A CHARACTERIZATION THEOREM FOR COMPACT UNIONS OF TWO STARSHAPED SETS IN R^{3}

Marilyn Breen

Abstract

Set S in R^{d} has property P_{k} if and only if S is a finite union of d-polytopes and for every finite set F in bdry S there exist points c_{1}, \ldots, c_{k} (depending on F) such that each point of F is clearly visible via S from at least one $c_{i}, 1 \leq i \leq k$. The following results are established. (1) Let $S \subseteq R^{3}$. If S satisfies property P_{2}, then S is a union of two starshaped sets. (2) Let $S \subseteq R^{d}, d \geq 3$. If S is a compact union of k starshaped sets, then there exists a sequence $\left\{S_{l}\right\}$ converging to S (relative to the Hausdorff metric) such that each set S_{j} satisfies property P_{k}.

When $d=3$ and $k=2$, the converse of (2) above holds as well, yielding a characterization theorem for compact unions of two starshaped sets in R^{3}.

1. Introduction. We begin with some definitions. Let S be a subset of R^{d}. Hyperplane H is said to support S locally at boundary point s of S if and only if $s \in H$ and there is some neighborhood N of s such that $N \cap S$ lies in one of the closed halfspaces determined by H. Point s in S is called a point of local convexity of S if and only if there is some neighborhood N of s such that $N \cap S$ is convex. If S fails to be locally convex at q in S, then q is called a point of local nonconvexity (lnc point) of S. For points x and y in S, we say x sees y via $S(x$ is visible from y via S) if and only if the segment $[x, y]$ lies in S. Similarly, x is clearly visible from y via S if and only if there is some neighborhood N of x such that y sees via S each point of $N \cap S$. Set S is locally starshaped at point x of S if and only if there is some neighborhood N of x such that x sees via S each point of $N \cap S$. Finally, set S is starshaped if and only if there is some point p in S such that p sees via S each point of S, and the set of all such points p is called the (convex) kernel of S.

A well-known theorem of Krasnosel'skii [3] states that if S is a nonempty compact set in R^{d}, S is starshaped if and only if every $d+1$ points of S are visible via S from a common point. Moreover, "points of S " may be replaced by "boundary points of S " to produce a stronger result. In [1], the concept of clear visibility, together with work by Lawrence, Hare, and Kenelly [4], were used to obtain the following

Krasnosel'skii-type theorem for unions of two starshaped sets in the plane: Let S be a compact nonempty set in R^{2}, and assume that for each finite set F in the boundary of S there exist points c, d (depending on F) such that each point of F is clearly visible via S from at least one of c, d. Then S is a union of two starshaped sets.

In this paper, an analogous result is proved for set S in R^{3}, where S satisfies the additional hypothesis of being a finite union of polytopes. Furthermore, while not every compact union F of two starshaped sets in R^{3} satisfies this hypothesis, F will be the limit (relative to the Hausdorff metric) for a sequence whose members do satisfy it. This in turn leads to a characterization theorem for compact unions of two starshaped sets in R^{3}.

The following terminology will be used throughout the paper: ConvS, $\mathrm{cl} S$, int S, relint S, bdry S, rel bdry S, and $\operatorname{ker} S$ will denote the convex hull, closure, interior, relative interior, boundary, relative boundary, and kernel, respectively, for set S. The distance from point x to point y will be denoted $\operatorname{dist}(x, y)$. For distinct points x and $y, L(x, y)$ will be the line determined by x and y, while $R(x, y)$ will be the ray emanating from x through y. For $x \in S, A_{z}$ will represent $\{x: z$ is clearly visible via S from $x\}$. The reader is referred to Valentine [7] and to Lay [5] for a discussion of these concepts and to Nadler [6] for information on the Hausdorff metric.
2. The results. The following definition will be helpful.

Definition 1. Let $S \subseteq R^{d}$. We say that S has property P_{k} if and only if S is a finite union of d-polytopes and for every finite set $F \subseteq$ bdry S there exist points c_{1}, \ldots, c_{k} (depending on F) such that each point of F is clearly visible via S from at least one $c_{i}, 1 \leq i \leq k$.

