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BOUNDARY BEHAVIOR OF HOLOMORPHIC
FUNCTIONS IN THE BALL

JACOB BURBEA

A description of the boundary behavior of functions belonging to
certain Sobolev classes of holomorphic functions on the unit ball Bn of
C" is given in terms of bounded and vanishing mean oscillation. In
particular, it is shown that the boundary values of any holomorphic
function on Bn, whose fractional derivative of order n/p belongs to the
Hardy class Hp(Bn), have vanishing mean oscillation provided 0 < p < 2.

Introduction. Let B = Bn be the unit ball in Cn and let H(B)
denote the space of all holomorphic functions on B. By R we denote the
radial derivative operator R = Σzfy where for z = (zv..., zn) e C", 9, =
d/dzj (j = 1,..., n), and we let Dt= / + R, with D = Dl9 for any / <= C.
For any monomial za = z"1 z£», a = ( α 1 ? . . . , an) e Z+, we have
D/zα = (|α| + l)sza for any s e Z + , where |α| = ^ + +α π , which
shows that for any / > 0, ί E R and / e H(B), the fractional derivative
Dff of /, of order 5, is well-defined and is in # ( £ ) . Let W.= ^ 5 ) ,
0 < /? < oo, denote the usual Hardy class of functions in H(B). The
Hardy-Sobolev class Hj> = # f ( 5 ) (0 < p < oo, .y e R) is defined as the
space of all / in H(B) whose fractional derivative Dsf is in Hp

9 and thus
HP = HK

In the one-dimensional case (n = 1), most of the main properties of
these Hf spaces were investigated early by Privalov in 1918, by Hardy
and Littlewood in 1932, and by Smirnov in 1932 (see the references of [7]).
The question of extending these results to the higher dimensional case
(n > 2) has been considered previously by Graham [8, 9] and Krantz [10],
and, quite recently, by Beatrous and Burbea [3], where these spaces are
viewed as a special case of a larger family of Sobolev spaces of holomor-
phic functions on B. The following result, among other things, appears in
[31:

THEOREM 1.1. Let 0 < p < oo ands > 0.
(i) If s > n/p then Hξ is contained in the Lipschitz class As_n/p(B);

(ii) // 0 < s < n/p then Hξ is contained in the Hardy class
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(iii) If s = n/p then Hξ is contained in BM0A(2?), the class of functions
in H(B) with bounded mean oscillation.

In the one-dimensional case (n = 1), this theorem is classical for
s = 1; assertions (i) and (ii) are due to Hardy and Littlewood (see [7, pp.
88-91] and assertion (iii) is due to Privalov (see [7, pp. 42-52]). Moreover,
assertion (iii) in this particular case, of s = 1 and the unit disk Δ = Bv

admits even a stronger form. In fact, by Privalov's results Hl(Δ) = AC(Δ),
where AC(Δ) is the class of all functions in H(Δ) which are continuous
on Δ and absolutely continuous on 3Δ. In the higher-dimensional case
(n > 2) and s = 1, assertions (i) and (ii) of the above theorem are due to
Graham [9] and Krantz [10], while assertion (iii) has been conjectured in
Graham [8] and was later proved by Krantz [10].

The main purpose of the present paper is to refine assertion (iii) by
obtaining better boundary behavior when p < 2. This refinement will be
modelled after the following one-dimensional result whose proof appears
in [3]:

THEOREM 1.2. Let 0 < p < 2 and s = 1/p. Then Hξ(Δ) is contained
in VMOA(Δ), the class of functions in H(Δ) with vanishing mean oscilla-
tion. If also 0 < p < 1 then //f(Δ) is contained in the Privalov class
AC(Δ).

