QUOTIENTS OF NEST ALGEBRAS WITH TRIVIAL COMMUTATOR

GARETH J. KNOWLES

The main result of this paper is to show that every operator *T* **commuting with a nest algebra modulo a two-sided ideal** \mathscr{J} **of** $\mathscr{L}(H)$ **is of the form** $T = \lambda I + J$ for some $\lambda \in C$, $J \in \mathcal{J}$.

Introduction. The structure of commutators of non-selfadjoint oper ator algebras has received considerable interest in recent years [4, 5, 6, 8, 9, 13, 16 and their references] ([7] contains a good survey of known results). However, results for perturbed algebras in general and finite perturbations in particular are not available except for the special case of the ideal $\mathcal X$ of all compact operators. To put the results proven here into perspective, we mention two well known and particularly useful special cases. For any subalgebra $\mathscr A$ of $\mathscr L(H)$ and any subset $\mathscr M$ of $\mathscr L(H)$, denote by $C(\mathcal{A},\mathcal{M})$ the collection $\{T \in \mathcal{L}(H): AT - TA \in \mathcal{M}\}$ for every $A \in \mathcal{A}$. We now state:

I. (Calkin [3].) Given any ideal \mathscr{J} (two-sided) of $\mathscr{L}(H)$,

 $C(\mathcal{L}(H), \mathcal{J}) = CI + \mathcal{J}.$

Using the results of Johnson and Parrott [11] on $C(\mathscr{B}, \mathscr{K})$ for \mathscr{B} , a type I von Neumann algebra, Christensen and Peligrad were able to show the following.

II. (Christensen and Peligrad [5].) For any nest algebra \mathcal{A} ,

$$
C(\mathcal{A}, \mathcal{K}) = CI + \mathcal{K}.
$$

It should be mentioned that II was shown to have an extension to the von Neumann-Schatten p -classes in [7].

The central result of this paper is to show that I and II above are "endpoints" of a very general theorem concerning commutators. This result can be stated as:

III. For any nest algebra $\mathscr A$ and any ideal $\mathscr J$ of $\mathscr L(H)$,

$$
C(\mathscr{A},\mathscr{J})=CI+\mathscr{J}.
$$

122 GARETH J. KNOWLES

Combining III with the main result of [4], we obtain:

IV. Any derivative of a nest algebra into an ideal (two-sided) *#* of $\mathscr{L}(H)$ is implemented by an operator from \mathscr{J} .

I would like to thank C. Apostol for his helpful conversation.

For the purpose of this paper, $\mathscr A$ will denote the nest algebra of all operators acting on a fixed separable Hubert space *H* leaving invariant a (complete) totally ordered nest of subspaces N. Denote by $\mathscr E$ the corresponding totally ordered nest of orthogonal projections onto the members of *N*. If $\mathscr{E} = \{E_n\}_{n \in \mathbb{Z}}$, let Δ_i be the orthogonal projection $E_i - E_{i-1}$. \mathscr{I} will denote an arbitrary but non-zero two-sided ideal of $\mathcal{L}(H)$. It is well known [10] that $\mathcal{F} \subseteq \mathcal{J} \subseteq \mathcal{K}$, where $\mathcal F$ denotes the ideal of all finite rank operators. (Note that all the results below are obviously true for $\mathcal{J} = (0)$.)

Essential use will be made of the identification between such an ideal $\mathscr J$ and its corresponding ideal set $\tilde{\mathscr J}$ of *s*-numbers in $c_0(N)$ satisfying

(i) $\{\lambda_i\}$, $\{\mu_i\}$ in $\tilde{\mathscr{J}}$ implies $\{\lambda_i + \mu_i\}$ in $\tilde{\mathscr{J}}$.

(ii) $\{\lambda_i\} \in \mathcal{J}$ and $0 \le \mu_i \le \lambda_i$ for every $i \in N$ implies $\{\mu_i\} \in \mathcal{J}$.

(iii) For any permutation $\pi: \mathbb{N} \to \mathbb{N}$, $\{\lambda_i\}$ in $\tilde{\mathscr{J}}$ implies that $\{\lambda_{\pi(i)}\}$ is in $\tilde{\mathscr{J}}$.

