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ANALYTICITY AND SPECTRAL DECOMPOSITIONS

OF Lp FOR COMPACT ABELIAN GROUPS

EARL BERKSON, T. A. GILLESPIE AND P. S. MUHLY

Let Γ be a dense subgroup of the real line R. Endow Γ with the
discrete topology, and let K be the dual group of Γ. Helson's classic
theory uses the spectral representation in Stone's Theorem for unitary
groups to establish and implement a one-to-one correspondence Φ2

between the cocycles on K and the normalized simply invariant sub-
spaces of L2(K). Using our recent extension of Stone's Theorem to
UMD spaces, we generalize Helson's theory to LP(K), 1 < p < oo, by
producing spectral decompositions of LP(K) which provide a correspon-
dence analogous to Φ2 In particular this approach shows that every
normalized simply invariant subspace of LP(K) is the range of a
bounded idempotent. However, unlike the situation in the ZΛsetting, our
spectral decompositions do not stem from a projection-valued measure.
Instead they owe their origins to the Hubert transform of LP(R). In the
context of abstract UMD spaces, we develop the relationships between
holomorphic semigroup extensions and the spectral decompositions of
bounded one-parameter groups. The results are then applied to describe,
in terms of generalized analyticity, the normalized simply invariant
subspacesof LP(K).

More specifically, throughout what follows K will be a compact
abelian group other than {0} or the unit circle T such that the dual group
of K is archimedean ordered. Equivalently, we shall require that K is the
dual group of Γ, where Γ arises as a dense subgroup of the real line R,
and Γ is then endowed with the natural order of R and the discrete
topology. For each λ e Γ we denote by χ λ the corresponding character
on K (evaluation at λ), and for each / G R w e let et be the element of K
defined by et(λ) = exρ(//λ) for all λ e Γ. As is well-known, t -> et is a
continuous isomorphism of R onto a dense subgroup of K. For 1 < p < oo
we follow Helson in defining a simply invariant subspace of LP{K) to be a
closed subspace M of LP{K) such that χλM c M for all λ > 0, but for
some a < 0, χaM is not a subset of M. A simply invariant subspace M is
said to be normalized provided M = Π{χλM: λ e Γ , λ < 0}. The set of
all normalized simply invariant subspaces of LP(K) will be denoted by
Sfp. A cocycle on K is a Borel measurable function A: R X K -» T such
that

A(t + u,x) = A(t,x)A(u,x + et)9 for t e R, u e R, x e K.
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After identifying cocycles which are equal almost everywhere o n R x l
(with respect to the product of Haar measures), we denote by ^ the
collection of all cocycles on K. Helson's classic generalization of Beurling's
Invariant Subspace Theorem establishes a natural one-to-one mapping Φ2

of ^ onto Sf2. The construction of Φ2 relies on the countably additive
spectral decompositions of one-parameter unitary groups afforded by
Stone's Theorem. Since Sfp has a standard natural one-to-one correspon-
dence with 5?2 (see Proposition (2.5) below), an injective mapping Φ^ of
^ onto Sfp ensues from Φ2. The main result shown below is that, in
complete analogy with Helson's construction of Φ2, the mapping Φ^ can
be fashioned from spectral decompositions in LP(K) corresponding to
isometric groups induced by cocycles. This new approach establishes that
each M e Sfp is complemented in Lp{K).

Our approach rests on a recent abstract generalization of Stone's
Theorem [3, Theorems (5.5) and (5.16)] (see Theorem (2.1) below). If X is
a Banach space possessing the unconditionally property for martingale
differences (in particular, if X is a reflexive L^-space for an arbitrary
measure), this generalization provides that every uniformly bounded one-
parameter group of operators on X is the Fourier-Stieltjes transform of a
projection-valued function <f( ) defined on R with values in 38(X\ the
algebra of bounded operators on X. The spectral decomposition £(-)
arises by transference of the classical Hibert transform (Theorem (2.1)-(iii),
(v)) and, in contrast with the development of Φ2 for L2{K) ([11, §3]),
need not stem from a projection-valued measure.