As mentioned previously, for p = 1 this theorem is Privalov's result
Hi (A) = AC(Δ). To find the precise analogue of the Privalov class when
n > 2, so that it equals the class Hl(B), seems to be rather difficult. A
reasonable analogue is the class AC(5) consisting of all functions in the
ball-algebra A(B) which are absolutely continuous on any real analytic
curve in dB which is nowhere complex tangential. Here A(B) is the
Banach algebra of functions in H(B) which are continuous on B and
normed by the sup-norm. Under these circumstances, Beatrous, in a very
recent paper [2], was able to show that Hl(B) is contained in AC(B). The
proof in [2] is based on Privalov's result and on results from [3] as well as
[1]; for sake of completeness a slightly different proof is provided also
here. For p = 2, the space H^/2(Δ) appearing in Theorem 1.2 is equiva-
lent to the space @(Δ) of holomorphic functions with a finite Dirichlet
integral on Δ which, by a result of Stegenga [14], forms a subspace of
VMOA(Δ). Thus, in effect, for p = 2 this theorem is a reformulation of
Stegenga's result. In this paper, we extend Stegenga's result to higher
dimensions n > 2 by showing that H^/2(B) is contained in VMOA(5),
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the class of functions in H(B) with vanishing mean oscillation. In fact, we
shall identify H%/2(B) with the so-called Hilbert-Schmidt space HS(£) on
B, which is a proper subspace of VMOA(i?) consisting of all g e H(B)
for which the associated Hankel operator Kg is a Hilbert-Schmidt opera-
tor on H2(B) (see Theorem 4.1). We may now formulate the refinement
of assertion (iii) of Theorem 1.1 in the following form:

THEOREM 1.3. Let 0 < p < oo ands = n/p.
(i) // 0 < p < oo then H?(B) is contained in BMOA(5);

(ii) If 0 <p <2 then HP{B) is contained in HS(£);
(iii) // 0 < p < 1 then HP{B) is contained in AC(B).

In this theorem, assertion (i) is a special case of a result in [3],
assertion (ii) is a special case of Theorem 2.8 (ii) of this paper, and
assertion (iii) is a special case of a recent result of Beatrous [2] (see
Theorem 2.8 (iii) of this paper). Graham [8] has constructed an example in
the unit ball B2 of C2 of an unbounded function in H^{B2), thus showing
that in general one cannot expect much improvement in assertion (i) of
Theorem 1.3. This result has been refined by Beatrous [2] in showing that
for p > 1 and s = n/p, the space H?{B) contains unbounded functions.
In this paper we give a further refinement (see Theorem 5.3 below) of
Graham and Beatrous results by also showing that when s = n/p the
space H?(B) contains unbounded functions which belong to HS(1?) if
p > 1 and it contains unbounded functions which are not in HS(1?) if
p>2.

Throughout the paper, c denotes an absolute positive constant whose
value may change from one occurrence to the other but is independent of
the relevant parameters in the expression in which it occurs. Moreover, for
two complex-valued functions / and g on a non-void set Λ, we use the
notation f-g on Λ to mean c"1 |g(λ)| < |/(λ) | < c|g(λ)| for every
λ e Λ.

2. Preliminaries and background. For z = (zv..., zn) e C", we let
Uj(z) = Zj (1 <j< «), and hence Uj is the orthogonal projection of Cn

onto the j th complex coordinate axis. The inner product on C" is denoted
by ( , >, where

The n o r m is then | |z | | = i{z,z) , and thus B = {z^ Cn:\\z\\ < 1}. For

a = (al9..., <xn) G Z " we use the usual multi-index conventions of a\ *

α j , and da = 3?1 ••• 3£\ The Lipschitz class As = AS(B), of order
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s > 0, is defined as follows: For 0 < s < 1, Λ5 is the class of functions /

in H(B) satisfyisng \f(z + ξ) + f(z - ξ) - 2f(z)\ < c\\ζ\\s whenever z

and z ± ξ are in B. For non-integer s > 1, we define As to be the class of

functions / in H(B) with 9 α / e Λ 5_ [ s ] whenever |α| < [s], where [s]

denotes the integer-value of s. Finally, if s is a positive integer then As is

defined as the class of functions / in H(S) with daf e Λx whenever

|α| < 5 - 1.