This identification is given by *s*: $T \rightarrow \sigma((T^*T)^{1/2})$. We will use the standard notation $s_i(T)$ for the *j*th eigenvalue of $(T^*T)^{1/2}$. Given *T* in $\mathscr{L}(H)$, denote by δ_T the map from \mathscr{A} to $\mathscr{L}(H)$ given by $\delta_T(A) = AT -$ *TA.* Let $x \otimes y$ be the rank one operator $(x \otimes y)z = \langle z, x \rangle y$. By c.l.s. $\{S\}$ will be meant the closed linear span in the norm topology of the set *S.*

Commutants of nest algebras modulo *€/.* In order to prove III, we initially divide the problem into three cases:

(i) There exists a projection E into $\mathscr E$ with infinite range and kernel.

(ii) There exists an increasing sequence $\{E_n\}_{n=0}^{\infty}$ of finite dimensional projections in \mathscr{E} , with $E = \sup E_n$ having finite dimensional kernel.

(iii) There exists a decreasing sequence ${E_n}_{n=0}^{\infty}$ of finite co-dimensional projections in \mathscr{E} , with $E = \inf E_n$ having finite range.

Case (i). As in [5] we note that there will exist a partial isometry *V* in $\mathscr A$ with $VV^* = E$ and $V^*V = I - E$. Thus both $E\mathscr L(H)EV$ and $V(I - E) \mathcal{L}(H)(I - E)$ are subsets of \mathcal{A} . Let δ_K be a (bounded) derivation from $\mathscr A$ into $\mathscr J$. For any X in $\mathscr L(H)$, $\delta_K(EXEV)$ = $\delta_K(EXE)V + EXE\delta_K(V)$, it will immediately follow that $\delta_k(EXE)E$ is

in \mathscr{J} . Define the ideal \mathscr{J}_1 of $\mathscr{L}(EH)$ to be

$$
\mathscr{J}_1 = \{ \, ETE \colon T \in \mathscr{J} \, \}.
$$

Consider the action of δ_{EKE} on $\mathcal{L}(EH)$. For any *X* in $\mathcal{L}(H)$,

$$
\delta_{EKE}(EXE) = E(XEK - KEX)E = E\delta_K(EXE)E.
$$

Thus δ_{EKE} derives $\mathscr{L}(EH)$ into \mathscr{J}_1 . An application of I above will show that $EKE = \lambda E + T_1$ for some T_1 in \mathcal{J}_1 . An exactly similar argument will show that $(I - E)K(I - E)$ is of the form $\mu(I - E) + T_2$, where $T_2 = (I - E)T_2(I - E)$ for some $T_2 \in \mathcal{J}$. In addition, $EK(I - E) =$ $E\delta_K(E)(I - E) = ET_3(I - E)$ with $T_3 \in \mathcal{J}$. Similarly, $(I - E)KE =$ $(I - E)\delta_K(I - E)E = (I - E)ET_4E$ with $T_4 \in \mathcal{J}$. Therefore, K can be written as:

$$
K = \begin{bmatrix} \lambda & 0 \\ & \mu \end{bmatrix} + \begin{bmatrix} T_1 & T_4 \\ T_3 & T_2 \end{bmatrix},
$$

where the second term *T* is in \mathcal{J} . All that remains is to show $\lambda = \mu$. Note, however, that since $V \in \mathcal{A}$, we have

$$
(\lambda E + \mu(I - E) + T)V - V(\lambda E + \mu(I - E) + T) \in \mathscr{J}.
$$

It immediately follows that $(\lambda - \mu) E \in \mathscr{J}$, showing $\lambda = \mu$.

Case (ii). In order to prove case (ii), it will be necessary to further subdivide case (ii) into (ii) (a) $\mathscr{J} \neq \mathscr{F}$ and (ii) (b) $\mathscr{J} = \mathscr{F}$. Before beginning the proof of either, we note that it may as well be assumed that $\mathscr E$ is the classical nest of one-dimensional jumps on $l^2(N)$. That is, with respect to the usual basis $\{e_j\}_{n=1}^{\infty}$, E_n is given as the projection onto the closed linear span of { e_i } $_{i=1}^n$.

Case (ii)a. Let δ_K . Alg $\{E_n\} \to \mathcal{J}$. It follows from II that we can assume *K* is compact. Fix a $c_0(N)$ sequence $\{\varepsilon_i\}$ in $\tilde{\mathscr{J}}$ satisfying $x_1 > \varepsilon_2 > \cdots > 0$. Define a partial isometry *A* in $\mathscr A$ by $A^*e_i = e_{n,i}$, where $n_i > n_{i-1}$ and $\|\Delta_{n_i} AK\| < 2^{-i}\epsilon_i$. That this is possible follows from the compactness of *K* and the observation that $(I - E_n) \downarrow 0$ strongly. It can now be seen that *AK* is the operator with the property that $\Delta_n A K =$ Δ_n *K*. We claim that $s(AK)$ is dominated by $\{\varepsilon_i\}$, and thus $AK \in \mathscr{J}$ by (iii). That this holds is an application of [1]. Indeed we have

$$
s_{n+1}(AK) \leq ||(I - E_n)AK|| \leq \sum_{j=n+1}^{\infty} ||\Delta_j AK|| < \varepsilon_{n+1}
$$

since, in particular, rank $E_n A K \leq n$.

