EXTENSIONS OF REPRESENTATIONS OF LIE ALGEBRAS

John Gerard Ryan

Let $\phi: L_1 \to L_2$ be a morphism of finite-dimensional Lie algebras over a field of characteristic zero. Our problem is this: given a finite-dimensional L_1 -module, V say, when does V embed as a sub L_1 -module of some finite-dimensional L_2 -module? The problem clearly reduces to the case in which ϕ is injective. We provide here (Thm. 3.6) a solution in two separate cases: (i) under the assumption that ϕ maps the radical of L_1 into the radical of L_2 , or (ii) under the assumption that L_1 is its own commutator ideal.

0. Introduction. A theorem of Bialynicki-Birula, Hochschild, and Mostow ([1, Thm. 1]) gives conditions for a finite-dimensional module for a subgroup of an algebraic group to embed as a submodule into a finite-dimensional module for the whole group. It is with a modification of this result that we obtain criteria for modules of Lie algebras.

Throughout this paper, k will denote a field of characteristic zero, and K will be an algebraic closure of k. For a Lie algebra L over k, U(L)will denote the universal enveloping algebra of L; H(L) will denote the Hopf algebra of representative functions associated with L. All of our Lie algebras, modules, and representations are taken to be *finite-dimensional* unless otherwise specified. We will regard a module for a Lie algebra L as also a left U(L)-module or as a right H(L)-comodule, and vice versa.

The author wishes to thank Professor G. Hochschild for his generous and invaluable assistance in the suggestion of the topic and in the writing of the doctoral dissertation on which this paper is based.

1. Reduction of the problem to representative functions.

DEFINITION. Let $\phi: H_1 \to H_2$ be a morphism of coalgebras over k. ϕ induces an H_2 -comodule structure on any H_1 -comodule $\psi: V \to V \otimes H_1$ by following up ψ with $(i \otimes \phi)$, where *i* is the identity map. We say that an H_2 -comodule $\xi: U \to U \otimes H_2$ is *extendable* to H_1 if there is an H_1 -comodule $\psi: V \to V \otimes H_1$ and a linear injection $j: U \hookrightarrow V$ such that $(j \otimes i) \circ \xi = (i \otimes \phi) \circ \psi \circ j$.

Clearly, a necessary condition for ξ to be extendable is that $\xi(U)$ should be contained in $U \otimes \phi(H_1)$. We say that ϕ is *manageable* if, for all H_2 -comodules U, the above condition is also sufficient.

Note. [1, §6] contains examples of morphisms ϕ that are not manageable.

We remark that, if H is a bialgebra, then the multiplication map on H enables us to construct an H-comodule structure on the tensor product of two comodules. If H is commutative, then the H-comodule structure on the tensor algebra $\otimes V$ of an H-comodule V factors to give an H-comodule structure on each homogeneous component of the exterior algebra $\wedge V$ built on V. Finally, we note that, if H is a Hopf algebra, then the antipode map on H enables us to construct an H-comodule structure on the linear dual V° of an H-comodule V.

The following is a generalization of [1, Thm. 1].

LEMMA 1.1. Let $\phi: H_1 \rightarrow H_2$ be a morphism of commutative Hopf algebras over k. Then ϕ is manageable if and only if, for every one-dimensional H_2 -comodule that is extendable to H_1 , the dual comodule V° is also extendable to H_1 .

Proof. The necessity of the condition is clear. Now, suppose that the condition on one-dimensional H_2 -comodules is satisfied. Let $\xi: U \to U \otimes H_2$ be an H_2 -comodule, and let us assume that $\xi(U)$ is contained in $U \otimes \phi(H_1)$. Then, U is isomorphic with a subcomodule of the direct sum of finitely many copies of $\phi(H_1)$, where the (locally finite-dimensional) H_2 -comodule structure on $\phi(H_1)$ is given by the restriction of the comultiplication of H_2 .

If we take inverse images under the map that sends $H_1 \oplus \cdots \oplus H_1$ to $\phi(H_1) \oplus \cdots \oplus \phi(H_1)$, we can choose a finite-dimensional sub H_1 -comodule Z of $H_1 \oplus \cdots \oplus H_1$ and a sub H_2 -comodule X of Z that maps onto U (in $\phi(H_1) \oplus \cdots \oplus \phi(H_1)$) with kernel Y, say. Let n be the dimension of Y. Now, $U \otimes \Lambda^n Y$ is an H_2 -comodule and, with the identification of U with X/Y, the multiplication of the algebra ΛZ yields an isomorphism from $U \otimes \Lambda^n Y$ to $X(\Lambda^n Y)$. Now, observe that $\Lambda^n Y$ is a one-dimensional H_2 -comodule that is extendable to H_1 ; by assumption, then, there is an H_1 -comodule V that contains $(\Lambda^n Y)^\circ$ as a sub H_2 -comodule. It is thus clear that there is an embedding of $U (\cong U \otimes \Lambda^n Y \otimes (\Lambda^n Y)^\circ)$ into the H_1 -comodule $\Lambda^{n+1} Z \otimes V$. COROLLARY 1. If the only one-dimensional H_2 -comodule is the trivial comodule, then every morphism of Hopf algebras ϕ : $H_1 \rightarrow H_2$ is manageable.