Several lemmas will be needed to prove Theorem 1. The first of these is a variation of [2, Lemma 2].

Lemma 1. Let $S \subseteq R^{d}, z \in S$, and assume that S is locally starshaped at z. If $p \in \operatorname{conv} A_{z}$ and $p \neq z$, then there exists some point $p^{\prime} \in[p, z)$ such that $p^{\prime} \in A_{z}$.

Proof. As in [2, Lemma 2], use Carathéodory's theorem to select a set of $d+1$ or fewer points p_{1}, \ldots, p_{k} in A_{z} with $p \in \operatorname{conv}\left\{p_{1}, \ldots, p_{k}\right\}$. Say $p=\Sigma\left\{\lambda_{i} p_{i}: 1 \leq i \leq k\right\}$, where $0 \leq \lambda_{i} \leq 1$ and $\Sigma\left\{\lambda_{i}: 1 \leq i \leq k\right\}=1$. Observe that for any $0 \leq \mu \leq 1$, point $\mu z+(1-\mu) p$ on $[z, p]$ is a convex conbination of the points $\mu z+(1-\mu) p_{i}, 1 \leq i \leq k$. Also $\mu z+$ $(1-\mu) p_{i} \in\left[z, p_{i}\right], 1 \leq i \leq k$. By the definition of locally starshaped,
together with the definition of clear visibility, we may choose a spherical neighborhood N of $z, p \notin N$, such that z and each p_{i} see via S every point of $N \cap S$. We may choose $\mu_{0}, 0<\mu_{0}<1$ and μ_{0} sufficiently near 1 that each point $\mu_{0} z+\left(1-\mu_{0}\right) p_{i}=p_{i}^{\prime}$ belongs to N. Define

$$
\begin{aligned}
p^{\prime} & =\Sigma\left\{\lambda_{i} p_{i}^{\prime}: 1 \leq i \leq k\right\} \\
& =\mu_{0} z+\left(1-\mu_{0}\right) p \in \operatorname{conv}\left\{p_{1}^{\prime}, \ldots, p_{k}^{\prime}\right\} \cap(z, p) \cap N
\end{aligned}
$$

We will show that p^{\prime} satisfies the lemma. For $x \in N \cap S,[x, z] \subseteq N$ $\cap S, p_{1}$ sees $[x, z]$ via S, and hence $\operatorname{conv}\left\{p_{1}^{\prime}, x, z\right\} \subseteq N \cap S$. By an easy induction, $\operatorname{conv}\left\{p_{k}^{\prime}, \ldots, p_{1}^{\prime}, x, z\right\} \subseteq N \cap S$. Since $p^{\prime} \in \operatorname{conv}\left\{p_{k}^{\prime}, \ldots, p_{1}^{\prime}\right\}$, $\left[p^{\prime}, x\right] \subseteq S$. We conclude that p^{\prime} sees via S each point of $N \cap S$, $p^{\prime} \in A_{z}$, and Lemma 1 is established.

Lemma 2. Let S be a closed set in R^{d}. Let P be a plane in R^{d}, B a component of $P \sim S$, with S locally starshaped at $z \in$ bdry B. Assume that line L in plane P supports B locally at z and that $B \cap M$ is in the open halfplane L_{1} determined by L for an appropriate neighborhood M of z. Then $\left(\operatorname{conv} A_{z}\right) \cap P \subseteq \mathrm{cl} L_{2}$, where L_{2} is the opposite open halfplane determined by L.

Proof. Suppose on the contrary that there is some point $p \in$ $\left(\operatorname{conv} A_{z}\right) \cap P \cap L_{1}$, to obtain a contradiction. Then $p \neq z$, so by Lemma 1 there exist point $p^{\prime} \in[p, z)$ and convex neighborhood N of z such that p^{\prime} sees via S each point of $N \cap S$. For convenience of notation, assume that $N \subseteq M \subseteq P$.