Following [3, 4] we consider a family {<A^}, q > 0, of probability

measures on 5, defined by

where dυ is the usual Lebesgue measure on Cn. It follows by integration in

polar coordinates that as q -> 0+, the measures dυq on B converge weakly

to the normalized surface measure do on dB, and thus we may define dv0

as do. For 0 < p < oo we denote by Lp

q the L77-space with respect to the

measure dυq, q > 0, and we let || \\pq denote the associated norm. Thus

1/p

with the usual sup-norm convention when p = oo. Note that for 0 < p < 1

the term "norm" used here for || \\p q is abused, however in this case

P(f>8) = 11/~ S\\p9q defines a metric on Lp

q which turns it into a com-

plete topological vector space. We let Ap

q = Ap

q(B) denote the subspace of

Lp consisting of holomorphic functions on B. In particular, when q = 0,

we obtain the Hardy class Hp = Aξ, which we identify in the usual way as

a subspace of L$ = Lξ(dB). Moreover, for any / in H(B) we have

ί r \l/p

ll/IUo= sup / \f(rz)\pdvo(z)\

and the norms H/l^^ converge to \\f\\pfi as q -> 0+. From this follows

that Hp may be viewed as an inductive limit of the spaces Ap as q -> 0+.

By ( , ) q we denote the inner product on L2

φ thus

It follows that A2

q is a functional Hubert space of holomoφhic functions

on B, with the reproducing kernel

and with {)JT(n + q + \a\)/a\T(n + q)za\a E Z"} as an orthonormal

basis (see [4, 5]). The orthogonal projection on L2

q onto A2

q is denoted by
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Pφ and thus

[Pqf}{z) = {f,kq{-,z))q= j f{ζ)kq{z,ζ)dvq{ζ).

With the projector Pq we associate the Hankel operator Kj,q\ with the
symbol g e A2

q, defined on A\ by K\q\f) = Pq(gf). Thus K™ is a
conjugate-linear operator in A2

q. When # = 0 we write simply P and Kg

for Po and i^°\ respectively.
We shall need some properties of the spaces BMOA = BMOA(2?)

and VMOA = VMOA(i?). Most of these properties may be found in
Coifman, Rochberg and Weiss [6], and in Sarason [13]. The space BMOA
consists of all / e Al such that

H/llBMθAΞsup{|(/,g) 0 | :gG^^ ||g|| l f0 = l} < oo.

Evidently, BMOA is a Banach space with the norm || ||BMOA
 a n d ^ s e r v es

as a dual to A^, with the duality realized by the pairing lim,.^- </, g r) 0,
where gr(z) = g(rz) (z e B, 0 < r < 1). Moreover, we have A™ c
BMOA c Aξ, 0 < p < oo, and the injections are continuous. We also
have (see [6]):

THEOREM 2.1. For g e A\ the following conditions are equivalent'.
(i) g e BMOA;

(ii) g = P(f) for some f e L™
(ϋi) Kg maps Al continuously into Al.

Moreover, if any one of these conditions hold then f can be chosen so that

l l / l l — II&II — \\K ll

The next result is rather well-known, its proof is included for sake of
completeness. For simplicity, the norm || - lloo,o °f ^o3 w ^l be denoted by

LEMMA 2.2. ForfeH(B), we have \\f\\BMOA < 2||Im/||β0 + |/(0)|.

Proof. From the definition of the BMOA-norm and the properties of

the projector P, we have that ||1||BMOA
 = 1 a n d t h a t

 \\P(S)\\BMOA ^ \\g\L
for every g e L%. In particular, if / e H(B) then 2iP(Im/) = Pf - Pf =
f- 7(0), and thus | | / - /(0) | | B M O A < IWlmfW^. The result now follows
from the triangle inequality.

The space VMOA is a subspace of BMOA consisting of all g in
BMOA so that g = P(f) for some / e C(dB). Alternatively, VMOA can
be characterized as the BMOA-closure of the polynomials and hence also
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of A(B), the class of all functions in H{B) which are continuous on B.
We also have (see [6]):

THEOREM 2.3. Let g G H(B). Then g e VMOA if and only i/Kg is a
compact operator onA^.

In light of this theorem, we define the Hilbert-Schmidt space HS(JB)

as the class of all g e H(B) so that K9 is a Hilbert-Schmidt operator on
o

AQ. Evidently, this is a proper subspace of VMOA and \\Kg\\ < \\Kg\\2 <
| |g| |B M O A where \\Kg\\2 denotes the Hilbert-Schmidt operator-norm of Kg,
g G HS(B). We also consider the (little) Bloch space dίQ = %(B) consist-
ing of all feH(B) so that \{Df}(z)\ = o((l - \\z\\2)-1) as ||z|| -* 1",
and we let BMOA0 = 38 0 Π BMOA. Evidently, VMOA is also a subspace
of BMOA0.