COROLLARY 2. If H_1 is a pointed Hopf algebra, that is, if the simple H_1 -comodules are one-dimensional, then every $\phi: H_1 \rightarrow H_2$ is manageable.

Proof. If a one-dimension H_2 -comodule U embeds in some H_1 -comodule, then it embeds in a simple H_1 -comodule, say V. Since V is one-dimensional, the embedding of U into V is an H_2 -comodule isomorphism which yields an embedding of U° as a sub H_2 -comodule of the H_1 -comodule V° .

At this stage, it is useful to simplify the problem by working over an algebraically closed field. This involves no loss of generality.

THEOREM 1.2. Let $\phi: L_1 \to L_2$ be a morphism of Lie algebras over K, and let $\phi^*: H(L_2) \to H(L_1)$ be the corresponding map of representative functions. Suppose that either (a) ϕ sends the radical R_1 of L_1 into the radical R_2 of L_2 , or (b) $L_1 = [L_1, L_1]$. Then the map ϕ^* is manageable.

Proof. Condition (b) implies that the one-dimensional L_1 -modules are trivial, i.e. that the one-dimensional $H(L_1)$ -comodule are trivial. Therefore the manageability of ϕ^* in this case follows from Corollary 1 above.

Suppose now that we are in case (a). Let U be a one-dimensional L_1 -module that embeds in an L_2 -module V. We can assume that V is simple (consider a composition series for V). Then, in particular, $[L_2, R_2]$ annihilates V. By a well-known result, V will be semisimple as an R_2 -module and consequently, as such, is a direct sum $\oplus V_i$ of one-dimensional sub R_2 -modules. It is clear that we can embed U as a sub R_1 -module into one of these R_2 -modules V_i . Let S_1 be a maximal semisimple subalgebra of L_1 and let S_2 be a maximal semisimple subalgebra of L_1 . Since U is a one-dimensional L_1 -module, it is annihilated by S_1 . Since $[L_1, L_2]$ annihilates V_i , we can extend the R_2 -module structure on V_i to an L_2 -module structure by making S_2 act trivially. Then the embedding of U into V_i is an embedding of L_1 -modules. As we have seen in the proof of Corollary 2 above, it follows that the dual of U can be embedded in the dual of V_i . In view of Lemma 1.1, this completes the proof.

2. An analysis of the Hopf algebra of representative functions.

NOTATION. For any Lie algebra L, we denote by Q(L) the (multiplicative) group of group-like elements of H(L), and by P(L) the (additive) group of primitive elements of H(L). Note that there is an isomorphism of groups from P(L) to Q(L) given by the exponential map.

DEFINITION. ([3], [5], [6]). Let L be a Lie algebra over K. A subalgebra J of H(L) is called a *basic subalgebra* if the multiplication map yields an algebra isomorphism from $J \otimes K[Q(L)]$ to H(L). Let R denote the radical of L. A basic subalgebra J is called a *normal basic subalgebra* if the semisimple part J_s of J (i.e. the subalgebra consisting of representative functions belonging to semisimple representations of L) is exactly the left R-annihilated part $H(L)^R$ of H(L) and if J is a left H(L)-comodule.

The main results on basic subalgebras that we need are that, for any Lie algebra L, a normal basic subalgebra of H(L) always exists ([6, p. 610]), that any two normal basic subalgebras of H(L) are conjugate via an automorphism of H(L) of the form Exp(t(x)) where t is the left-translation map and x is in [L, R] ([3, Thm. 4.1]), that every normal basic subalgebra contains the group P(L) of primitive elements and is finitely generated as an algebra ([6, Thm. 4]).

The existence and conjugacy of normal basic subalgebras implies the existence of a unique small sub Hopf algebra B(L) of H(L) such that B(L) contains some (and hence every) normal basic subalgebra of H(L). We call B(L) the basic sub Hopf algebra of H(L).

