Y. Now, U ® ΛΛ 7 is an i/2-comodule and, with the identification of U
with X/Y9 the multiplication of the algebra ΛZ yields an isomorphism
from U ® Λ*7 to X(Λ" 7). Now, observe that Λ" 7 is a one-dimensional
//2-comodule that is extendable to Hλ; by assumption, then, there is an
Hλ-comodule V that contains (AnY)° as a sub H2-comodule. It is thus
clear that there is an embedding of U (= U ® An Y ® (An Y)°) into the

" + 1Z(8) V.
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COROLLARY 1. If the only one-dimensional H2-comodule is the trivial

comodule, then every morphism of Hopf algebras φ: Hλ —> H2 is managea-

ble.

COROLLARY 2. // Hx is a pointed Hopf algebra, that is, if the simple

Hx-comodules are one-dimensional, then every φ: Hλ -> H2 is manageable.

Proof. If a one-dimension H2 -comodule U embeds in some
odule, then it embeds in a simple ^-comodule, say V. Since V is
one-dimensional, the embedding of U into V is an H2- comodule isomor-
phism which yields an embedding of U° as a sub H2 -comodule of the
^-comodule V°.

At this stage, it is useful to simplify the problem by working over an
algebraically closed field. This involves no loss of generality.

THEOREM 1.2. Let φ: Lx -> L2 be a morphism of Lie algebras over K,

and let φ*: H(L2) -> H{Lλ) be the corresponding map of representative

functions. Suppose that either (a) φ sends the radical Rλ of Lx into the

radical R2 of L2, or (b) Lλ = [Lv Lλ], Then the map φ* is manageable.

Proof. Condition (b) implies that the one-dimensional LΓmodules are
trivial, i.e. that the one-dimensional i^L^-comodule are trivial. There-
fore the manageability of φ* in this case follows from Corollary 1 above.

Suppose now that we are in case (a). Let U be a one-dimensional
L1-module that embeds in an L2 -module V. We can assume that V is
simple (consider a composition series for V). Then, in particular, [L2, R2]
annihilates V. By a well-known result, V will be semisimple as an
R 2-module and consequently, as such, is a direct sum φ Vi of one-dimen-
sional sub R 2 -modules. It is clear that we can embed U as a sub
^-module into one of these i?2-modules Vt. Let Sx be a maximal
semisimple subalgebra of Lλ and let S2 be a maximal semisimple subalge-
bra of L2 that contains Φ ^ ) . Since U is a one-dimensional LΓmodule, it
is annihilated by Sv Since [LVL2] annihilates Vi9 we can extend the
7?2-module structure on Vi to an L2-module structure by making S2 act
trivially. Then the embedding of U into Vi is an embedding of LΓmod-
ules. As we have seen in the proof of Corollary 2 above, it follows that the
dual of U can be embedded in the dual of Vr In view of Lemma 1.1, this
completes the proof.
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2. An analysis of the Hopf algebra of representative functions.

NOTATION. For any Lie algebra L, we denote by Q(L) the (multi-
plicative) group of group-like elements of H(L), and by P(L) the
(additive) group of primitive elements of H(L). Note that there is an
isomorphism of groups from P{L) to Q(L) given by the exponential
map.

DEFINITION. ([3], [5], [6]). Let L be a Lie algebra over K. A subalge-
bra / of H{L) is called a basic subalgebra if the multiplication map yields
an algebra isomorphism from J <8> K[Q(L)] to H(L). Let R denote the
radical of L. A basic subalgebra J is called a normal basic subalgebra if
the semisimple part Js of / (i.e. the subalgebra consisting of representative
functions belonging to semisimple representations of L) is exactly the left
iί-annihilated part H(L)R of H(L) and if / is a left #(L)-comodule.