After collecting the necessary background items in §2, we develop the
implementation of Φp by spectral decompositions in §3 (Theorem (3.3)
and Corollary (3.6)). Section 4 is concerned with holomorphic semigroup
extensions of uniformly bounded one-parameter groups on UMD spaces.
The results of §4 are used in §5 to generalize to £fp Helson's analytic
description of the functions constituting Φ2(^4), A e ^ (see Theorem
(5.7)). In §6 we apply the projections onto elements of ^ obtained in §3
in order to describe a generalization of the "orthogonal complement"
relationship in L2(K) between the invariant subspaces corresponding to a
cocycle and its complex conjugate.

2. Preliminaries. In this section we assemble the tools needed for the
sequel.

DEFINITION. Let Y be a Banach space, and let / denote the identity
operator of Y. A spectral family of projections in 7 is a uniformly
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bounded, projection-valued function £(•): R -> 38(Y) such that:
(i) E{s)E{t) = E(t)E(s) = E(s) for s < t\

(ii) 2?( •) is right-continuous at each point of R in the strong operator
topology of @{Y)\

(in) E(') has a strong left-hand limit (denoted E(s~)) at each s e R;
(iv) E(s) -> I (resp., £(s) -> 0) in the strong operator topology as

s -» + oo (resp., s -> -oo).
If there is a compact interval [a, b] such that 2?(.s) = / f o r s > 6 and

E(s) = 0 for s < a, we say that E(-) is concentrated on [α, &].
For a compact interval [u, v] in R, let AC([u, v]) be the Banach

algebra of all complex-valued, absolutely continuous functions on [w, v]
under the norm || ||[M v] defined by

where " var" denotes total variation. We shall require some aspects of the
integration theory for an arbitrary spectral family of projections E( •) in Y
[6, Chapter 17]. For each / ε AC([u91?]), the integral /MV(λ) dE(\) exists
as a strong limit of Riemann-Stieltjes sums, and we define /t® v] /(λ) dE(λ)
by the equation

/ * f(λ)dE(λ)=f(u)E(u)+ff(λ)dE(λ).

The mapping / -> f^v]f(λ)dE(λ) is an algebra homomorphism of
AC([u9 v]) into 3S(Y) such that

f(λ)dE(λ)
u,Όl/sap{\\E(s)\\:s<ΞR}.

The Banach spaces X possessing the unconditionally property for
martingale differences (written X e UMD) have been extensively studied,
and are characterized in [4], [5] as those spaces for which the Hubert
kernel of R defines a bounded convolution operator on LP(R, X) for
some, and hence all, p in the range 1 < p < oo. The class UMD contains
many of the classical reflexive spaces. In particular, for 1 < p < oo, the
von Neumann-Schatten /?-class and Lp(μ) (μ an arbitrary measure) are
UMD spaces. Moreover, the UMD property is always inherited by
subspaces, quotient spaces, and dual spaces. The following recent result [3,
§5] will play a central role in our considerations (compare [2, Theorem
(3.6)]).

(2.1) STONE'S THEOREM FOR UMD SPACES. Let {£/,}, / G R , be a
strongly continuous, one-parameter group of operators on a UMD space X
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such that sup{||ί/,||: t e R} < oo. Then:
(i) there is a unique spectral family S>( •) (called the Stone-type spectral

family of {Ut}) such that

Utx = lim Γ eitλdS{\)x, for t G R , X e X;
u-* 4- oo J-u

(ϋ) the domain 2(^) of the infinitesimal generator & of {Ut} consists
of all x e X such that lima _+ + O0 f*a λ d<f(λ)x exists, and

= i lim C
a-* + oo J-a
a-* + oo J-a

(iϋ) for each ί G R ,

(πiY1 ί ΓιeistU tdt
Jδ<\t\<δ-1

converges in the strong operator topology of 3B(X), as 8 -> 0+, to an
operator Js\

(iv) Js = S(s) + i(s~) - /, /or alls €Ξ R;
(v) #(5) = / + 2-\Js - / / ) , /or0//j e R.