By a simple geometric argument, we may choose a point $b \in B \cap N$ such that $R\left(p^{\prime}, b\right)$ meets $N \cap L$ at some point w. Since $B \cap N \subseteq B \cap M$ $\subseteq L_{1}, w \notin B$, so $(b, w]$ meets bdry B at a point c. We have $c \in[b, w] \subseteq N$ and $c \in \operatorname{bdry} B \subseteq S$, so $c \in N \cap S$. Therefore, by our choice of p^{\prime}, [$\left.p^{\prime}, c\right] \subseteq S$. Hence $b \in\left[p^{\prime}, c\right] \subseteq S$, impossible since $b \in B \subseteq P \sim S$. We have a contradiction, our supposition is false, and $\left(\operatorname{conv} A_{z}\right) \cap P \subseteq \operatorname{cl} L_{2}$. Thus Lemma 2 is proved.

Lemma 3. Let S be a compact set in R^{3}, and assume that S is a finite union of polytopes. Let P be a plane in R^{3}, with b a bounded component of $P \sim S$. For z a point of local convexity of $\mathrm{cl} B, z$ in edge $e \subseteq$ rel bdry $\mathrm{cl} B$, there exists a plane H such that the following are true:
(1) $H \cap P$ is a line containing e.
(2) The two open halfspaces determined by H can be denoted H_{1} and H_{2} in such a way that for N any neighborhood of z such that $(\mathrm{cl} \mathrm{B}) \cap N$ is convex, $B \cap N$ lies in H_{1} while $A_{z} \subseteq \mathrm{cl} H_{2}$.

Proof. Notice that S is locally starshaped at each of its points and that bdry B is a closed polygonal curve in P. Let J be a plane, $J \neq P$, such that J contains edge e of bdry B. If N is any neighborhood of z such that $(\mathrm{cl} B) \cap N$ is convex, then J supports $(\operatorname{cl} B) \cap N$ at e, and $B \cap N$ necessarily lies in one of the open halfspaces J_{1} determined by J. If $A_{z} \subseteq \operatorname{cl} J_{2}$, then J satisfies the lemma. Otherwise, $A_{z} \cap J_{1} \neq \varnothing$.

For convenience of notation, let P_{1} and P_{2} denote distinct open halfspaces in R^{3} determined by plane P, let $L=P \cap J$, and label the halfplanes in P determined by L so that $B \cap N \subseteq L_{1} \equiv J_{1} \cap P$. (See Figure 1.) Observe that conv A_{z} is necessarily disjoint from one of $J_{1} \cap P_{1}$ or $J_{1} \cap P_{2}$, for otherwise $\left(\operatorname{conv} A_{z}\right) \cap J_{1} \cap P \equiv\left(\operatorname{conv} A_{z}\right) \cap L_{1} \cap P \neq \varnothing$, contradicting Lemma 2. Thus we may assume that $\left(\operatorname{conv} A_{z}\right) \cap J_{1} \cap P_{2}=$ \varnothing, and since $\left(\operatorname{conv} A_{z}\right) \cap L_{1}=\varnothing,\left(\operatorname{conv} A_{z}\right) \cap J_{1} \subseteq P_{1}$.

Figure 1

Examine the points of $A_{z} \cap J_{1} \subseteq P_{1}$. For $x \in A_{z} \cap J_{1}, x$ sees via S a nondegenerate segment s_{z} at z contained in edge e, thus generating a planar set $T_{x} \equiv \operatorname{conv}\left(s_{x} \cup\{x\}\right)$. Since none of the T_{x} sets lie in P, each determines with $\mathrm{cl} L_{1}$ an angle of positive measure $m(x)$. Define $m \equiv$ $\operatorname{glb}\left\{m(x): x \in A_{z} \cap J_{1}\right\}$. Since S is a finite union of polytopes, the T_{x} sets lie in a finite union of polytopes, each meeting edge e in a nondegenerate segment at z, each contained in $P_{1} \cup L$. This forces m to be positive. Using a standard argument, select sequence $\left\{x_{i}\right\}$ in $A_{z} \cap J_{1}$ so that $\left\{m\left(x_{1}\right)\right\}$ converges to m. Some subsequence of $\left\{x_{1}\right\}$ also converges, say to x_{0}. Moreover, the angle determined by $\operatorname{conv}\left(e \cup\left\{x_{0}\right)\right\}$ and $\mathrm{cl} L_{1}$ has measure m, and $x_{0} \in\left(\operatorname{cl} A_{z}\right) \cap J_{1} \subseteq P_{1}$. Let H be the plane determined by $\operatorname{conv}\left(e \cup\left\{x_{0}\right\}\right)$. Of course $H \cap P=L$. Furthermore, for an
appropriate labeling of halfspaces determined by $H, L_{1} \subseteq H_{1}$ so $B \cap N$ $\subseteq H_{1}$.