The main results on basic subalgebras that we need are that, for any
Lie algebra L, a normal basic subalgebra of H(L) always exists ([6, p.
610]), that any two normal basic subalgebras of H(L) are conjugate via an
automorphism of H(L) of the form Exp(/(x)) where / is the left-transla-
tion map and x is in [L, R] ([3, Thm. 4.1]), that every normal basic
subalgebra contains the group P(L) of primitive elements and is finitely
generated as an algebra ([6, Thm. 4]).

The existence and conjugacy of normal basic subalgebras implies the
existence of a unique small sub Hopf algebra B(L) of H(L) such that
B(L) contains some (and hence every) normal basic subalgebra of H(L).
We call B(L) the basic sub Hopf algebra of H{L).

In the rest of this section, L is a Lie algebra over K, R is the radical
of L, N = [L, R] (this coincides with the intersection of the kernels of all
semisimple representations ofL), t is the left translation map on H(L)
and tr the right-translation map.

LEMMA 2.1. Let H be a sub Hopf algebra of H(L) and suppose that H
contains a normal basic subalgebra J. Then, the intersection of H with Q(L)
is a set of free generators for H as a J-module.

Proof. As is easy to see, it is sufficient to show that H π Q(L)
generates H as a /-module.

Since / is basic, every element of H(L) can be written as a sum
Σy, ̂ , , where the y/s are in / and the g/s in Q(L). Now, Q(L) is clearly
contained in the right N-annihilated part NH(L) of H(L), and repeated
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right-translation by elements of N will annihilate any element of H(L). If
the result of the lemma does not hold, then we can find an element h of H
which has an expression as Σy,^, where not all the q/s are in H, and
among such elements h = Σy,^, we can pick one that is of minimal
length and such that all of the y/s lie in the right-iV-annihilated part NJ of
J. The reason for making such a choice of h is that by [3, Lemma 4.3],
NJ = P(L)H(L)R, which is stable under both left and right translations.

Let x be an element of U(L). Since H is two-sidedly stable, tr(x)h is
also an element of H. Let 8 denote the comultiplication map, and let
δ(x) = Σ , X <8> <'. Then,

Thus, multiplying by j l 9 we see that H contains the element

ΣΛΦ«)Uk(*«k

H also contains the following, which is a /-multiple of h

Subtracting the second of these from the first, and using the minimality of
the length of the expression for Λ, we get

If we evaluate each side of the above equation at an element y of
then, denoting 8(y) by Σ^ y'β ® yg, we get

β,a

The above can be re-written.

Moreover, the t(y)(jYs are in / since we have chosen the y*'s to be in a
two-sidedly stable subspace of /. Owing to the freeness of the q 's over /,
it follows that, for all y in U(L) and all i > 1,

Σji(yβ)t(yβ)(Jt) = o.
β

Applying this to the element 1 of U(L), we obtain the equation (j\ji)(y)
= 0, for all y in U(L). This means that J\J) must be the zero function, so
that the chosen element h must be just j\qv
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Now, we see that (Hqx Π H) is a non-zero left Hopf module for i/, so

that, by [8, Thm. 4.1.1], there is a non-zero element g of (Hq1 Π i/) such

that δ(g) = 1 0 g. This is possible only if q{1 is in H. Since i/ is closed

under the antipode map, this means that qλ is in Hy which establishes the

lemma.

LEMMA 2.2. Let H be any sub Hopf algebra of H(L) that separates the

elements of L. Then, H contains the representative functions of the adjoint

representation of L.

Proof. The representative functions of the adjoint representation of L

lie in the space of representative functions of the adjoint representation of

the Lie algebra L(H) of H, which clearly are contained in H.

LEMMA 2.3. Let ρR be the restriction map H(L) -> H(R). Then, ρR is

injective on Q(L), and there is a normal basic subalgebra J of H(L) such

that pR(J) is a normal basic subalgebra ofH(R).

Proof. The first result is clear; the second follows from the construc-

tions in [5] and [6].