Since its inception in [11], Helson's invariant subspace theory has
been developed in L2(K) in terms of a companion notion to that of
spectral family. In the Banach space setting this notion takes the following
form.

DEFINITION. A decreasing spectral function in Y is a uniformly
bounded, projection-valued function Q(-): R -» &(Y) such that:

(i) Q(s)Q(t) = Q(t)Q(s) = Q(t) for s < t;
(ii) Q(') is left-continuous at each point of R in the strong operator

topology;
(iii) Q( ) has a strong right-hand limit Q(s+) at each ί G R ;
(iv) Q(λ) -> 0 (resp., Q(λ) -> /) in the strong operator topology as

λ -» 4- oo (resp., λ -> — oo).
If E(') is a spectral family of projections in Y, it is obvious that the

equation

(2.2) β £ ( λ ) = / - E(λ~) for λ e R

defines a decreasing spectral function QE{-), and that the pairing of E(-)
and β £ ( ) is a one-to-one correspondence between the spectral families
and the decreasing spectral functions in Y. Moreover, it is clear from the
integration theory of spectral families that tf /(λ) dQE(λ) exists as a
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strong limit of Riemann-Stieltjes sums for each compact interval [u, v]

and each / e AC([u, v]). For later convenience we list here the following

easy consequence of (2.1)—(i).

(2.3) COROLLARY. Let {£/,} satisfy the hypotheses of Theorem (2.1),

and let ${-) be the Stone-type spectral family of {Ut}. Then there is a

unique decreasing spectral function Q() in X such that

(2.4) Utx = - Urn Γ eitλdQ(λ)x, for t eR, x ΪΞ X.
w-> +oo J-u

Moreover, Q = Q#.

We shall refer to the unique <2( ) in (2.4) as the decreasing spectral

resolution of {Ut}.

In conjunction with Theorem (2.1) we shall make use of the following

variant of [9, Theorem V.6.1]. This variant is readily deduced from [9]

with the aid of the first lemma in [12, §1.6].

(2.5) PROPOSITION. Suppose 1 < p < q < oo. There is a one-to-one

mapping θpq of &p onto &>q given by θpq{M) = M Π Lq{K) for M <E S?p.

For each N e Sfq, the inverse image, θ~*q(N), is the closure ofN in LP(K).

3. Invariant subspaces and spectral decompositions in LP(K). For

A e ^ we put At = A(t, •) for each t e R. By [9, Lemma VΠ.12.1], as t

runs through R the corresponding function At moves continuously in

Lr(K), 1 < r < oo. For 1 < p < oo and / G R , the translation operator

on LP(K) corresponding to et will be denoted by R\p\ and we define

χjy,p) by setting

Ut

{A>p)f=AtR\p)f, for f£ΞLp(K).

Thus {Ut^
AtP^}9 t e R, is a strongly continuous one-parameter group of

isometries on LP(K). We write £<A>P\ ) (resp., Q{A>P)(-)) for the Stone-

type spectral family (resp., the decreasing spectral resolution) of the group

{Ut

iAtP)}. With this notation Helson's classic one-to-one map of # onto

^ 2 , here denoted Φ 2, takes the following form

Φ2(A) = ( ρ ^ ' 2 > ( 0 ) } L 2 ( ^ ) , for^ί e «\

(3.1) LEMMA. Suppose 1 < p < q < oo, and A e ^ . ΓΛeπ /or

λ G R, £(Λ*\\)\lβ{K), the restriction of S^p\\) to L\K\ coincides

with <? (^(λ), andQ^p\λ)\L\K) coincides with Q{A>q)(λ).
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Proof. It suffices to obtain the first conclusion, which follows readily
from Theorem (2.1)—(iϋ), (v).