It remains to show that $A_{z} \subseteq \mathrm{cl} H_{2}$. Suppose on the contrary that $y \in A_{z} \cap H_{1}$. If $y \in P_{1}$, then the angle m chosen above would not be minimal. If $y \in P$, then $y \in A_{z} \cap P \cap L_{1}$, contradicting Lemma 2. If $y \in P_{2}$, then since $y \in P_{2} \cap H_{1}$ and $x_{0} \in P_{1} \cap H,\left[y, x_{0}\right]$ would meet $P \cap H_{1}=L_{1}$. Moreover, since $x_{0} \in \mathrm{cl} A_{z}$, there would be a point $x_{0}^{\prime} \in A_{z}$ sufficiently near x_{0} that [y, x_{0}^{\prime}] would meet $P \cap H_{1}=L_{1}$ also, say at point w. Then $w \in\left(\operatorname{conv} A_{z}\right) \cap P \cap L_{1}$, again contradicting Lemma 2. We conclude that $A_{z} \cap H_{1}=\varnothing$, and $A_{z} \subseteq \mathrm{cl} H_{2}$, finishing the proof of Lemma 3.

The final lemma follows immediately from [4, Theorem 1].
Lemma 4 (Lawrence, Hare, Kenelly Lemma). Let S be a closed set in R^{d}. Assume that every finite set F in bdry S may be partitioned into two sets F_{1} and F_{2} such that each point of F_{i} is clearly visible from a common point of S. Then bdry S may be partitioned into two sets S_{1} and S_{2} such that for every finite set F in bdry S, each point of $F \cap S_{\text {t }}$ is clearly visible from a common point of $S, i=1,2$.

We are ready to prove the following theorem.
Theorem 1. Let $S \subseteq R^{3}$. If S satisfies property P_{2}, then S is a union of two starshaped sets.

Proof. Using Lemma 4, select a partition S_{1}, S_{2} for bdry S such that for every finite set F in bdry S, each point of $F \cap S_{i}$ is clearly visible via S from a common point. For $i=1,2$, define $\mathscr{T}_{i}=\left\{\mathrm{cl} A_{z}: z \in S_{i}\right\}$. Then each \mathscr{T}_{i} is a collection of compact subsets of S. Moreover, by our choice of S_{1} and S_{2}, each \mathscr{T}_{i} has the finite intersection property. Hence $\cap\{T: T$ in $\left.\mathscr{T}_{i}\right\} \neq \varnothing$, and we may select points c and d with $c \in \cap\left\{T: T\right.$ in $\left.\mathscr{T}_{1}\right\}$ and $d \in \cap\left\{T: T\right.$ in $\left.\mathscr{T}_{2}\right\}$. Observe that for $z \in \operatorname{bdry} S=S_{1} \cup S_{2}$, one of c or d, say c, belongs to $\mathrm{cl} A_{z}$. Then $[c, z] \subseteq S$. We conclude that each boundary point of S sees via S either c or d.

We will show that each point of S sees via S either c or d. Portions of the argument will resemble the proof of $[1$, Theorem 1]. Let $x \in S$ and suppose on the contrary that neither c nor d sees x, to reach a contradiction. Certainly $x \notin\{c, d\}$, and by a previous observation. $x \in \operatorname{int} S$. As in [1, Theorem 1], choose the segment at x in $S \cap L(c, x)$ having maximal length, and let p and q denote its endpoints, with the order of

Figure 2
the points $c<p<x<q$. Then $p, q \in \operatorname{bdry} S$, neither is seen by c, so d sees via S both p and q. Notice that $d \notin L(c, x)$ since d cannot see x. Similarly, choose a segment at x in $S \cap L(d, x)$ having maximal length, and let r and s denote its endpoints, $d<r<x<s$. Then point c sees via S both r and s. (See Figure 2.)