In the rest of this section, L is a Lie algebra over K, R is the radical of L, N = [L, R] (this coincides with the intersection of the kernels of all semisimple representations of L), t is the left translation map on H(L) and t_r the right-translation map.

LEMMA 2.1. Let H be a sub Hopf algebra of H(L) and suppose that H contains a normal basic subalgebra J. Then, the intersection of H with Q(L) is a set of free generators for H as a J-module.

Proof. As is easy to see, it is sufficient to show that $H \cap Q(L)$ generates H as a J-module.

Since J is basic, every element of H(L) can be written as a sum $\sum j_i q_i$, where the j_i 's are in J and the q_i 's in Q(L). Now, Q(L) is clearly contained in the right N-annihilated part ${}^{N}H(L)$ of H(L), and repeated

right-translation by elements of N will annihilate any element of H(L). If the result of the lemma does not hold, then we can find an element h of H which has an expression as $\sum j_i q_i$, where not all the q_i 's are in H, and among such elements $h = \sum j_i q_i$, we can pick one that is of minimal length and such that all of the j_i 's lie in the right-N-annihilated part ^NJ of J. The reason for making such a choice of h is that by [3, Lemma 4.3], ^NJ = $P(L)H(L)^R$, which is stable under both left and right translations.

Let x be an element of U(L). Since H is two-sidedly stable, $t_r(x)h$ is also an element of H. Let δ denote the comultiplication map, and let $\delta(x) = \sum_{\alpha} x'_{\alpha} \otimes x''_{\alpha}$. Then,

$$t_r(x)h = \sum_{\alpha,i} t_r(x'_{\alpha})(j_i)q_i(x''_{\alpha})q_i.$$

Thus, multiplying by j_1 , we see that H contains the element

$$\sum_{\alpha,i} j_1 t_r(x'_{\alpha})(j_i) q_i(x''_{\alpha}) q_i$$

H also contains the following, which is a J-multiple of h

$$\sum_{\alpha,i} j_i t_r(x'_{\alpha})(j_1) q_1(x''_{\alpha}) q_i.$$

Subtracting the second of these from the first, and using the minimality of the length of the expression for h, we get

$$\sum_{\alpha} j_1 t_r(x'_{\alpha})(j_{\iota}) q_i(x''_{\alpha}) = \sum_{\alpha} j_i t_r(x'_{\alpha})(j_1) q_1(x''_{\alpha}).$$

If we evaluate each side of the above equation at an element y of U(L), then, denoting $\delta(y)$ by $\sum_{\beta} y'_{\beta} \otimes y''_{\beta}$, we get

$$\sum_{\beta,\alpha} j_1(y_{\beta}') j_i(x_{\alpha}' y_{\beta}'') q_i(x_{\alpha}'') = \sum_{\beta,\alpha} j_i(y_{\beta}') j_1(x_{\alpha}' y_{\beta}'') q_1(x_{\alpha}'').$$

The above can be re-written.

$$\sum_{\beta} \left\{ j_1(y_{\beta}')t(y_{\beta}'')(j_i)q_i \right\}(x) = \sum_{\beta} \left\{ j_i(y_{\beta}')t(y_{\beta}'')(j_1)q_1 \right\}(x).$$

Moreover, the t(y)(j)'s are in J since we have chosen the j's to be in a two-sidedly stable subspace of J. Owing to the freeness of the q's over J, it follows that, for all y in U(L) and all i > 1,

$$\sum_{\beta} j_1(y_{\beta}') t(y_{\beta}'')(j_i) = 0.$$

Applying this to the element 1 of U(L), we obtain the equation $(j_1 j_i)(y) = 0$, for all y in U(L). This means that $j_1 j_i$ must be the zero function, so that the chosen element h must be just $j_1 q_1$.

Now, we see that $(Hq_1 \cap H)$ is a non-zero left *Hopf module* for *H*, so that, by [8, Thm. 4.1.1], there is a non-zero element *g* of $(Hq_1 \cap H)$ such that $\delta(g) = 1 \otimes g$. This is possible only if q_1^{-1} is in *H*. Since *H* is closed under the antipode map, this means that q_1 is in *H*, which establishes the lemma.

LEMMA 2.2. Let H be any sub Hopf algebra of H(L) that separates the elements of L. Then, H contains the representative functions of the adjoint representation of L.

Proof. The representative functions of the adjoint representation of L lie in the space of representative functions of the adjoint representation of the Lie algebra L(H) of H, which clearly are contained in H.

LEMMA 2.3. Let ρ^R be the restriction map $H(L) \to H(R)$. Then, ρ^R is injective on Q(L), and there is a normal basic subalgebra J of H(L) such that $\rho^R(J)$ is a normal basic subalgebra of H(R).