For any L-module F, we denote by V the semisimple L-module

associated with F, i.e. the direct sum of the simple factor modules in a

composition series for V. The following result is well known, but, in the

absence of a convenient reference, we give a proof here.

LEMMA 2.4. For any L-module F, the space Rep(F) 5 of semisimple

representative functions of V is identical with the space Rep(F') of repre-

sentative functions of the associated semisimple L-module.

Proof. For any L-modules U and W, we say that U is subordinate to

W if U is isomorphic to a module obtained from W by a finite sequence

of steps each of which is either the selection of a submodule, or the

selection of a homomorphic image, or the direct sum of such modules. It

is then straightforward to see that, if U is subordinate to W then Rep(£/)

is contained in Rep(PF). Further, if U is semisimple and subordinate to W

then U' is subordinate to W.

The space Rep(F) is a direct sum of copies of homomorphic images

of F, so is subordinate to F. Thus Rep(F) 5 is subordinate to F, and, thus,

to V. But Rep(F) s is a coalgebra, so is its own space of representative
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functions. This shows that Rep(F)5 is contained in Rep(F'); the inclu-
sion in the other direction is clear.

Let P be a solvable Lie algebra over K and V a semisimple P-mod-
ule. Then the space of representative functions of V is spanned by
elements of Q(P) which we call the component functions of the representa-
tion. We denote by A(P) the subgroup of Q(P) that is generated by the
component functions of the semisimple representation associated with the
adjoint representation of P. By [7, Lemma 2.1], any P-module U is a
direct sum of sub P-modules Uμ where the μ's are equivalence classes of
component functions of U' modulo the group A(P), and where the
component functions of the P-module UJ lie in the class μ.

DEFINITION. Let L, R be as before. An L-module V is called an
essential L-module if the component functions of V as an i?-module lie
in A(R). An element of H{ L) is called an essential representative function
if it belongs to an essential L-module.

THEOREM 2.5. The basic sub Hopf algebra B(L) of H(L) coincides
with the Hopf algebra of all essential representative functions of L.

Proof. Let A(R)# denote the inverse image (under the restriction
map) in Q(L) of the group A(R). Let / be a normal basic subalgebra of
H(L) such that its restriction image pR(J) in H(R) is a normal basic
subalgebra (Lemma 2.3). We show first that J[A(R)#] in a Hopf
algebra.

Clearly J[A(R)#] is stable under right-translations. To prove stabil-
ity under left-translations is equivalent to proving the right-stability of
η(J)[A(R)#]y where η is the antipode map of H(L). We claim first that
every left sub i?-module of η(J) is an essential i?-module. By the result
quoted above from [7], it suffices to show that the component function of
any one-dimensional sub iϊ-moldule of τj(/) lies in A(R). Let u e η(J)
span a one-dimensional sub ϋ-module with component function λ, say. h
is the restriction of an element of H(L) and is semisimple; it is easy to see
that h must be the restriction of a semisimple element of H(L). Thus,
[L, R] annihilates A, and there is thus an element, g say, of Q(L) that
restricts to h. Then, g"ιu is in H(L)R which is contained in η(J). Since u
is chosen to be in η(J) this implies that g = 1. Now, for an element q of
Q(L), let mq denote the projection from H(L) to η(J)q. If JC G L, then



180 JOHN GERARD RYAN

πq°tr{x) is a left L-module endomorphism of H(L), and so, maps
essential i?-modules to essential i?-modules. It is clear then that
*V *,(*)(ij(/)) = (0) unless q^A(R)#. Thus, J[A(R)#] is stable
under both left and right translations.