Since points c, d, x are not collinear, they determine a plane P in R^{3}. In the next part of our proof, we restrict our attention to P. Since $[d, x] \nsubseteq S$, there is a segment in $(d, r) \sim S$, and this segment lies in a bounded component K of $P \sim S, K \subseteq$ rel int $\operatorname{conv}\{d, p, q\}$. Likewise, there is a segment in $(c, p) \sim S$ belonging to a bounded component J of $P \sim S, J \subseteq$ rel int $\operatorname{conv}\{c, s, r\}$. Letting $L(c, r) \cap L(d, p)=\{v\}$, it is not hard to show that J and K lie in opposite open halfplanes of P determined by $L(v, x)$.

For future reference, observe that for any line U from c meeting K, $d \notin U, d$ cannot see via S all points of bdry K on the opposite side of U from d, so c sees via S some of these points. Thus if line U^{\prime} from c supports conv K, by a convergence argument, c sees via S some point of $U^{\prime} \cap($ bdry $K)$. We will use this observation in the next part of the proof.

Define line L^{\prime} and associated point t as follows: Clearly $L(c, v) \cap J$ $=\varnothing$. In case $L(c, v) \cap K \neq \varnothing$, let L_{1} denote the open halfplane of P determined by $L(c, v)$ and containing J. Let L^{\prime} be the line from c supporting conv K at a point of L_{1}. Using our previous observation, $L^{\prime} \cap($ bdry conv $K)$ contains some point t of bdry K such that $[c, t] \subseteq S$. In case $L(c, v) \cap K=\varnothing$, rotate $L(c, v)$ about c toward d until bdry K is met. Let L^{\prime} be the corresponding rotated line. Again using our observation, there is some $t \in L^{\prime} \cap($ bdry conv $K) \cap($ bdry $K)$ with $[c, t] \subseteq S$. Of course, in each case t may be chosen to be the furthest point from c having the required property. Moreover, $[c, t] \cap J=\varnothing$, and we may label the open halfplanes of P determined by L^{\prime} so that $J \subseteq L_{1}^{\prime}$. Then $K \cup\{d\}$ lies in the opposite halfplane L_{2}^{\prime}.

Since S is a finite union of polytopes, bdry K is necessarily a simple closed polygonal curve in plane P. By our choice of t, clearly t is a point of local convexity of $\mathrm{cl} K$. Also, t must be a vertex of bdry K, so bdry K contains two edges e_{1} and e_{2} at t. Moreover, for an appropriate labeling of these edges, $e_{1} \subseteq \mathrm{cl} L_{2}^{\prime}, e_{2} \subseteq L_{2}^{\prime} \cup\{t\}$, and for any neighborhood N of t with $(\mathrm{cl} K) \cap N$ convex, $K \cap N$ and c lie in the same open halfplane of P determined by $L\left(e_{2}\right)$.

Using Lemma 3, select a plane H such that $H \cap P$ is a line containing $e_{2}, K \cap N \subseteq H_{1}$, and $A_{t} \subseteq \operatorname{cl} H_{2}$. Similarly, select plane M for e_{1} so that $K \cap N \subseteq M_{1}$ and $A_{t} \subseteq \mathrm{cl} M_{2}$. Recall that by our choice of c and d, at least one of these points lies in $\mathrm{cl} A_{t} \subseteq \mathrm{cl} H_{2} \cap \mathrm{cl} M_{2}$. Since c and $K \cap N$ are in the same open halfplane of P determined by $L\left(e_{2}\right), c \in H_{1}$. This forces d to belong to $\mathrm{cl} \mathrm{H}_{2} \cap \mathrm{cl} M_{2} \cap P$. However, clearly $\mathrm{cl} \mathrm{H}_{2} \cap$ $\mathrm{cl} M_{2} \cap P \subseteq \mathrm{cl} L_{1}^{\prime}$, while $d \in L_{2}^{\prime}$. We have a contradiction, our supposition is false, and every point of S must see via S either c or d. Hence S is a union of two starshaped sets, and Theorem 1 is established.