Proof. The first result is clear; the second follows from the constructions in [5] and [6].

For any L-module V, we denote by V' the semisimple L-module associated with V, i.e. the direct sum of the simple factor modules in a composition series for V. The following result is well known, but, in the absence of a convenient reference, we give a proof here.

LEMMA 2.4. For any L-module V, the space $\operatorname{Rep}(V)_s$ of semisimple representative functions of V is identical with the space $\operatorname{Rep}(V')$ of representative functions of the associated semisimple L-module.

Proof. For any L-modules U and W, we say that U is subordinate to W if U is isomorphic to a module obtained from W by a finite sequence of steps each of which is either the selection of a submodule, or the selection of a homomorphic image, or the direct sum of such modules. It is then straightforward to see that, if U is subordinate to W then Rep(U) is contained in Rep(W). Further, if U is semisimple and subordinate to W then U' is subordinate to W'.

The space $\operatorname{Rep}(V)$ is a direct sum of copies of homomorphic images of V, so is subordinate to V. Thus $\operatorname{Rep}(V)_s$ is subordinate to V, and, thus, to V'. But $\operatorname{Rep}(V)_s$ is a coalgebra, so is its own space of representative functions. This shows that $\operatorname{Rep}(V)_s$ is contained in $\operatorname{Rep}(V')$; the inclusion in the other direction is clear.

Let P be a solvable Lie algebra over K and V a semisimple P-module. Then the space of representative functions of V is spanned by elements of Q(P) which we call the *component functions* of the representation. We denote by A(P) the subgroup of Q(P) that is generated by the component functions of the semisimple representation associated with the adjoint representation of P. By [7, Lemma 2.1], any P-module U is a direct sum of sub P-modules U_{μ} where the μ 's are equivalence classes of component functions of the P-module U_{μ}' lie in the class μ .

DEFINITION. Let L, R be as before. An L-module V is called an *essential L-module* if the component functions of V' as an R-module lie in A(R). An element of H(L) is called an *essential representative function* if it belongs to an essential L-module.

THEOREM 2.5. The basic sub Hopf algebra B(L) of H(L) coincides with the Hopf algebra of all essential representative functions of L.

Proof. Let A(R)# denote the inverse image (under the restriction map) in Q(L) of the group A(R). Let J be a normal basic subalgebra of H(L) such that its restriction image $\rho^{R}(J)$ in H(R) is a normal basic subalgebra (Lemma 2.3). We show first that J[A(R)#] in a Hopf algebra.

Clearly J[A(R)#] is stable under right-translations. To prove stability under left-translations is equivalent to proving the right-stability of $\eta(J)[A(R)\#]$, where η is the antipode map of H(L). We claim first that every left sub *R*-module of $\eta(J)$ is an essential *R*-module. By the result quoted above from [7], it suffices to show that the component function of any one-dimensional sub *R*-moldule of $\eta(J)$ lies in A(R). Let $u \in \eta(J)$ span a one-dimensional sub *R*-module with component function *h*, say. *h* is the restriction of an element of H(L) and is semisimple; it is easy to see that *h* must be the restriction of a semisimple element of H(L). Thus, [L, R] annihilates *h*, and there is thus an element, *g* say, of Q(L) that restricts to *h*. Then, $g^{-1}u$ is in $H(L)^R$ which is contained in $\eta(J)$. Since *u* is chosen to be in $\eta(J)$ this implies that g = 1. Now, for an element *q* of Q(L), let π_q denote the projection from H(L) to $\eta(J)q$. If $x \in L$, then $\pi_q \circ t_r(x)$ is a left *L*-module endomorphism of H(L), and so, maps essential *R*-modules to essential *R*-modules. It is clear then that $\pi_q \circ t_r(x)(\eta(J)) = (0)$ unless $q \in A(R)$ #. Thus, J[A(R)#] is stable under both left and right translations.

To complete the proof that J[A(R)#] is a Hopf algebra, we need to prove stability under the antipode η . Since we already have two-sided stability, it suffices to show that, whenever J[A(R)#] contains the representative functions of an *L*-module *V*, it also contains the representative functions of the dual module V°. If *V* is an *n*-dimensional module, then the 'interior product' yields an isomorphism of *L*-modules $V^0 \otimes \Lambda^n V \cong \Lambda^{n-1} V$. The space $\Lambda^n V$ is one-dimensional, so that its representative functions are the *K*-multiples of a group-like element *q* of H(L). If the representative functions of *V* lie in J[A(R)#], then q^{-1} is in A(R)#, and the representative functions for V° also lie in J[A(R)#].