For s G Z + , q > 0 and 0 < p < oo, we consider the weighted Sobolev
space iΓqPs = i^s(B) of holomorphic functions / on B such that daf G Ap

p

for every a G Z+ with |α| < 5. The norm of / G #^^ may be given by

III/IIU;,= Σ 113711
{\a\<s

Although this definition of a Sobolev norm is standard, it is more
convenient for our purposes to employ equivalent norms which involve
derivatives in only the radial direction. Accordingly, for s G R, q > 0, and
0 < p < oo we set

II/IU, = Wf\\P,q

whenever / e H(B), and we let A>tS = A^B) = {/ e #(2?): H/H^, <
oo}. It follows that # $ = ^[^0 = ^^ and that ^gfJ = Hf, the Hardy-
Sobolev class mentioned in the introduction. The proof of the following
theorem appears in [3]:

THEOREM 2.4. Let q > 0, 0 < p < oo, and s G Z + . Γ/ze« Λ£5 = ^
β«J /Λ̂ /> norms are equivalent.

For /? = 2, the space 4£ 5 is of special interest. In this case A2

qs is a
functional Hubert space of holomorphic functions on B with a reproduc-
ing kernel kqs given by

where Gab is a holomorphic function on the unit disk Δ with the
expansion

(2.1) Gα,6(λ)= f - L - M s - λ " ( λ e Δ ) >

m=o m (m + 1)
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and where

(a)m = T(m + a)/T(a) = a(a + 1) (a + m - 1).

In particular, for any / G A2

qs and any z e 5, we have

(2-2) / ( z ) = <D'/, G B + i i , « , 2 ) ) ) , .

Moreover, for any / G i/(l?) with f(z) = Σaaz
a we have

From this follows (see [3]) that when qx — q2 = 2(sλ - s2), the spaces

A2

 Si and A2

qiS2 are equal and their norms are equivalent. This result

admits an extension to the case p Φ 2 in the form of the following two

theorems, the proofs of which can be found in [3].

THEOREM 2.5. Let 0 < p < oo, q3 > 0 and Sj ε R ( / = 1,2) such that

(i) // 0 < p < oo and qj > 0 (j = 1,2),

norms are equivalent,

(ii) If 2 < p < oo and q2 = 0, /Λβ« ^4g5 c Ap

q H and the inclusion is

continuous',

(iii) If 0 < p < 2 and q2 = 0, //zeft ^4^ 5 c A$s and the inclusion is

continuous.

THEOREM 2.6. Let 0 < pλ < p2 < oo, #,- > 0 ^πJ J 7 G R (y = 1,2)

such that (n 4- ft)//*! - (n + ^z)//7! = *i ~ 2̂ ^ ^ ^ ^ ^ c ^ £ , 2

 α « r f

ί/ze inclusion is continuous.

The next theorem is a generalization of Theorem 1.1 when # > 0 and

forms a slight refinement of assertion (iii) there. This theorem, whose

proof appears in [3], describes the boundary behavior of functions in Ap

qs.

THEOREM 2.7. Let 0 < p < oo, q > 0 ands > 0.

(i) If s > (n + q)/p then Ap

qs c As_{n + q)/p and the inclusion is con-

tinuous;

(ii) If 0 < s < (n + q)/p then Ap

qs c Ap(n + q)/[(n + £})~ps] and the inclu-

sion is continuous;

(iii) If s = (n + q)/p then Ap

s c BMOA0 and the inclusion is continu-

ous.
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Assertion (iii) of this theorem admits a further refinement when

p < 2, a refinement generalizing Theorem 1.3, announced in the introduc-

tion, to include the case q > 0. This refinement may be stated as follows:

THEOREM 2.8. Let 0<p<co,q>0 ands = (n + q)/p.

(i) // 0 < p < oo then Ap

q s c BMOA0 and the inclusion is continuous',

(ii) If 0 < p < 2 then Ap

qs c HS(5) and the inclusion is continuous',

(iii) If 0 < p < 1 then Ap

 s c AC(B) and the inclusion is continuous.