Theorem 2. For $k \geq 1$ and $d \geq 1$, let $\mathscr{F}(k, d)$ denote the family of all compact unions of k (or fewer) starshaped sets in $R^{d}, \mathscr{C}(k, d)$ the subfamily of $\mathscr{F}(k, d)$ whose members are finite unions of d-polytopes. Then $\mathscr{C}(k, d)$ is dense in $\mathscr{F}(k, d)$, relative to the Hausdorff metric. Moreover, $\mathscr{F}(k, d)$ is closed, relative to the Hausdorff metric.

Proof. In the proof, h will denote the Hausdorff metric on compact subsets of R^{d}. That is, if $(A)_{\delta}=\{x: \operatorname{dist}(x, A)<\delta\}$, then for A and B compact in $R^{d}, h(A, B)=\inf \left\{\delta: A \subseteq(B)_{\delta}\right.$ and $\left.B \subseteq(A)_{\delta}, \delta>0\right\}$.

To see that $\mathscr{C}(k, d)$ is dense in $\mathscr{F}(k, d)$, let $S \in \mathscr{F}(k, d)$. For an arbitrary $\delta>0$, we must find some C in $\mathscr{C}(k, d)$ for which $h(S, C)<\delta$. Assume that each point of S is visible via S from one of s_{1}, \ldots, s_{k}. Form
an open cover for S, using interiors of d-simplices whose diameters are at most $\delta / 2$. Using the compactness of S, reduce to a finite subcover, say $\left\{\operatorname{int} P_{j}: 1 \leq j \leq m\right\}$, where P_{j} is a d-simplex. For $1 \leq i \leq k$, define $C_{i}=\bigcup\left\{\operatorname{conv}\left(s_{i} \cup P_{j}\right): s_{i}\right.$ sees via S some point of $\left.P_{j}, 1 \leq j \leq m\right\}$. Certainly set $C \equiv C_{1} \cup \cdots \cup C_{k}$ is a union of k starshaped sets as well as a finite union of d-polytopes. Thus $C \in \mathscr{C}(k, d)$.

Clearly $S \subseteq C$, so $S \subseteq(C)_{\delta}$. To see that $C \subseteq(S)_{\delta}$, let $x \in C \sim S$. Then $x \in \operatorname{conv}\left(s_{i} \cup P_{j}\right)$ for some i and j. Moreover, for an appropriate i and j, there is some $y^{\prime} \in P_{j} \cap S$ with $\left[s_{i}, y^{\prime}\right] \subseteq S$. If x, s_{i}, y^{\prime} are collinear, then since $x \notin S, x$ must belong to P_{j}, and $\operatorname{dist}\left(x, y^{\prime}\right) \leq \delta / 2$. Thus $x \in(S)_{\delta}$. If x, s_{i}, y are not collinear, assume $x \in\left[s_{i}, y\right]$ where $y \in P_{j}$, and let x^{\prime} be the point of $\left[s_{i}, y^{\prime}\right]$ such that $\left[x, x^{\prime}\right]$ and $\left[y, y^{\prime}\right]$ are parallel. Then $x^{\prime} \in S$ and $\operatorname{dist}\left(x, x^{\prime}\right) \leq \operatorname{dist}\left(y, y^{\prime}\right) \leq \delta / 2$. Again $x \in(S)_{\delta}$. We conclude that $C \subseteq(S)_{\delta}, h(S, C)<\delta$, and $\mathscr{C}(k, d)$ is indeed dense in $\mathscr{F}(k, d)$.