Let f be an essential representative function, and let T(f) be the L-module of left-translates of f. Let $\operatorname{Rep}(T(f))$ be the space of representative functions for T(f); $\operatorname{Rep}(T(f))$ is a finite-dimensional sub coalgebra of H(L). Clearly, there are finite dimensional sub coalgebras Y_1, \ldots, Y_n of J[A(R)#] and elements q_1, \ldots, q_n of Q(L) that are distinct modulo A(R)# such that $\operatorname{Rep}(T(f))$ is contained in $\Sigma Y_i q_i$. Let π_i be the projection of $\operatorname{Rep}(T(f))$ onto $Y_i q_i$. Each π_i commutes with left (or right) translations so that the image of π_i is contained in $\operatorname{Rep}(T(f))$. Thus, we can assume that $\operatorname{Rep}(T(f))$ is the direct sum of the $Y_i q_i$'s and that none of the Y_i 's are (0). The semisimple elements of $\operatorname{Rep}(T(f))$ are thus exactly $\Sigma(Y_i)_s q_i$ (see [3, Lemma 3.3]). Moreover, a non-zero coalgebra has a non-zero simple coalgebra so that none of the $(Y_i)_s$'s are (0). It is also clear that the restriction map ρ^R does not annihilate any of the $(Y_i)_s$'s (indeed, since $(Y_i)_s$ is stable under translations, evaluation at the element 1 of U(L) is not the zero map).

Now, $J_s = H(L)^R$, so by [3, Lemma 3.3], $\rho^R(J[A(R)\#]) = K[A(R)]$. Since the element f above is essential, we must have that $\rho^R(\operatorname{Rep}(T(f))_s) \subset K[A(R)]$. From Lemma 2.1, and from the above remarks on the $(Y_i)_s$'s, we see that each q_i must be in A(R)#, i.e. that $\operatorname{Rep}(T(f))$ must be contained in J[A(R)#]. Thus, J[A(R)#] is the Hopf algebra of all essential representative functions of L. It remains only to show that J[A(R)#] = B(L), i.e. that there is no proper sub Hopf algebra of J[A(R)#] that contains J. Since J contains P(L), it separates the elements of L (indeed, a zero of J is thus a zero of Q(L), the exponential image of P(L), and, thus, of all of H(L)). By Lemma 2.2, then, $\rho^R(B(L))$ must contain A(R), so that, by Lemma 2.1, B(L) must contain A(R)#. This completes the proof. THEOREM 2.6. Let L be a Lie algebra over K, R the radical of L, and let V be an L-module. Let $\{q_1 \#, \ldots, q_n \#\}$ be the subset of Q(L) whose restriction image in H(R) is the set of component functions of V' as an R-module. Then the space of representative functions of V is contained in $\sum_{i=1}^{n} B(L)q_i \#$.

Proof. The proof is almost identical with the second part of the proof of Theorem 2.5. In fact, there are finite-dimensional sub coalgebras Y_1, \ldots, Y_m of B(L), and elements p_1, \ldots, p_m of Q(L) that are distinct modulo A(R)# and such that the representative functions of V are contained in $\sum Y_i p_i$. As in the proof of Theorem 2.5, we find that each p_i must be equivalent modulo A(R)# to one of the q_j #'s. In view of Theorem 2.5, this completes the proof.

DEFINITION. A sub Lie algebra L_1 of a Lie algebra L_2 is called an *essential subalgebra* if the radical of L_1 is contained in the radical of L_2 and if every essential representation of L_2 restricts to an essential representation of L_1 .

LEMMA 2.7. A sub Lie algebra L_1 of a Lie algebra L_2 is an essential subalgebra if and only if the radical of L_1 is contained in that of L_2 and the adjoint representation of L_2 restricts to an essential representation of L_1 .

(The proof is straightforward.)

Note. It is an easy consequence of Lemma 2.7 that an ideal in a Lie algebra is an essential subalgebra.

3. Behavior of H(L) with respect to restriction; the extension results.

THEOREM 3.1. Let R_1, R_2 be solvable Lie algebras over K, let ϕ : $R_1 \rightarrow R_2$ be an injective morphism and let ϕ^* be the induced morphism of Hopf algebras $H(R_2) \rightarrow H(R_1)$. Then the basic sub Hopf algebra $B(R_1)$ of $H(R_1)$ is contained in $\phi^*(B(R_2))$.

Proof. We prove this in two steps, according to the following two lemmas.