In this theorem, assertion (iii) was first proved in Beatrous [2] by

reducing the general case to the one-dimensional case which is already

known by virtue of the classical result of Privalov. For sake of complete-

ness we provide a slightly different proof (see Theorem 3.6) which is based

on a rather general result (see Theorem 3.3) and on a previous result in

Beatrous [1] (see Lemma 3.5). Assertion (i) is assertion (iii) of Theorem

3.7, while assertion (ii), which may be regarded as one of the main results

of this paper, is proved in §4. The fact that the refinement provided in

Theorem 2.8 is sharp will be established in Theorem 5.3, special cases of

which were previously considered also in Graham [8] and Beatrous [2].

Another, perhaps interesting, result of this paper is Theorem 4.1 which

shows, in particular, that the Hilbert-Schmidt class HS(JB), which is a

proper subspace of VMOA, is completely equivalent to every weighted

Sobolev space ^ i ( I I + ^ ) / 2 , q > 0.

3. Continuous extensions. In this section we discuss the possibility

of extending certain bounded functions on B to continuous functions on

B. To this end we shall use the following representation formula which is

a special case of formula (2.2) and a result in [3] concerning the asymp-

totic behavior of the function Gah, defined in (2.1).

LEMMA 3.1. For any q > 0, the function Gq = Gn+qn+q on Δ admits

the following properties:

(i) Gq{\) = -{T(n + 9 )λ}- 1 log(l - λ) + Fq(λ), λ e Δ, where Fq <=

Λ ^ Δ ) with Fq(0) = 1 - {Γ(/i + 4)}-1;
(ii) IIImG^H^ < c(q) for some positive constant c(q);

(iii) For every f e Aι

q n+q and every z e B,

= f
COROLLARY 3.2. For any q > 0 and any ξ e B, \\Gq(( • ,£))IIBMOA

2c(q) + 1.
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Proof. This follows from (ii) of the above lemma and Lemma 2.2.

For q > 0, we define

(3.1) Kq(z9ζ) = 1 + 2ίImG,«z,f>) (*,£ e B).

THEOREM 3.3. For q > 0, /^ {Γ/}(z) = (/, Kq( ,z)) Then Tq is a
continuous linear transformation of Lι

q into L™ and of Aι

q into A™ = H°°

with norm \\T \\ < 2c(q) + 1. Moreover, T f has a continuous extension to

B for every f G Lι

q.

Proof. For / e l}φ we have, by Lemma 3.1 (ii) and (3.1), that

I I V I L * ^ (2*(tf) + l)ll/lli,* I f a l s o / G ^^ t h e n b y t h e properties of the
orthogonal projection Pq we have

(PJ,Kq{-,z))q= (f,PqKq{-,z))q= (f,Gq(( • ,z)))q,

and hence Tqf ^ H(B). This proves the first part of theorem. To prove
the second part, we first note that by virtue of Lemma 3.1 (ii) and (3.1),

ll^('>z)lloo,<7 ^ 2 c ( # ) + 1 f°Γ aU z i n B- L e t {zm\ be a sequence of
points in B with zm -> z. It follows from the Banach-Alaoglu theorem
that the sequence [Kq(-9zm)} has a weak* convergent subsequence in
L™. Without any loss of generality, we may assume that this subsequence
is the sequence {Kq( , zm)} itself. Now, since {Kq(-9 zm)} is a uniformly
bounded sequence in L™ we find that Kq(-9 zm) -> Kq(-, z) pointwise on
B and almost everywhere on dB, and thus, by the Lebesgue dominated
convergence theorem, {Kq(-,zm)} is a sequence in L™ which is weak*
convergent to Kq(-,z). From this follows that the mapping z »-> Kq(-, z)
is weak* continuous as a mapping from B into L*. In particular, for any
/ €Ξ l}φ the mapping z *-> (7^/}(z) = </, Kq(-,z))q is continuous on 5,
and the proof is complete.