Finally, to see that $\mathscr{F}(k, d)$ is closed, let $\left\{S_{i}\right\}$ be a sequence in $\mathscr{F}(k, d)$ converging to the compact set S_{0}, to show that $S_{0} \in \mathscr{F}(k, d)$ also. For convenience of notation, for $i \geq 1$, let S_{i} be a union of k starshaped sets whose compact kernels are $A_{i 1}, A_{i 2}, \ldots, A_{i k}$, respectively. Then by standard results concerning the Hausdorff metric [6], $\left\{A_{i 1}\right.$: $i \geq 1\}$ has a subsequence $\left\{A_{i 1}^{\prime}\right\}$ converging to some compact convex set A_{1}. Pass to the associated subsequence $\left\{S_{i}^{\prime}\right\}$ of $\left\{S_{i}\right\}$, and repeat the argument for corresponding kernels $\left\{A_{i 2}^{\prime}\right\}$. By an obvious induction, in k steps we obtain subsequences $\left\{A_{i 1}^{(k)}\right\},\left\{A_{i 2}^{(k)}\right\}, \ldots,\left\{A_{i k}^{(k)}\right\}$ converging to compact convex sets A_{1}, \ldots, A_{k}, respectively. It is a routine matter to show that S_{0} is a union of k or fewer compact starshaped sets having kernels A_{1}, \ldots, A_{k}.

Theorem 3. Let S be a compact union of k starshaped sets in R^{d}, $k \geq 1, d \geq 3$. Then there is a sequence $\left\{S_{j}\right\}$ converging to S (relative to the Hausdorff metric) such that each S_{j} satisfies property P_{k}. That is, using the notation of Theorem 2, sets having property P_{k} are dense in $\mathscr{F}(k, d)$.

Proof. As in the proof of Theorem 2, h will denote the Hausdorff metric on compact subsets of R^{d}. For any $\delta>0$, we must find some C having property P_{k} for which $h(S, C)<\delta$.

Assume that each point of S is visible via S from one of the distinct points s_{1}, \ldots, s_{k}. Form an open cover for S using spheres of radius $\delta / 4$, centered at points of S. Reduce to a finite subcover, and choose the center of each sphere. Say these centers are the points t_{1}, \ldots, t_{m}. Partition
$\left\{t_{1}, \ldots, t_{m}\right\}$ into k subsets V_{1}, \ldots, V_{k} such that the following is true: If $t \in V_{i}$, then s_{i} is a point of $\left\{s_{1}, \ldots, s_{k}\right\}$ closest to t with $\left[s_{i}, t\right] \subseteq S$. Define $T_{i}=\bigcup\left\{\left[s_{i}, t\right]: t \in V_{i}\right\}$. Observe that $s_{i} \notin T_{j}$ for $i \neq j$: Otherwise, $s_{i} \in\left(s_{j}, t\right]$ for some $t \in V_{j},\left[s_{i}, t\right] \subseteq\left(s_{j}, t\right] \subseteq S$, and s_{i} would be closer to t than s_{j} is to t, impossible by the definition of V_{j}.

In case the sets T_{1}, \ldots, T_{k} are pairwise disjoint, let $T_{i}^{\prime}=T_{i}, 1 \leq i \leq k$, and define T to be their union. Otherwise, suppose T_{1} meets $T_{2} \cup \cdots \cup T_{k}$. Then for some point in V_{1}, call it t_{1} (for convenience of notation), (s_{1}, t_{1}] meets $T_{2} \cup \cdots \cup T_{k}$. Using the facts that each T_{i} set is a finite union of edges at $s_{i}, s_{1} \notin T_{2} \cup \cdots \cup T_{k}$, and $d \geq 3$, it is not hard to show that there exists an edge $\left[s_{1}, t_{1}^{\prime}\right]$ not collinear with $\left[s_{1}, t_{1}\right]$ such that $\left[s_{1}, t_{1}^{\prime}\right]$ is disjoint from $T_{2} \cup \cdots \cup T_{k}$ and $\operatorname{dist}\left(t_{1}, t_{1}^{\prime}\right)<\delta / 4$. Thus $h\left(\left[s_{1}, t_{1}\right],\left[s_{1}, t_{1}^{\prime}\right]\right)$ $<\delta / 4$, also. Repeating the procedure for each edge of T_{1}, in finitely many steps we obtain a new set T_{1}^{\prime} starshaped at s_{1} such that T_{1}^{\prime} is disjoint from $T_{2} \cup \cdots \cup T_{k}$ and $h\left(T_{1}, T_{1}^{\prime}\right)<\delta / 4$.