LEMMA 3.2. Let $\phi: L_1 \to L_2$ be an injection of Lie algebras such that $\phi(L_1)$ is an ideal of L_2 . Then $B(L_1) = \phi^*(B(L_2))$.

Proof. It is a consequence of the note at the end of §2 that $\phi^*(B(L_2))$ is contained in $B(L_1)$. By a theorem of Zassenhaus (see, for example, [2, Chap. I, §7]), every L_1 -module on which $[L_2, L_2] \cap \operatorname{Rad}(L_1)$ acts nilpotently can be embedded in an L_2 -module. In particular, this covers the case of an essential L_1 -module. Thus, $B(L_1)$ is contained in $\phi^*(H(L_2))$. It is then easy from Theorem 2.5 to show that $B(L_1)$ must actually be contained in $\phi^*(B(L_2))$.

LEMMA 3.3. Let ϕ , R_1 , R_2 be as in the statement of Theorem 3.1, and let ψ : $R_2 \rightarrow \text{End}(V)$ be a faithful representation of R_2 . Let R_1^+ , R_2^+ be the smallest algebraic subalgebras of End(V) to contain $\psi(\phi(R_1)), \psi(R_2)$ respectively, and let ρ be the restriction map from $H(R_2^+)$ to $H(R_1^+)$. Then, $B(R_1^+)$ is contained in $\rho(B(R_2^+))$.

Proof. The idea of this lemma is that R_1^+ is sufficiently nicely embedded in R_2^+ to enable us to construct a normal basic subalgebra J_2 of $H(R_2^+)$ such that $\rho(J_2)$ is a normal basic subalgebra of $H(R_1^+)$. Specifically, each R_i^+ can be written as a semidirect sum of a nilpotent ideal X_i (that contains the commutator ideal) and an abelian subalgebra Y_i in such a way that $X_1 \subset X_2$ and $Y_1 \subset Y_2$. In [6, pp. 610–611], a normal basic subalgebra is constructed starting with an ordered basis of the Lie algebra. If we use the semidirect sum decompositions above for each R_i^+ in choosing the basis of R_i^+ , we can construct normal basic subalgebras J_i of $H(R_i^+)$ such that $J_1 = \rho(J_2)$. The result follows immediately.

Proof of Theorem 3.1. We note that, in the notation of Lemma 3.3, $\psi \circ \phi$ is an injection of R_1 as an ideal of R_1^+ , while ψ is an injection of R_2 as an ideal of R_2^+ . By applying the result of Lemma 3.2 to both of these injections, we obtain Theorem 3.1 from Lemma 3.3.

Let $\phi: S_1 \to S_2$ be an injection of semisimple Lie algebras over K, and let $\phi^*: H(S_2) \to H(S_1)$ be the induced morphism of Hopf algebras. Clearly, H(S) coincides with B(S), and the group G(S) of algebra homomorphisms from H(S) to K is an affine algebraic group. By [4, Chap. XVIII], the Lie algebra of G(S) is S. We see, then, that the injection ϕ induces a morphism of algebraic groups $\Phi: G(S_1) \to G(S_2)$ whose kernel, T say, is a finite central subgroup of $G(S_1)$. Now, there are Cartan subalgebras C_1 of S_1 and C_2 of S_2 such that $\phi(C_1)$ is contained in C_2 . Let Λ_i be the set of (integral) weights of S_i with respect to C_i (for i = 1, 2). Let ϕ^{Λ} be the restriction map from Λ_2 to Λ_1 . THEOREM 3.4. In the above notation, if V is an S_1 -module, then the space of representative functions of V is contained in $\phi^*(H(S_2))$ iff the weights of V are in $\phi^{\Lambda}(\Lambda_2)$.

Proof. Let T_1, T_2 be the maximal toroids of $G(S_1), G(S_2)$ whose Lie algebras are C_1, C_2 respectively. Since the kernel T of the map Φ : $G(S_1) \to G(S_2)$ is finite and central, it is in T_1 and is, therefore, the kernel of the restriction θ : $T_1 \to T_2$ of Φ . For i = 1, 2, let $\chi(T_i)$ be the group of those polynomial characters of T_i that occur in restrictions to T_i of polynomial representations of $G(S_i)$. Then, θ induces a map θ^{χ} that sends $\chi(T_2)$ into $\chi(T_1)$. By means of the connection between finite-dimensional S_i -modules and $G(S_i)$ -modules, there is an isomorphism of groups $\chi(T_i) \cong \Lambda_i$ that is compatible with the restriction maps θ^{χ} and ϕ^{Λ} .