To complete the proof that /[ A(R)#] is a, Hopf algebra, we need to
prove stability under the antipode η. Since we already have two-sided
stability, it suffices to show that, whenever J[A(R)#] contains the
representative functions of an L-module F, it also contains the representa-
tive functions of the dual module V°. If V is an ^-dimensional module,
then the 'interior product' yields an isomorphism of L-modules V° <8>
Λ " F = An~λV. The space AnV is one-dimensional, so that its representa-
tive functions are the X-multiples of a group-like element q of H{L). If
the representative functions of V lie in J[A(R)#], then q~ι is in
A(R)#, and the representative functions for V° also lie in J[A(R)#].

Let / be an essential representative function, and let T(f) be the
L-module of left-translates of /. Let Rep(Γ(/)) be the space of repre-
sentative functions for T(f); Rep(Γ(/)) is a finite-dimensional sub
coalgebra of H(L). Clearly, there are finite dimensional sub coalgebras
Yl9...,Yn of J[A(R)#] and elements qv...,qn of Q(L) that are distinct
modulo A(R)# such that Rep(Γ(/)) is contained in Σ Y ^ . Let ττ be the
projection of Rep(Γ(/)) onto Ytqim Each mi commutes with left (or right)
translations so that the image of <πι is contained in Rep(Γ(/)). Thus, we
can assume that Rep(Γ(/)) is the direct sum of the Ytf/s and that none of
the yj's are (0). The semisimple elements of Rep(Γ(/)) are thus exactly
Σ(Y))jίί ( s e e P> Lemma 3.3]). Moreover, a non-zero coalgebra has a
non-zero simple coalgebra so that none of the (Y))/s a r e (0) I*
clear that the restriction map ρR does not annihilate any of the
(indeed, since (Yt)s is stable under translations, evaluation at the element
1 of ί/(L) is not the zero map).

Now, Js = H(L)R, so by [3, Lemma 3.3], pR(J[A(R)#]) = K[A(R)].
Since the element / above is essential, we must have that p*(Reρ(Γ(/))s)
c K[A(R)]. From Lemma 2.1, and from the above remarks on the
(Yi)s

9s, we see that each q must be in A(R)#, i.e. that Rep(Γ(/)) must
be contained in J[A(R)#]. Thus, J[A(R)#] is the Hopf algebra of all
essential representative functions of L. It remains only to show that
J[A(R)#] = B(L), i.e. that there is no proper sub Hopf algebra of
J[A(R)#] that contains /. Since / contains P(L), it separates the
elements of L (indeed, a zero of J is thus a zero of β(L), the exponential
image of P{L\ and, thus, of all of H(L)). By Lemma 2.2, then, pR(B(L))
must contain A(R), so that, by Lemma 2.1, B(L) must contain A(R)#.
This completes the proof.
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THEOREM 2.6. Let L be a Lie algebra over K, R the radical of L, and

let V be an L-module. Let {qx#9...,qn#) be the subset of Q(L) whose

restriction image in H(R) is the set of component functions of V as an

R-module. Then the space of representative functions of V is contained in

Σ?B(L)qi#.

Proof, The proof is almost identical with the second part of the proof

of Theorem 2.5. In fact, there are finite-dimensional sub coalgebras

Yv ...9Ym of B{L), and elements pv..,,pm of Q(L) that are distinct

modulo A(R)# and such that the representative functions of V are

contained in ΣYJ/v As in the proof of Theorem 2.5, we find that each pi

must be equivalent modulo A(R)# to one of the qj#9s. In view of

Theorem 2.5, this completes the proof.

DEFINITION. A sub Lie algebra Lλ of a Lie algebra L2 is called an

essential subalgebra if the radical of Lx is contained in the radical of L2

and if every essential representation of L2 restricts to an essential repre-

sentation of Lv

LEMMA 2.7. A sub Lie algebra Lx of a Lie algebra L2 is an essential

subalgebra if and only if the radical of Lλ is contained in that of L2 and the

adjoint representation of L2 restricts to an essential representation of Lv

(The proof is straightforward.)

Note, It is an easy consequence of Lemma 2.7 that an ideal in a Lie

algebra is an essential subalgebra.