Proposition (2.5) allows us to make the following definition.

(3.2) DEFINITION. For 1 < p < oo we define a one-to-one map Φ^ of
tf onto sep by putting Φ, = θ2p o Φ2 (resp., Φ, = θ;£ ° φ 2) if 2 < p
(resp., p < 2), where "°" denotes composition of mappings.

REMARK. It follows from the existence of non-trivial cocycles [12,
§4.3] that not all elements of &p have the obvious form—in contrast to
the state of affairs described in Beurling's Theorem for LP(Ύ) ([10,

.l]).
We are now in a position to establish the central result of the paper.

(3.3) THEOREM. If A <= <g and 1 < p < oo, then

Proof. Put W = Φp(A). Suppose first that p < 2. Then W is the
closure in LP{K) of Φ2(A) = {Q^2)(0)}L2(K). Thus by Lemma (3.1),

(3.4) W = p-d {Q(A'p)(0)}L2(K),

where "p-cL" denotes closure in L?(K). Hence WQ {Q(Λ>P\Q)}LP(K).

To obtain the reverse inclusion first observe that we can carry over
mutatis mutandis the argument for p = 2 [12, pg. 22] to show that
{Q(A'?\0)}Lp(K) belongs to 9>p. Hence it is the closure in L'(K) of its
intersection with L°°(K) [12, pg. 12]. Thereafter it suffices to apply
equation (3.4). Suppose next that 2 < p. Then W = θ2p(Φ2(A)), and so

(3.5) W= [{Q(A^(0)}LP(K)} ΠL'(K).

If f^W, then / = Q(A>2)(Q)g, for some g e L\K). Hence Q(A'2\0)f = /.
By Lemma (3.1), Q(A'p)(0)f = /. Thus

WQ {QiA'p)(0)}Lp(K).

Since

{Q{A p)(0)}Lp(K)= {Q<A<2ψ)}Lp(K) c { ρ ^

reference to (3.5) serves to complete the proof.
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(3.6) COROLLARY. Let M eSfp,l < p < OO. Then:
(i) ifp < 2, the self-adjoint projection of L2(K) onto M Π L2(K) has

a unique extension to an idempotent FM e 3S(LP(K)), and M =
FM(L'(K)y,

(ii) if 2 < p, the self-adjoint projection of L2(K) onto the closure of M
in L2(K) has for its restriction to LP(K) an idempotent GM e 3$(LP(K))
such that M= GM(LP(K)).

Proof. By Theorem (3.3) and Lemma (3.1).

4. Holomorphic semigroup extensions. Let A Ξ ^. In [11, §6], [12,
Theorem 17] the invariant subspace {Q(Aa\0)}L2(K) is shown to consist
of all / € L2(K) such that, for almost all x e K, t -> (Ut

(A>2)f)(x) is the
boundary function of a suitable analytic function in the upper half-plane.
The proof employed relies crucially on the fact that β ( y 4 2 )( ) induces a
projection-valued measure in L2(K), and thus has not produced an
analogue for the classes S?p9 1 <p < oo. In order to obtain such an
analogous characterization for S?p9 a goal accomplished in Theorem (5.7),
we develop in this section the abstract machinery of holomorphic semi-
group extensions for uniformly bounded one-parameter groups on UMD
spaces. The results obtained are of independent interest, and formally
resemble the corresponding facts for unitary groups. However, in contrast
to the unfettered integration of bounded measurable functions against
spectral measures, the general theory of Riemann-Stieltjes integration with
respect to a spectral family only guarantees the existence of integrals over
an unbounded interval for integrands having bounded variation on the
whole interval. This fact separates the treatment in the present section
from its counterpart for unitary groups.