COROLLARY 3.4. Le/ # > 0 and f e 4̂̂  n + ί Γ Then f is continuous on B

Proof. Set g = Dn+qf, and hence g e ^ . By Lemma 3.1 (iii) and
(3.1),

f(z) = (g,Gq(( - ,z»>, = (g,PqKq(.9z))q= {7;g}(z),

and the result follows from Theorem 3.3.
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Let D be a bounded smooth domain in Cn and let s e Z + . We will
denote by HP(D) the space of all holomorphic functions on D with
partial derivatives up to order s in the Hardy class HP(D), 0 < p < oo.
We shall need the following special case of a result in Beatrous [1]:

LEMMA 3.5. Let D be a smoothly bounded strictly pseudoconυex domain

in C", and let M be a one-dimensional complex submanifold of a neighbor-

hood of D which meets 3D transversally. Then for any f £ H^(D) the

restriction to M of the partial derivatives 3 /, 1 <j < n, are in Hι(M ΓΊ D).

We are now in a position to prove assertion (iii) of Theorem 2.8 due
to Beatrous [2]. The present proof is only a slight variation to Beatrous'
proof, and is included here for sake of completeness.

THEOREM 3.6. Let 0 < p < I, q > 0 and s = (n + q)/p. Then Ap

qs c
AC(B) and the inclusion is continuous.

Proof. We first observe that, by Theorem 2.5 (iii) and Theorem 2.6,
we have Ap

qs c Aι

On and the inclusion is continuous. Next, by Corollary
3.4, any f k A\n is continuous on B with H/H^ < [2c(0) + l]\\Dnf\\ι0.
Thus, it is sufficient to show that the restriction of any function in A\n to
any non-tangential real analytic curve in 35 is absolutely continuous. Let
/ and Γ be such a function and such a curve. Let ζ be an arbitrary point
of Γ. Since absolute continuity is a local property, it suffices to show that
the restriction of / to a small neighborhood of ζ is absolutely continuous.
Choose a one-dimensional complex submanifold M of a neighborhood N
of ζ with M Π N = Γ Π N, and a strictly pseudoconvex domain D with
smooth boundary such that D c B Π N, and such that 32) contains a
neighborhood of ζ in Γ. By choosing D sufficiently small, we may also
assume that M meets 3D transversally and that M Π D is simply
connected. It follows that there exists a C°°-diffeomorphism φ: Δ -> M Π
D which is holomorphic on Δ, and such that φ(l) = ζ. Thus, by Lemma
3.5 and the chain rule, (f°ΦY is in the Hardy class Hλ(Δ) and conse-
quently, by Privalov's classical result, the restriction to 3Δ of / ° φ is
absolutely continuous. It follows, since φ is a diffeomorphism of a
neighborhood of 1 in 3Δ into a neighborhood of ξ in Γ, that / | Γ is
absolutely continuous in a neighborhood of ζ in Γ, and the proof is
complete.

4. Hilbert-Schmidt space. For q > 0 and g e A2

q we consider the
previously defined Hankel operator Kj,q\ and define the space HS (̂2?) as
the class of all g e A2 so that K{q) is a Hilbert-Schmidt operator on A2.
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We recall that when q = 0, Kf> = Kg and HS0(5) is the Hilbert-Schmidt
space HS(B). Moreover, HS(5) c VMOA c BMOA0 with ||g||BMOA =
\\Kg\\ < \\Kg\\2 for every g e H(B), where \\Kg

9)\\2 denotes the Hilbert-
Schmidt norm of the operator Kj,q\ The next result shows that, in fact,
HSq(B) = HS(B) = A2

qln+q)/2 = A\n/2 with equivalent norms, i.e.

for every g & H(B) and every q > 0.

THEOREM 4.1. For a*iy ? > 0, HS,(£) = A2

Un+q)/2

and the corresponding norms are equivalent.

Proof. Let q > 0 and g e i/(5) with

Thus K{

g

q\f) = Pq(gf), feA2

q, where Pq is the orthogonal projector of
L\ onto ^2# since kq(z,ζ) = (1 - ( z ^ ) ) ^ ^ ^ is the reproducing kernel
of A2

q we find that {φa}, given by

φβ(z) = ^n + q)la]/a\za (a e Z^)

is an orthonormal basis for ^ . Now, by a direct calculation (see also [5]),

and thus

It follows that the Hilbert-Schmidt norm is

2

- Σ

n + q)\a
(α

= Σ
α>0

^ α ! ^ (β _ a ) \ \ (n

V a ι \h I2 V
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or

On the other hand, by (2.3)

L Σ/ °'x (N

It follows from Stirling's formula that

and the proof is complete.