Thus, necessarily KA is also in \mathscr{J} . Moreover,

$$
s(KA) = s(A*K^*) = \sigma[(KAA*K^*)^{1/2}] = \sigma[(KK^*)^{1/2}] = s(K),
$$

showing *K* is also in *β.*

Case (ii)b. It is not too difficult to show that this result follows from case (ii)a using the fact that $\bigcap \{ \mathcal{J}: \mathcal{J} \supsetneq \mathcal{F} \} = \mathcal{F}$. However, the following proof is of independent interest in that it provides a concrete example of an operator A such that $\{\delta_T(A) \notin \mathcal{F} \text{ for a given } T \notin CI + \mathcal{F}$. Since $\delta_X(A) \subseteq \mathcal{F}$ if and only if $\delta_{X^*}(A^*) \subseteq \mathcal{F}$, it may as well be assumed that *si* is the algebra of all (bounded) lower triangular matrices with respect to the basis $\{e_n\}$. Let $\delta_T: \mathcal{A} \to \mathcal{F}$. Suppose, contrary to the assertion of III, that $T \notin CI + \mathcal{F}$. We shall construct sequences $\{x_n\}$, $\{y_n\}$ of unit vectors together with associated projections $E_{m(n)}$ and $E_{j(n)}$ satisfying

- $(i) \langle x_j, x_k \rangle = \langle Tx_j, x_k \rangle = 0$ for $j \neq k$.
- (ii) $x_n = E_{m(n)}x_n$ and $y_n = (E_{j(n)} E_{m(n)})y_n$.

(iii) ${Ty_k - \langle Tx_k, x \rangle y_k}_{k=1}^n$ are linearly independent vectors for each $n \in N$. The construction is an inductive one.

 $k = 1$. Let $x_1 = e_1$. If for every e_j , $j > 1$, $Te_j = \langle Te_1, e_1 \rangle e_j$, it will immediately follow that $T = \langle Te_1, e_1 \rangle I + K$ for K , a rank two operator, contrary to our assumption. Take $y_1 = e_k$, where k is the first integer with $Te_k \neq \langle Te_1, e_1 \rangle e_k$. It is easily seen that (x_1, y_1) satisfies (i), (ii) and (iii) above.

 $k = n$ implies $k = n + 1$. Suppose that $\{x_i\}_{i=1}^n$ and $\{y_i\}_{i=1}^n$ have been chosen to satisfy (i) through (iii). Let H_n be c.l.s. $\{x_1, \ldots, x_n,$ Tx_1^*, \ldots, Tx_n^* and note that $E_{2n+1}(H_n) \subsetneq E_{2n+1}(H)$. From this we deduce the existence of a unit vector $x_{n+1} = E_{2n+1}x_{n+1}$ satisfying (i) for $j, k \le n + 1$. Take $E_{m(n+1)} = E_{2n+1}$.

Define \tilde{H}_n to be c.l.s. $\{y_1, \ldots, y_n, Ty_1^*, \ldots, Ty_n^*\}$ and $\lambda =$ $\langle Tx_{n+1}, x_{n+1} \rangle$. Suppose that, for every $I > E \ge E_{m(n+1)}$ and $y \in$ $(E - E_{m(n+1)})\tilde{H}_n$, $Ty - \lambda y$ is in \tilde{H}_n . It would immediately follow that $(T - \lambda)(I - E_{m(n+1)}) \in \mathcal{F}$. That is, $T = \lambda I + F$ for some F in \mathcal{F} , contrary to our assumption. Thus, for some $j(n + 1) > m(n + 1)$, we h ave both $y_{n+1} \in (E_{j(n+1)} - E_{m(n+1)})$ *H* and $Ty_{n+1} - \lambda y_{n+1} \notin \tilde{H}_{n+1}$

Let *A* be the operator

$$
A = \sum_{n=1}^{\infty} x_n \otimes y_n.
$$

Now each $x_n \otimes y_n$ is in $\mathscr A$ and $\mathscr A$ is strongly closed; therefore, $A \in \mathscr A$. Consider the vector $w_k = (TA - AT)x_k = Ty_k - \langle Tx_k, x_k \rangle y_k$. From (iii) it follows that, for each n , $\{w_k\}_{k=1}^n$ are linearly independent vectors in the range of $\delta_T(A)$.