Now, if a weight λ of V is in $\phi^{\Lambda}(\Lambda_2)$, then the corresponding character must be in $\theta^{\chi}(\chi(T_2))$ and vice versa. Since T is the kernel of the map θ , this means that T must act trivially on the λ -weight space of V. Since V is a sum of weight spaces, T will act trivially on V iff all the weights of V are in $\phi^{\Lambda}(\Lambda_2)$. It is clear from the theory of factor groups that $\phi^*(H(S_2))$ is the T-fixed part of $H(S_1)$, and, thus, that T acts trivially on V iff the representative functions of V are in $\phi^*(H(S_2))$. This completes the proof.

THEOREM 3.5. Let $\phi: L_1 \to L_2$ be an injection of Lie algebras over K and let S_1, S_2 be maximal semisimple subalgebras of L_1, L_2 respectively such that $\phi(S_1) \subset S_2$. Suppose that $L_1 = [L_1, L_1]$. Then, the representative functions for an L_1 -module V lie in $\phi^*(H(L_2))$ iff the representative functions of V qua S_1 -module lie in the restriction image $\phi^*_S(H(S_2))$ of $H(S_2)$ in $H(S_1)$.

Proof. By [4, Chap. XVIII], $L_1 = [L_1, L_1]$ iff $H(L_1)$ is finitely generated as an algebra. Moreover, in such a case, the Lie algebra of $H(L_1)$ is L_1 . Let $G(L_1)$, $G(L_2)$ be the pro-affine algebraic groups corresponding to the Hopf algebras $H(L_1)$, $H(L_2)$ respectively, and let Φ be the induced morphism $G(L_1) \rightarrow G(L_2)$. As in the proof of Theorem 3.4, the kernel, T say, of Φ is a finite central subgroup, and is thus contained in every maximal linearly reductive subgroup of $G(L_1)$.

Let $G(L_1) = G_u \cdot P$ be a decomposition of $G(L_1)$ as a semidirect product of its unipotent radical G_u and a maximal linearly reductive subgroup P. Since every (finite-dimensional) L_1 -module is a $G(L_1)$ -module, the Lie algebra of G_u is the intersection of the kernels of all semisimple L_1 -modules. In the case where $L_1 = [L_1, L_1]$, this is the radical of L_1 . Consequently, the (linearly reductive) subgroups corresponding to maximal semisimple subalgebras of L_1 are maximal linearly reductive subgroups. By the conjugacy of such subgroups, we see that we may suppose that the Lie algebra of P is S_1 .

The injection $\phi_S: S_1 \to S_2$ induces a morphism of algebraic groups $\Phi_S: G(S_1) \to G(S_2)$, where the G(S)'s are as in Theorem 3.4. Let T_S be the kernel of Φ_S . Now, the injection of S_1 into L_1 induces an *injection* of $G(S_1)$ into $G(L_1)$, and similarly for S_2 (as follows from the fact that every S_i -module can be regarded as an L_i -module). The image of $G(S_1)$ in $G(L_1)$ is clearly P, and the map $G(S_1) \to P$ is an isomorphism. Now, we need only note that T is the kernel of the map (the restriction of Φ) from P to $G(L_2)$, while T_S is the kernel of the map from $G(S_1)$ to $G(S_2) \subset G(L_2)$. Therefore the isomorphism from $G(S_1)$ to P maps T_S onto T. Since $\phi^*(H(L_2))$ is the T-fixed part of $H(L_1)$, and $\phi^*_S(H(S_2))$ the T_S -fixed part of $H(S_1)$, the result of the theorem now follows.

We are now in a position to prove the extension theorem for representations of Lie algebras that was mentioned at the beginning.

Let L_1 be a subalgebra of a Lie algebra L_2 over K, and let R_1 and R_2 be the radicals of L_1 and L_2 . Let S_1 and $_2$ be maximal semisimple subalgebras of L_1 and L_2 such that S_1 is contained in S_2 . Let C_1 and C_2 be Cartan subalgebras of S_1 and S_2 such that C_1 is contained in C_2 . Let V be a finite-dimensional L_1 -module.

THEOREM 3.6. In the above notation, assume that either (a) R_1 is contained in R_2 or (b) $L_1 = [L_1, L_1]$. Then V can be embedded as a sub L_1 -module in a finite dimensional L_2 -module iff both (i) $[L_2, L_2] \cap R_1$ acts nilpotently on V and (ii) the weights for V as a C_1 -module are restrictions of integral weights for C_2 .

Proof. Condition (ii) is evidently necessary in all cases. In case (a), $[L_1, L_2] \cap R_1$ is contained in $[L_2, R_2]$ which acts nilpotently on any L_2 -module, while, in case (b), all of R_1 necessarily acts nilpotently on an L_1 -module. Thus, in both cases, conditions (i) and (ii) are necessary.