Continuing the process for T_{2}, \ldots, T_{k}, by an obvious induction we obtain pairwise disjoint starshaped sets $T_{1}^{\prime}, T_{2}^{\prime}, \ldots, T_{k}^{\prime}$ with $h\left(T_{i}, T_{i}^{\prime}\right)<$ $\delta / 4,1 \leq i \leq k$. Define $T=T_{1}^{\prime} \cup \cdots \cup T_{k}^{\prime}$. Standard arguments reveal that

$$
h\left(S, T_{1} \cup \cdots \cup T_{k}\right)<\frac{\delta}{4}, \quad h\left(T_{1} \cup \cdots \cup T_{k}, T\right)<\frac{\delta}{4}
$$

and hence $h(S, T)<\delta / 2$.
Finally, we extend the sets $T_{1}^{\prime}, \ldots, T_{k}^{\prime}$ to finite unions of d-polytopes. define $m=\min \left\{h\left(T_{i}^{\prime}, T_{j}^{\prime}\right): i \neq j\right\}$. Using techniques from Theorem 2, select set $C \equiv C_{1} \cup \cdots \cup C_{k}$ in $\mathscr{C}(k, d)$ with $h\left(T_{i}, C_{i}\right)<\min \{\delta / 2, m / 2\}$ and with $s_{i} \in \operatorname{ker} C_{i}, 1 \leq i \leq k$. Since $h\left(T_{i}, C_{i}\right)<m / 2$, certainly the C_{i} sets must be pairwise disjoint. Therefore, each boundary point of C is clearly visible from some $s_{i}, 1 \leq i \leq k$, and C has property P_{k}. Moreover,

$$
h(S, C) \leq h(S, T)+h(T, C)<\frac{\delta}{2}+\frac{\delta}{2}=\delta
$$

Theorem 3 is established.
It is interesting to observe that while Theorem 3 holds when $d \geq 3$, it fails in the plane, as the following easy example reveals.

Example 1. Let S be the set in Figure 3. Then S is a union of two starshaped sets with kernels $\{c\},\{d\}$, respectively. However, sets sufficiently close to S fail to satisfy the clear visibility condition required for property P_{2}.

Figure 3

Finally, the characterization theorem for unions of two starshaped sets in R^{3} is an easy consequence of our previous results.

Corollary 1. Let $S \subseteq R^{3}$. Then S is a compact union of two starshaped sets if and only if there is a sequence $\left\{S_{J}\right\}$ converging to S (relative to the Hausdorff metric) such that each set S_{j} satisfies property P_{2}.

Proof. The necessity follows immediately from Theorem 3. For the sufficiency, Theorem 1 implies that each set S_{j} is a compact union of two starshaped sets in R^{3}. By Theorem 2, their limit S is a compact union of two starshaped sets as well.

References

[1] Marilyn Breen, Clear visibility and unions of two starshaped sets in the plane, Pacific J. Math., 115 (1984), 267-275.
[2] , Points of local nonconvexity, clear visibility, and starshaped sets in $R^{d}, \mathrm{~J}$. Geometry, 21 (1983), 43-52.
[3] M. A. Krasnosel'skii, Sur un critère pour qu' un domaine soit étoilé, Math. Sb., 19 (61) (1946), 309-310.
[4] J. F. Lawrence, W. R. Hare, Jr. and John W. Kenelly, Finite unions of convex sets, Proc. Amer. Math. Soc., 34 (1972), 225-228.
[5] Steven R. Lay, Convex Sets and Their Applications, John Wiley, New York, 1982.
[6] S. Nadler, Hyperspaces of Sets, Marcel Dekker, Inc., New York, 1978.
[7] F. A. Valentine, Convex Sets, McGraw-Hill, New York, 1964.
Received November 21, 1985 and in revised form August 21, 1986.