3. Behavior of H(L) with respect to restriction; the extension results.

THEOREM 3.1. Let RVR2 be solvable Lie algebras over K, let φ:

Rλ —> R2 be an injective morphism and let φ* be the induced morphism of

Hopf algebras H(R2) -» # ( 1 ^ ) . Then the basic sub Hopf algebra B(Rλ) of

H(Rλ) is contained in φ*(J?(i?2)).

Proof. We prove this in two steps, according to the following two

lemmas.

LEMMA 3.2. Let φ: Lλ -> L2 be an injection of Lie algebras such that

φ(Lλ) is an ideal of L2. Then B{LX) = φ*(B(L2)).
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Proof. It is a consequence of the note at the end of §2 that φ*(B(L2))

is contained in B(Lι). By a theorem of Zassenhaus (see, for example, [2,

Chap. I, §7]), every LΓmodule on which [L 2, L2] Π Rad(L x) acts nilpo-

tently can be embedded in an L2-module. In particular, this covers the

case of an essential Z^-module. Thus, B(Lλ) is contained in φ*(H(L2)).

It is then easy from Theorem 2.5 to show that B(Lι) must actually be

contained in φ*(i?(L2)).

LEMMA 3.3. Let φ, Rl9 R2 be as in the statement of Theorem 3.1, and

let ψ: R2 -> End(F) be a faithful representation of R2. Let i?^, R2 be the

smallest algebraic subalgebras of End(F) to contain ψ(φ(i?1)), ψ(i? 2)

respectively, and let p be the restriction map from H(R2) to H(Rγ). Then,

) is contained in p(B(R%)).

Proof. The idea of this lemma is that R± is sufficiently nicely

embedded in R2 to enable us to construct a normal basic subalgebra J2

of H(R2) such that p(/ 2 ) is a normal basic subalgebra of H(R±).

Specifically, each i?z

+ can be written as a semidirect sum of a nilpotent

ideal Xι (that contains the commutator ideal) and an abelian subalgebra

Yt in such a way that Xλ c X2 and Yτ d Y2. In [6, pp. 610-611], a normal

basic subalgebra is constructed starting with an ordered basis of the Lie

algebra. If we use the semidirect sum decompositions above for each R +

in choosing the basis of R*, we can construct normal basic subalgebras Ji

of H(R+) such that Jλ = ρ(J2). The result follows immediately.

Proof of Theorem 3.1. We note that, in the notation of Lemma 3.3,

ψ © φ is an injection of Rλ as an ideal of R± , while ψ is an injection of R2

as an ideal of R2. By applying the result of Lemma 3.2 to both of these

injections, we obtain Theorem 3.1 from Lemma 3.3.

Let φ: Sλ -> S2 be an injection of semisimple Lie algebras over K,

and let φ*: H(S2) -» i/(SΊ) be the induced morphism of Hopf algebras.

Clearly, H(S) coincides with B(S)y and the group G(S) of algebra

homomorphisms from H(S) to K is an affine algebraic group. By [4,

Chap. XVIII], the Lie algebra of G(S) is S. We see, then, that the

injection φ induces a morphism of algebraic groups Φ: G^S^) -> G(S2)

whose kernel, T say, is a finite central subgroup of 0 ( 5 ^ . Now, there are

Cartan subalgebras Cι of Sλ and C2 of S2 such that φ ( Q ) is contained in

C2. Let Λ be the set of (integral) weights of St with respect to Cz (for

i = 1,2). Let φ Λ be the restriction map from Λ 2 to Av
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THEOREM 3.4. In the above notation, if V is an Sλ-module, then the
space of representative functions of V is contained in φ*(H(S2)) iff the
weights of Vare in φΛ(Λ2).