Throughout this section we assume that { Ut) is a strongly continuous,
uniformly bounded, one-parameter group of operators acting on a UMD
space X, and we utilize the notation of Theorem (2.1). By [7, Theorem
VΠI.1.11], Λ(^), the spectrum of 9y is a subset of i'R. If J( is a subspace
of X invariant under {Ut}9 then (2.1)-(ϋi), (v) show that £( )\Jt is the
Stone-type spectral family of the group {Ut\Jί}.

(4.1) LEMMA. Let K R . Then £{λ) = 0 for λ < b if and only if

(4.2)

Proof. Firstly, let a e R and suppose that S(a + ε) Φ <${a - ε) for
all ε > 0. Let fε belong to the range of { S{a + ε) - £(a - ε)} with
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H/JI = 1. A simple calculation shows that

(λ-α)<//(λ)/.-»0

u-ε

as e -> 0+, and so (ia) e Λ(^). Thus (4.2) implies that <?(λ) is constant,
and hence 0, on (-oo, b).

To prove the converse result, suppose that S(\) = 0 for λ < b. Let
μ e (-oo, b) and choose β so that μ < β < b. It is easy to see that the
sequence of integrals

(4.3)

converges in the uniform operator topology as n -» oo. Denoting the limit
of the sequence in (4.3) by 0tμ, we have from standard arguments
@μ{ψ ~ &)x = *X for x e 3{9\ and (iμ - 9)9tμx = ix, for jt e X
Hence (zμ) € Λ(^), and Lemma (4.1) is established.

We shall denote the upper half-plane Im z > 0 by Π + .

(4.4) THEOREM. The uniformly bounded one-parameter group {Ut} on
the UMD space X can be extended to a strongly continuous semigroup {Uz},
Im z > 0, such that {Uz} is holomorphic on Π + if and only if there is a real
number b such that A(@) c {/λ: λ > Z>}. If this is the case, then the
semigroup { Uz}, Im z > 0, is uniquely determined, and is given by:

Uza = Urn Γ eiλzd£(λ)a, for a e X, Imz > 0.

Proof. Suppose first that such a semigroup extension {Uz}, Imz > 0,
exists. By [13, Theorem 17.9.2], /^0 = - ^ , where ^ 0 is the infinitesimal
generator of the strongly continuous one-parameter semigroup {Uit},
t > 0. Since % generates a semigroup, there is a real number c such that
ReΛ(^0) < c, and so ImΛ(^) > -c.

Conversely, suppose i e R , and Λ(^) c {/λ: λ > Z>}. By Lemma
(4.1), <?(λ) = 0 for λ < b. Applying the last assertion of [1, Corollary
(4.14)] to this, we see that there is a strongly continuous, one-parameter
semigroup { S,}, t > 0, such that

(4.5) Sta = Urn Γ e~XtdS{\)a, for t > 0, a e X
M—> + 0 0 • '-M

For z = x + iy, where x e R, y > 0, we define Uz by putting

(4.6) Uz = ί/^,.
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It is clear that {Uz}> Imz > 0, is a strongly continuous semigroup which
extends the given group, {Ut}, ί e R . We observe that for each / > 0,
sup{\\f"ue-λtd£(λ)\\: u > 0} < oo. Moreover, the Principle of Uniform
Boundedness, together with (2.1)—(i), shows that for each / e R,
svp{\\j?ue

itXd£{\)\\: u > 0} < oo. Application of these last two observa-
tions to (4.6) gives us

(4.7) Uza = lim Γ eiλz di{λ)a, for a^X, Imz > 0.
u-* + oo J-u

Suppose now that a e X, and φ e Γ , the dual space of X. From (4.7)
and an integration by parts, we have forz G Π +

-+OO

(4.8) (Uza,φ) = -iz (£(λ)a,φ)eiλzdλ,
Jb

the integral on the right of (4.8) existing as a Lebesgue integral. An
application of Morera's Theorem shows that this integral is an analytic
function of z on Π+ . To complete the proof of Theorem (4.4), it remains
only to establish the uniqueness assertion. Suppose, then, that {Uz} and
{Vz}, Imz > 0, are two semigroup extensions for {Ut}, / e R , as in the
statement of the theorem. For a e X, φ e X*9 the function g defined by

is continuous on Imz > 0, and analytic on Π + . Since g vanishes on R,
the Schwarz Reflection Principle shows that g vanishes identically.