The sufficiency in case (b) is a consequence of Theorems 1.3, 3.4, and 3.5. We may restrict ourselves, then, to case (a).

The Levi decompositions (suppressing the indices 1 and 2) L = R + Sinduce isomorphisms of algebras from $H(L)^R \otimes^S H(L)$ to H(L), where $H(L)^R$ denotes the subspaces of H(L) that is annihilated by left-translations by elements of R, and ${}^{S}H(L)$ the subspace annihilated by righttranslations by elements of S (see [4, XVIII.4]). We need to make the isomorphisms explicit. Let ρ^R : $H(L) \to H(R)$ and ρ^S : $H(L) \to H(S)$ be the restrictions; we note that ρ^S is surjective. The restriction maps are pre-inverted by algebra isomorphisms j^R : $\rho^R(H(L)) \to {}^{S}H(L)$ and j^S : $H(S) \to H(L)^R$. If δ is the comultiplication and μ the multiplication on H(L), then $\mu \circ \{(j^S \circ \rho^S) \otimes (j^R \circ \rho^R)\} \circ \delta$ is the identity map on H(L).

Let ϕ denote the injection of L_1 into L_2 , ϕ_R that of R_1 into R_2 and ϕ_S that of S_1 into S_2 . By Theorem 2.6 the space of representative functions of V qua R_1 -module is contained in $\sum B(R_1)q_i$, where the q_i 's are the component functions of the associated semisimple R-module V'. By Theorem 3.1, $B(R_1)$ is contained in $\phi_R^*(B(R_2))$, while, by Lemma 3.2, $B(R_2) = \rho^R(B(L_2))$. If condition (i) holds, then the restriction to R_1 of each component function q_i is a Lie algebra homomorphism $R_1 \rightarrow K$ that annihilates $[L_2, L_2] \cap R_1$ and, thus, extends to a Lie algebra homomorphism $L_2 \rightarrow K$. This implies that each q_i is in $\phi_R^*(\rho^R(H(L_2)))$, whence all of the representative functions of V as an R_1 -module lie in $\phi_R^*(\rho^R(H(L_2)))$. By Theorem 3.4, condition (ii) implies that the representative functions of V as an S_1 -module lie in $\phi_R^*(H(S_2))$.

To complete the proof, we remark that the algebra homomorphism j^R : $\rho^R(H(L_1)) \rightarrow {}^S(H(L_1))$ maps $\phi_R^*(\rho^R(H(L_2)))$ into $\phi^*({}^SH(L_2))$; similarly, j^S maps $\phi_S^*(H(S_2))$ into $\phi^*(H(L_2)^R)$. We now apply the map $\mu \circ \{(j^S \circ \rho^S) \otimes (j^R \circ \rho^R)\} \circ \delta$ to the space of representative functions of V. Since the space of representative functions is a sub-coalgebra, δ sends it into its tensor square. Now ρ^R maps the space of representative functions of V qua R_1 -module; similarly for ρ^S . It is clear from the above, then, that $\mu \circ \{(j^S \circ \rho^S) \otimes (j^R \circ \rho^R)\} \circ \delta$ maps the space of representative functions of V into $\phi^*(H(L_2))$. This map is, however, the identity, so, by Theorem 1.2, the proof is complete.

References

- [1] A. Bialynicki-Birula, G. Hochschild, and G. D. Mostow, *Extensions of representations of algebraic linear groups*, Amer. J. Math., **85** (1963), 131–144.
- [2] N. Bourbaki, Elements de Mathematique, Groupes et Algebres de Lie, Hermann, 1960.
- W. Giles, On the algebra of representative functions of a lie algebra, Trans. Amer. Math. Soc., 109 (1963), 101-120.
- [4] G. Hochschild, Basic Theory of Algebraic Groups and Lie Algebras, Springer Verlag, GTM 75, 1981.
- [5] _____, Algebraic Lie algebras and representative functions, Illinois J. Math., 3 no. 4 (1959), 499-523.

- [6] ____, Algebraic Lie algebras and representative functions, Supplement, Illinois J. Math., 4 no. 4, (1960), 609–618.
- [7] G. Hochschild and G. D. Mostow, On the algebra of representative functions of an analytic group II, Amer. J. Math., 86, no. 4 (1964), 869-887.
- [8] M. Sweedler, Hopf Algebras, Benjamin, 1969.

Received November 15, 1984.

UNIVERSITY OF CALIFORNIA BERKELEY, CA 94720

186