Case (iii). If *X* derives $\mathscr A$ into $\mathscr J$, then X^* derives $\mathscr A^*$ into $\mathscr J$. Since $\mathscr{A}^* = \text{Alg}\lbrace I - E_n \rbrace$, where $\lbrace I - E_n \rbrace$ satisfies the hypotheses of case (ii), we obtain case (iii).

In order to prove IV, we simply combine III with the main result of [4], which says that any derivation of a nest algebra into $\mathcal{L}(H)$ is inner.

COROLLARY. *It easily follows that for any generalized commutator pair AB, with AT - TB in* $\mathcal J$ *for all T in* $\mathcal A$ *implies A, B are both in CI +* $\mathcal J$ *.*

REMARK. There has been considerable recent interest in automor phisms of perturbed algebras **[14],** determining under which circumstances an automorphism of $\mathscr{A} + \mathscr{J}$ is inner. For nests indexed by N and $\mathscr{J} = \mathscr{K}$, it is shown in **[14]** that every automorphism is inner. In the general situation there will exist outer automorphisms (for example, the bilateral shift acting on the classical nest of one-dimensional jumps indexed by Z). Indeed, it is shown in **[16]** and **[6]** that these have a rather rich structure being isomorphic to the group of all dimension preserving order isomor phisms of the underlying nest. However, a key to all these results is the fact [2] that $\mathscr{A} + \mathscr{K}$ is precisely all operators T in $\mathscr{L}(H)$ such that $E \rightarrow (I - E)TE$ is continuous from $\mathscr E$ (strong operator topology) to X (norm topology). In the situation of arbitrary (two sided) ideals, this does not hold even for tractable classes such as symmetrically normed ideals **[12].**

REFERENCES

- [2] W. B. Arveson, *Interpolation problems in nest algebras,* J. Funct. Anal., 20 (1975), 208-233.
- [3] J. W. Calkin, *Two-sided ideals and congruences in the ring of bounded operators on Hilbert space,* Ann. Math, 42 (1941), 839-873.
- [4] E. Christensen, *Derivations of nest algebras,* Math. Ann, 229 (1977), 155-161.
- [5] E. Christensen and C. Peligrad, *Commutants of nest algebras modulo the compact operators,* Kobenhavns Univ. Mat. Inst. Preprint Series #31, Nov. 1978.

^[1] Dz. E. Allahverdiev, *On the rate of approximation of completely continuous operators by finite dimensional operators,* Azerbaidzan. Gos. Univ. Ucen. Zap. Ser. Fiz.-Mat. i Him. Nauk, 2 (1957), 27-35 (Russian).

126 GARETH J. KNOWLES

- [6] K. R. Davidson and B. H. Wagner, *Automorphisms of quasitriangular algebras,* preprint.
- [7] J. A. Erdos, Non-selfadjoint operator algebras, Proc. R. Irish Acad. 81A (1981), 127-145.
- [8] J. A. Erdos and S. Giotopoulos, *On some commutators of operators,* J. Operator Theory, 12 (1984), 47-64.
- [9] J. A. Erdos and S. C. Power, *Weakly closed ideals of nest algebras,* J. Operator Theory, 7 (1982), 219-235.
- [10] P. R. Halmos, *A Hubert Space Problem Book,* D. van Nostrand-Reinhold, Prince ton, New Jersey, 1967.
- [11] B. E. Johnson and S. K. Parrott, *Operators commuting with a von Neumann algebra modulo the set of compact operators,* J. Funct. Anal., 11 (1972), 39-61.
- [12] G. J. Knowles, *C^p -perturbations of nest algebras,* Proc. Amer. Math. Soc, 92 (1984), $37 - 40.$
- [13] E. C. Lance, *Cohomology and perturbations of nest algebras,* Proc. London Math. Soc, 43 (1981), 334-356.
- [14] J. K. Plastiras, *Quasitriangular operator algebras,* Pacific J. Math., 64 (1976), 543-550.
- [15] C. E. Rickart, *General Theory of Banach Algebras,* D. van Nostrand Co., Inc. (1966).
- [16] B. E. Wagner, *Derυiations of quasitriangular algebras,* Pacific J. Math., 114 (1984), 243-255.

Received August 20, 1984 and in revised form January 15, 1986.

DEPARTMENT OF ELECTRICAL ENGINEERING TEXAS TECH UNIVERSITY LUBBOCK, TX 79409