(4.9) COROLLARY. Suppose that the uniformly bounded one-parameter
group {Ut} on the UMD space X satisfies the equivalent conditions of
Theorem (4.4). Then sup{||£/J|: Imz > 0} < oo if and only if £{\) = 0 for
λ < 0 .

Proof. Suppose first that *?(λ) = 0 for λ < 0. By (4.6) it suffices to
show that sup{ HSJI: t > 0} < oo. Using (4.5) in the present situation, we
have

St= Urn Γ e~XtdS{\), for/>0,

the limit being taken in the strong operator topology. But for t > 0,
u > 0, the norm of the function e~( ^ in AC([Q, u]) is 1.

Conversely suppose sup{||t/z||: Imz > 0} < oo. Then ReΛ(^0) < 0,
where % is the infinitesimal generator of the semigroup {Uit}9 t > 0. As
mentioned at the outset of the proof of Theorem (4.4), - # = i%. Combin-
ing these facts, we see that Λ(^) c {/λ: λ > 0}. Application of Lemma
(4.1) completes the proof.
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REMARKS. All the discussion in this section continues to be valid if the
uniformly bounded, strongly continuous, one-parameter group {Ut} on
the UMD space X is replaced by a one-parameter group satisfying the
hypotheses of [1, Theorem (4.20)] on an arbitrary Banach space. However,
we shall not need this additional generality or the technical tools required
for it.

5. Analytic characterization of invariant subspaces in LP(K). For

i E ^ and / G LP(K), 1 < p < oo, let Jί{A,p,f) be the closed linear
span in LP(K) of {Ut^

p)f: t e R}. (We shall abbreviate Jί{A,pJ) by
writing Jt'f) Obviously Jtf is the closed linear manifold in LP(K)
spanned by {<?(A>p\s)f: s ε R } , We shall denote by {U<A>p'f)} the
restriction of the group {Ut

(A'p)}, t e R, to Jt f.
As noted earlier, the main result of this section, Theorem (5.7),

generalizes to Sfp Helson's result for Sf2- It will be convenient to observe
at the outset that, by virtue of the relation Q{A^>(0) = / - (?(A/7)(0~~), we
have:

for all / <= LP(K), f e Φp(A) if and only if

# ( " ί ^ ) ( λ ) / = 0 f o r a l l λ < 0 .

As a preliminary step we use (5.1) to establish the following characteriza-
tion of S?p by vector-valued analyticity.

(5.2) THEOREM. Suppose A e V and f e LP(K)9 1 < p < oo. Then
/ e ΦJA) if and only if the one-parameter group {U^^^} has an
extension to a semigroup of operators belonging to 38{Jtj\ {Uz

(A'Pίf)},
Imz > 0, such that {U}A'P'^} is holomorphic on Π + , uniformly bounded
on Im z > 0, and continuous with respect to the strong operator topology of
dS{Jίf) on Imz > 0.

Proof. Since the Stone-type spectral family of the group {Ut

(A'Pyf)} is
^(Λ»/0(.) \Jίp the desired logical equivalence follows from (5.1) together
with Lemma (4.1) and Corollary (4.9).