Proof. Let TVT2 be the maximal toroids of G(Sλ),G(S2) whose Lie
algebras are CVC2 respectively. Since the kernel T of the map Φ:
G(Sτ) -» G(S2) is finite and central, it is in 7\ and is, therefore, the kernel
of the restriction θ: Tλ -> T2 of Φ. For / = 1,2, let χ ( j ) be the group of
those polynomial characters of 7} that occur in restrictions to Tt of
polynomial representations of G{Si). Then, θ induces a map θx that
sends χ(T2) into xiTJ. By means of the connection between finite-di-
mensional ^-modules and G^S^-modules, there is an isomorphism of
groups x{Tt) = Λ,. that is compatible with the restriction maps θx and φA.

Now, if a weight λ of V is in φΛ(Λ2), then the corresponding
character must be in θx(χ(T2)) and vice versa. Since T is the kernel of the
map θ, this means that T must act trivially on the λ-weight space of V.
Since V is a sum of weight spaces, T will act trivially on V iff all the
weights of V are in φΛ(Λ2). It is clear from the theory of factor groups
that φ*(H(S2)) is the Γ-fixed part of //(SΊ), and, thus, that T acts
trivially on V iff the representative functions of V are in φ*(H(S2)). This
completes the proof.

THEOREM 3.5. Let φ: Lλ -» L2 be an injection of Lie algebras over K
and let Sv S2 be maximal semisimple subalgebras of Ll9 L2 respectively such
that φ(Sλ) c S2. Suppose that Lι = [LvLι]. Then, the representative
functions for an Lx-module V lie in φ*(H(L2)) iff the representative
functions of V qua Sλ-module lie in the restriction image φ$(H(S2)) of
H(S2) in

Proof. By [4, Chap. XVIII], Lx = [Ll9 LJ iff H(Lλ) is finitely gener-
ated as an algebra. Moreover, in such a case, the Lie algebra of H{LX) is
Lv Let G{Lλ), G(L2) be the pro-affine algebraic groups corresponding to
the Hopf algebras H{Lλ), H(L2) respectively, and let Φ be the induced
morphism G(Lλ) -> G(L2). As in the proof of Theorem 3.4, the kernel, T
say, of Φ is a finite central subgroup, and is thus contained in every
maximal linearly reductive subgroup of G{LX).

Let G(Lγ) = Gu' P be a decomposition of G(L1) as a semidirect
product of its unipotent radical Gu and a maximal linearly reductive
subgroup P. Since every (finite-dimensional) LΓmodule is a G^L^-mod-
ule, the Lie algebra of Gu is the intersection of the kernels of all
semisimple I^-modules. In the case where Lx = [Ll9 Lλ\ this is the
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radical of Lv Consequently, the (linearly reductive) subgroups corre-
sponding to maximal semisimple subalgebras of Lx are maximal linearly
reductive subgroups. By the conjugacy of such subgroups, we see that we
may suppose that the Lie algebra of P is Sv

The injection φs: Sτ -> S2 induces a morphism of algebraic groups
Φs: GiSJ -> G(S2), where the G(S)9s are as in Theorem 3.4. Let Ts be
the kernel of Φ .̂ Now, the injection of S1 into Lλ induces an injection of
G(Sλ) into G{Lλ), and similarly for S2 (as follows from the fact that every
S-module can be regarded as an LΓmodule). The image of G(5Ί) in
G{Lλ) is clearly P, and the map G(Sλ) -> P is an isomorphism. Now, we
need only note that T is the kernel of the map (the restriction of Φ) from
P to G(L2)y while Ts is the kernel of the map from G(5Ί) to G(S2) c
G(L2). Therefore the isomorphism from (/(SΊ) to P maps Ts onto T.
Since φ*(H(L2)) is the Γ-fixed part of H(Lλ\ and φ*(H(S2)) the
Γs-fixed part of HiSj), the result of the theorem now follows.

We are now in a position to prove the extension theorem for represen-
tations of Lie algebras that was mentioned at the beginning.