We also note that formula (4.1) in the above proof shows that the
space HSq(B), with the natural inner product induced from the corre-
sponding Hilbert-Schmidt norm, is a functional Hubert space of functions
on H{B) with the reproducing kernel hq9 given by

hq(z9ξ) = F(n + q,n + q;2n + 2q: <z,f>) M * B)9

where

is the familiar hypergeometric function (see [4, 5]). In particular,

F(n + q,n + q;2n + 2q: λ)

and thus, when n = 1 the spaces HS(Δ), A\x/1 and A\X(L) are identical,
as functional Hubert spaces, with the reproducing kernel

Moreover, one can show that the asymptotic behavior of

F(n + q9n + q;2n 4- 2q: λ)

is similar to that of Gn+qn+q(λ) as described in Lemma 3.1 (i). In fact, for
λ e Δ,

JF(/I + ^r,n + ^;2« + 2q:λ)

= -T(2n + 2<?){Γ2(« 4- ?)λ}-1log(l - λ) + Fq(λ)9

where F^ is in ΛX(Δ) with f (O) = 1 - T(2n + 2^)/{Γ(/i + 2

We are now in a position to prove assertion (ϋ) of Theorem 2.8.
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THEOREM 4.2. Let 0 < p < 2, q > 0 ands = (n + <?)//?. ΓΛέw Λ£5 c
HS(2?) and the inclusion is continuous.

Proof. By Theorem 2.5 (in) and Theorem 2.6, ^4£5 c A\n/1 and the
inclusion is continuous. But by Theorem 4.1, A\n/2 = HS(J?) and the
norms are equivalent. This concludes the proof.

5. Sharp Refinement. In this section we consider the question of
the sharpness of the refinement provided by Theorem 2.8. For this
purpose, we define a holomorphic function hs t, s,t e R, on the unit disk
Δ b y

a n d we let

M λ ) = Σ am{s,

Thus ao(s, t) = hs t(0) = 1. This function satisfies the identity

(5-1) Ds+thSyt = /* ,+! , ,_ ! + shs+hn

and thus

(5.2) DthOtt = ftlιH

(Recall that Dt = ί -f R and that D = rflβ)

LEMMA 5.1. /brm = 1,2,....wehave

m — l i
DΓhO,t = COmhm,t-m + Σ Σ ^ijhi+l,t-j

/-I 7=1

Ae ciy- are functions of t with cOm = / ( / - l ) ( / - m

. For m = 1 this formula reduces to (5.2), while for m > 2 the
formula follows from the identity (5.1) and induction on m.

For 0 < p < oo and / e #(Δ), we let

Mp{f:r)^[-^\f{reiβ)\Pdθ) (0 < r < 1).
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Since Mp(f: •) is a non-negative increasing function on [0,1), we deduce
that for any q > 0

(5.3) ( [
Jo * Jι/2

This formula is also correct when q = 0, in which case it is interpreted as

sup{M/(/ : r ) : re [0,1)} = sup{M/(/:r):r e [1/2,1)}.

The proof of the estimates appearing in the next lemma can be found
in Littlewood [11, pp. 93-96].

L E M M A . 5.2. Let s > 0 and t e R with t > 0 if s = 0. Then hst £

and

* w * ' ' \ ( l j ' ^ l ί 1)} '~\ 5 = 0, / > 0

for m = 1,2, Moreover, for 0 < p < oo α«J r ^ [1/2,1),

ί
ps < 1 or/75 = 1, /tf < -1

{-log(l-r)} ' + 1 / ^, Jp5 = l , j p ί > - 1
- r ) } ' , ps>l.

We now prove the following theorem which establishes the sharpness
of the refinement given in Theorem 2.8. Special cases of this result can be
found also in Graham [8] and Beatrous [2].