We shall also require some classical technical machinery (in analogy
with [12, §3.1]) which is described in (5.3)-(5.6). Let L be the linear
fractional transformation given by L(z) = Ϊ(1 4- z)(l — z)~ι. Thus L is
the standard conformal mapping of the unit disc D onto Π + . We shall
follow [8], [14] for basic facts concerning the usual Hardy spaces HP(Ό),
Hp(ϊl+). HP(R) will denote the non-tangential boundary functions (iden-
tified modulo equality a.e.) corresponding to the class HP(U+). Let SΓp

be the linear space of all complex-valued functions ψ on Π + such that
ψ o L e Hp(Ό).
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(5.3) PROPOSITION. Suppose 1 < p < oo, and ψ is a complex-valued
function on Π + . The following are equivalent,

( i ) Ψ ^ ;
(ii) ψ(z)(l - izy1/p belongs to HP(U+);

(iii) ψ(z) w analytic on Π + , ψ(z) Λ&y # non-tangential limit ψ(t) for
almost all t e R, am/ ψ(O(l - */)~2//> tefo/igy to HP(R).
If the conditions (i)—(iii) hold, then the function ψ(z)(l — iz)~2/p on Π + w
the Poisson integral of the function ψ(O(l "" it)~1/p belonging to HP(R).

Proof. The equivalence of (i) and (ii), as well as the implication
(ii) => (iii) are standard facts about Hardy spaces. The remaining asser-
tions of the proposition follow from Privalov's Uniqueness Theorem [15,
pg. 212].

DEFINITION. For 1 < p < oo, let 2^(R) be the linear space of all
complex-valued functions G(t) on R (identified modulo equality almost
everywhere) such that G(t)(l - it)~2/p belongs to HP(R).

We restate Proposition (5.3) in the following convenient form.

(5.4) PROPOSITION. Suppose 1 <p < oo. The correspondence which
sends each φ G , f to its non-tangential boundary function is a one-to-one
linear mapping of ^ onto Bp(R). The inverse mapping is given by

G(t) € Bp(R) -> F(z)(l - iz)2/\

where F(z) is the Poisson integral in Π + ofG(t)(l - it)~1/p.

With the aid of the M. Riesz projection for LP(R) and a version of
the Paley-Wiener Theorem for H\R) [8, Theorem 11.10], it is not difficult
to obtain the following generalization of [12, Lemma, pg. 29].

(5.5) LEMMA. Suppose 1 < p < oo, andp'1 + q'1 = 1. Let

F<ΞLP(R,(I + t2y1dή.

Then F e Bp(R) if and only if

f F(t)G(t)(l - it)'2 A = 0, for all G e J8 (R).
•'R

Let F be a Borel function on R X K such that

F€=L*((1 + t2YldtX do),

where σ denotes the normalized Haar measure of K. In particular, for
σ-almost all JC, F( , x) e LP(R, (1 4- t2)~ι dt\ and, for almost all t e R,
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Ft ΞΞ F(t, •) belongs to Lp(σ). For g G Lq(o\ where p~ι + g"1 = 1, put

(Fng)=f F(t,x)g{x)dσ(x).

It is easy to see that (Ft, g) G L'(R, (1 + Z 2)" 1 Λ).

By using Lemma (5.5) in analogy with the reasoning of [12, pg. 30],

we obtain the following result.

(5.6) LEMMA. Suppose 1 < p < oo, and p'1 + q~ι = 1. Let F be a

Borel function on R X K such that F G L*((l + t1)'1 dt X rfσ). Γ&e/? the

following are equivalent',

(i) for each g e L^(σ), <FP g> e

(ii) for σ-almost all x, F( , JC) G

The stage is now set for the main result of this section, the generaliza-

tion to LP(K) of Helson's analyticity criterion in L2(K) [11, §6].

(5.7) THEOREM. Suppose 1 < p < oo, f is a Borel function in LP(K),

and A G # . ΓAeπ / G Φ^ί^ί) ι/ αnc/ oπfy (//or σ-almost all x in K the

function oft G R, ^4(ί, x)/(x 4- ̂ ) belongs to Bp(R).