Let Lλ be a subalgebra of a Lie algebra L2 over K, and let R1 and
R2 be the radicals of Lx and L2. Let Sx and 2 be maximal semisimple
subalgebras of Lx and L2 such that Sx is contained in S2. Let Cx and C2

be Cartan subalgebras of Sx and S2 such that Cx is contained in C2. Let V
be a finite-dimensional Lrmodule.

THEOREM 3.6. In the above notation, assume that either (a) Rx is
contained in R2 or (b) Lλ = [L1 ? L J . Then V can be embedded as a sub
Lλ-module in a finite dimensional L2-module iff both (i) [L 2, L2] Π i?x ΛC/5
nilpotently on V and (ϋ) //ze weights for V as a Cγ-module are restrictions of
integral weights for C2.

Proof, Condition (ii) is evidently necessary in all cases. In case (a),
[LvL2]ΠRι is contained in [L2,R2] which acts nilpotently on any
L2-module, while, in case (b), all of Rλ necessarily acts nilpotently on an
LΓmodule. Thus, in both cases, conditions (i) and (ii) are necessary.

The sufficiency in case (b) is a consequence of Theorems 1.3, 3.4, and
3.5. We may restrict ourselves, then, to case (a).

The Levi decompositions (suppressing the indices 1 and 2) L = R + S
induce isomorphisms of algebras from H(L)R ®SH{L) to H(L), where
H(L)R denotes the subspaces of H(L) that is annihilated by left-transla-
tions by elements of i?, and SH(L) the subspace annihilated by right-
translations by elements of S (see [4, XVIII.4]). We need to make the



EXTENSIONS OF REPRESENTATIONS OF LIE ALGEBRAS 185

isomorphisms explicit. Let ρR: H(L) -> H(R) and ps: H(L) -* H(S) be
the restrictions; we note that ps is surjective. The restriction maps are
pre-inverted by algebra isomorphisms j R : pR(H{L)) -*SH(L) and j s :
H(S) -> H(L)R. If 8 is the comultiplication and μ the multiplication on
H(L), then μ ° {(js o ps) <g> (jR o P

R)} o 8 is the identity map on H(L).
Let φ denote the injection of Lλ into L2, φΛ that of Rλ into i?2 and

φ s that of Sx into ιS2. By Theorem 2.6 the space of representative functions
of V qua i?1-module is contained in ΣB(Rι)qi, where the q?s are the
component functions of the associated semisimple i?-module V. By
Theorem 3.1, 5(i?χ) is contained in φ%(B(R2)), while, by Lemma 3.2,
B(R2) = pR(B(L2)). If condition (i) holds, then the restriction to Rλ of
each component function qi is a Lie algebra homomorphism Rλ -+ K that
annihilates [L2, L2] Π Rλ and, thus, extends to a Lie algebra homomor-
phism L2 -» JK\ This implies that each ^ is in φ%(pR(H(L2))), whence all
of the representative functions of V as an i?1-module lie in φ%(pR(H(L2))).
By Theorem 3.4, condition (ii) implies that the representative functions of
V as an Sλ-module lie in φ$(H(S2)).

To complete the proof, we remark that the algebra homomorphism
j R : p^HiLJ) ^s(H(Lλ)) maps φ*(pR(H(L2))) into φ*(si/(L2)); simi-
larly, j s maps φ$(H(S2)) into φ*(H(L2)

R). We now apply the map
M ° {(js ° PS) ® (jR ° PR)} ° δ to the space of representative functions of
V. Since the space of representative functions is a sub-coalgebra, 8 sends
it into its tensor square. Now ρR maps the space of representative
functions of V into the space of representative functions of V qua
i?1-module; similarly for ρs. It is clear from the above, then, that
M ° {{js ° PS) ® (JR ° PR)} ° δ maps the space of representative functions
of V into φ*(//(L2)). This map is, however, the identity, so, by Theorem
1.2, the proof is complete.
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