THEOREM 5.3. Let 0 < p < oo, q > 0 ands = (n + q)/p.
(i) If p > 2 then Ap

qs contains unbounded functions which are also not
in HS(5);

(ii) If p > 1 then Ap

qs contains unbounded functions which are in
5 )

Proof. To prove (i) we choose px with 2 < pλ < p, and define
m = [n/pλ] + 1, where [x] denotes the integer-value of x. It follows that
m > 1 is an integer with m > n/pv We now let qλ = m/^ — n, and thus
w = (n + ft)//*! with ft > 0. It follows from Theorem 2.6 that Λ(£m c
Ap

qs. We now let / = Λ0,i/2 ° Mi> where ux is the orthogonal projection of
C" on the first coordinate. Since hol/2(λ) = {-λ-Mogίl - λ)} 1 / 2 it is
clear that / £ H00. Similarly, since by Lemma 5.2 hoι/2 & A%tl/2(Δ) we
find that / = Λ0,i/2° ui & ̂ l,n/i a n < i hence, by Theorem 4.1, also / £

). Thus, to prove (i), it suffices to show that f ^ A^m, i.e. that
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i l^/IU,* < °° B u t ( s e e PD WDmf\\p,qi ~ IIAVIU,^ a n d h e n c e k i s

sufficient to show that \\DΓ/2f\\Pl,qι

 < °° Now, by Fubini's theorem (see
also [12, pp. 127-128]).

II τ \ m f\\ _ || τ\m z, o 7. || _ II τ\m ^ II
11^1/2/ 11^,^ - ||^l/2Λ0,l/2 ° Ul\\Pl,qi ~ \\1Jl/2nO,l/2\\pl,qi + n-V

while by Lemma 5.1 and the triangle-inequality

m h II =11 Dm h
1/2Λ0,1/2 l U ^ + H-l II ^ 1 / 2 Λ 0 ,

— 1 i

i-i y-i

where cOm = (-l)-(-l/2) m = (^2) and c u = (-l)-/2. On the other
hand by formula (5.3) and Lemma 5.2 we have, for every i and j with
1 < i < m and j > 1,

= Γ {-
•Ί/2

< 2ΛC—) ί1 {-
h/2

' » ) { Λ ( I / - 1/2) - l j - ' α o g ^ 1 7 2 ^ 1 < oo,

since p1 > 2. Thus, it follows that ||-Dί/2/llΛ>ft < °°» a n d (i) ^s proved.
To prove (ii), we let f = fs°u1 where, for s > 0,

Λ(λ) = - i τ / 1 Λ s > . 1 (λ M ){- log M } ί - 1

ί / M ( λ e Δ ) .

It follows easily that hSrl = Dsfs or fs = D~shs_u and, in particular,

(5-4) Λ(λ) « £ (m + l Γ β m ( ί , - l ) λ " (λ e Δ).
m = 0

Now, by Lemma 5.2,

lim / ( r , 0 , . . . , 0 ) = l i m / 5 ( r ) = f (m + ί)-saM(s9-l)
r^1 r^l~ m = 0

00 J

o m log m '
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and thus / £ H™. Moreover, again by Fubini's theorem, | |-Dn / 2/||2,o =

\\Dn/2fs\\2n_ι. But, by (5.4), (2.3), Lemma 5.2 and Stirling's formula,

||^2/jL-!= Σ ^f(m + l)^2>m(,,-l)|2

i+ Σ
m = l

oo

1 + ~
=2 m(logra)

It follows that / e A\n/2, and, since, by Theorem 4.1, A\n/2 = HS(i?)

with equivalent norms, we deduce that / G HS(ΰ) and /<£i/°°. To

complete the proof, we must show, therefore, that / ' e Ap

qs. Now, once

again, by Fubini's theorem,

Here, by assumption, ps — 1 > 0 and ps — 1 = 0 if and only if w = 1

and q = 0. Thus, by formula (5.3) (including its modification for q = 0)

with /?s — 1 in place of q, and by Lemma 5.2, we obtain

H*,.ilC,-i = -jf1 M>(h,rl:r)d(l - rψ*-1

Ί/2

/2

since p > 1. This is also correct when ps = 1, for in this case, by formula

(5.3) and Lemma 5.2, \\hs^\\pfi = sup{Mp(hι/p^:r) :r e [0, 1)} =

sup{M / 7(Λ1 / ; ?_1:r) :r G [1/2, 1)} ̂  1 < oo. The proof is now complete.
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