Proof, Put f(/,x) = A(t9x)f(x + ^ ) , for / G R, JC G jSΓ. Obviously

F is a Borel function in Lp((l + t2)'1 dt X do). Suppose first that

/ G Φp(A). Then the group {Ut

{A'Ptf)}9 t G R, has the holomorphic exten-

sion {U}A>pJ)} described in Theorem (5.2). Let g G L^(ίΓ), where p~ι 4-

ςr"1 = 1, and let γ be the linear functional on Jtf given by integration

against gdσ. Thus

Hence (Fng) is the boundary function of the bounded holomorphic

function ψ Ξ (U}AtP'f)f,y) on Π + . In particular, ψ G ̂ . By Proposition

(5.4), (Fng) G 5p(R). Application of Lemma (5.6) gives the desired

conclusion.

Conversely, suppose that for σ-almost all JC, F ( ,JC) G ̂ ( R ) . Then

for each g e L*(JSΓ), (Ut

(A'p)f, g> belongs to ̂ ( R ) . If λ G R, then

belongs to 5p(R). It is now easy to see that (Ut

{A'p'f)a,<p) belongs to

Bp(R) for each a <E.Jlf, ψ ^JίJ. Hence (Ut

(A'p'f)a,φ) is the boundary

function of a unique ψα φ G ̂ . By [8, Theorem 2.11],

s u p { ( ψ α 5 < p ( z ) | : z e Π + } < | | α | | | | φ | | .
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Clearly ψα is linear in each of a and φ separately. It follows from these
considerations, since Jίf is a reflexive space, that for each z G Π + there
is a unique Vz e 3&{Jίf) such that ψα>φ(z) = (K,α, φ) for all a ^Jίf,
φ <ΞJίJ. Moreover, ||FZ | | < 1 for z G Π + . We define Vt for ί G R by
setting p; = Ut

(A'p>f\ Thus, for fixed α G Jί f9 ψ G Λ ^ , the function (of
ί G R) (Vta, φ) is the non-tangential boundary function of the holomor-
phic function (Vza9 φ) on Π + . By Proposition (5.4),

(V2a,φ) = W(z)(l - iz)1/p forz G ΓΓ,

where W(z) is the Poisson integral of (I^α, φ)(l — it)~2/p. Since the
latter function is continuous on R, we infer that (Vza9 φ) is continuous on
Imz > 0. For fixed ^ e R , the functions (J^α, Vs*φ) and (^+ J«, φ> are
bounded and continuous on Imz > 0, holomorphic on Π + , and equal on
R. Hence

K+s = Vyz for s G R, Imz > 0.

For fixed z0 such that Im z0 > 0, similar reasoning applied to the func-
tions (Vz+2(pt9φ) and (VzVZ(a,φ) now shows that {Vz}, Imz > 0, is a
semigroup (which we have already seen to be continuous in the weak
operator topology). It follows that {Viy}9 y > 0, is a strongly continuous
semigroup. Thus Vz s VxViy is strongly continuous on Im z > 0. By
Theorem(5.2), / ε Φ ; ( 4

6. The invariant subspace corresponding to the complex conjugate
cocycle. Let A ^ ^ and put M = Φ2(^0 A, the complex conjugate of A9

is also a cocycle on K. In [12, Theorem 18] it is shown that Φ2(^4) is the
"normalization" of (M-1). Since there is no orthogonal complementation
operation which maps the set of all subspaces of LP{K) into itself, this
result for L2 has hitherto lacked an analogue in yp. Since each element of
yp is the range of a canonical projection (Theorem (3.3)), an analogue can
now be obtained (Corollary (6.3) below). We fix A G # and p G (1, 4- oo).
Straightforward calculations using the formulas of Theorem (2.1), (iii)-(v)
show that

(6.1) <?iA>p)(s)f= QiA>p)(-s)f, ίoτf^Lp(K), s G R.

Subtracting both sides of (6.1) from /, and letting s -> 0", we obtain the
following theorem.

(6.2) THEOREM. Let A G #, and suppose 1 < p < oo. Then
J forf&Lp(K).

Hence by Theorem (3.3) we obtain the desired description of ΦJA).
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(6.3) COROLLARY. Under the hypotheses of Theorem (6.2),

Φp(A)-{l-&A »(0+)}L>(K).
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