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OPERATIONS WHICH DETECT 0>γ IN
ODD PRIMARY CONNECTIVE ϋΓ-THEORY

KOHHEI YAMAGUCHI

Let G denote the Adams summand of connective unitary ^Γ-theory
spectrum at the odd prime integer p. In this paper, we study maps ψ:
G -» G which have two properties

(1) φ* - 0: 7ΓO(G) -> πo(G),
(2) Φ*(v)=pev with the unit ε e Z£p)9 where τr*(G) = Z(p)[v]

and \v\ = 2(p - 1). An example of such operations is the Adams opera-
tion ψp+ι — 1, and we will give an elementary proof of non-existence of
elements of mod p Hopf invariant one.

0. Introduction. The purpose of this paper is to study a certain
family of operations in the Adams summand of the connective unitary
ίΓ-theory spectrum and to demonstrate their usefulness in analyzing the
action of the Steenrod algebra on the mod/? cohomology of certain
spectra.

Although our technique follows closely the work given by M.
Mahowald and R. J. Milgram [13], they treated only the mod 2 case and it
seems useful to give the mod p version for an odd prime p.

This paper is organized as follows:
In §1, we consider the basic properties of the spectrum G.
In §2, we define the operations which detect (Pγ and give their basic

properties.
In §3, we give the proof of Theorem 2.9, which is the key invariant

property of operations which detect &1.
In §4, we given an elementary proof of the non-existence of non-zero

mod p Hopf invariant and demonstrate their usefulness in the analysis of
the action of mod p Steenrod algebra on the mod p cohomology of certain
spectra with few cells.

In the final of this section, the author would like to take this
opportunity to thank Professor M. Mahowald for his sincere valuable
advice during his visiting Tokyo in 1985.

The author also wishes his sincere thanks to Professors S. Sasao and
N. Yagita for their many valuable suggestions and encouragements.
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1. Preliminaries. Throughout this paper, let p be a fixed odd
prime and we work in the stable category of (/?-local) CW complexes
(spectra) with base points.

We will denote by [X, Y] the abelian group of stable homotopy
classes of maps from X to Y when X and Y are CW complexes (spectra).

We will identify [X, Y] with [Σ"X9Σ
nY] for any integer n and we will

not distinguish between a map and its (stable) homotopy class. Let Z{p)

be the ring of integers localized at p and Z (* } the group of units in Z(p).
If E is a spectrum and we smash E with the Moore spectrum

M(Z(p)), we will denote the resulting spectrum by E(p).
Let S° and bu be the sphere spectrum and the connective unitary

.fiΓ-theory spectrum, respectively.
Let s/ be the mod p Steenrod algebra and stf() denote the left ideal

in s/ by the set in parentheses.
Then the following is well-known.

THEOREM 1.1 ([3], [7], [9]). There is a commutative ring spectrum G such
that

(1) bu{p) = P\/\2iG,
i = 0

(2) π*(G) = Z(p)[v] with \v\=2(p-ΐ)9

(3) H*(G,Z/p)=s//J*(Q09Q1),

where Qo = β, the mod p Bockstein, and Qx = 0>ιβ - β0>1.

COROLLARY 1.2. Ifi > 0, then

(direct sum ofZ/p 's ifiφO mod 2(p — 1)
H\GZ)= - 1).

Proof. Let s/* be the dual of the Steenrod algebra J / . Then it is the
tensor algebra of an exterior algebra and a polynomial algebra:

s/* = E[τo,r1,τ2,...]<»Z/p[ζι,ζ2,...]

where |τj = 2p" - 1 and |£J = 2(pn - 1). The dual of the quotient
is the subalgebra of J / * :

where χ denotes the canonical anti-automorphism.
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We calculate its homology for the boundary obtained by dualizing the
right action of QQ in s//s/(Q0, Qx).

Since Qo is primitive, Q$ is a derivation and Q*τn = ξn for n > 2,
β f o = 0. Thus #(χ(j*/j/(β o ,βi))*,βo) = Z/Ptii] and the assertion
follows. D

The above calculation also shows the following result:

COROLLARY 1.3. An explicit description of the mod/? restriction of the
integral generator in H2(p-l)n(G, Z) is χ(0*n)i

REMARK 1.4. Since G is a commutative ring spectrum, there is a ring
structure map μ: G A G -> G and a unit map ι*: S° -> G. The Cartan
formula induces the product in J / * and so induced homomorphism

μ*: H*(G, Z/p) 0 H*(G, Z/p) -> H*(G, Z/p)

coincides with the usual multiplication in χ(«^7^(β O 'βi))* Conse-
quently, if hx is the integral generator of H1{p_V){G, Z), then

(1.5) hn = (AJ" = μ^(hx β ^ β βAj (Λ factors)

represents an integral generator in H2(p_1yn(G, Z).

COROLLARY 1.6. In dimension 2(p — 1)«, rAe Hurewicz homomor-
phism

is injective and h(vn) = pnεhn with some unit ε e ^py

Proof. The spectrum G has the (stable /?-local) cell structure

(1.7) G = S(°p) U αi ^ ^ - ^ U e2^2~^ u - -

where αx generates τr2i7_3(5'())(/;).
Consider the following commutative diagram:

H2(p-l)(G>Z) ^ H2(p-l){

where h denotes the Hurewicz homomorphism.
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Since the order of αx is p> h(v) = pειh1 with some unit εx e Z*py
Hence h(υn) = pnehn with ε = (ex)

n e Z (* }. D

2. Operations which detect &x on the spectrum G. For a spectrum
E, we define the U-homology and is-cohomology by

(2.1) En(X) = πn(E A X) and En(X) = [X,ΣnE].

In particular, the Steenrod algebra of E, s/(E)* is defined by

(2.2) J / ( £ ) * = £ * ( £ ) .

Note that it acts in fs-homology by the following

(2.3) Φ(/) = (ΦΛ l ) o / for φ e j ^ ( £ ) r a n d / £

where

Λ X^ΣΈ A X.

DEFINITION 2.4. An operation φ G j/(G)° is said to ύfetecί ^ x if
there exists a map r: G -> 2 2 ( / 7 - 1 ) G such that,

(1) the diagram

φ \ i IT

G

is homotopy commutative, where π: Σ2^p~ι)G -> G is the Bott periodicity
map,

(2) τ*(ι) = .^V)* where T* denotes the induced homomorphism

H°(G, Z/p) = Z/p{t) - H«'-»(G9 Z/p) = Z/p{0>ι(ι)}.

REMARK 2.5. (1) By using the Bott periodicity, there is a fiber
sequence:

where KZ^p) denotes the Eilenberg-MacLane Spectrum for Z ( / ? ).

(2) From (1.6), TΓ^/^) = pehι with some unit ε e Z ^ , where
denotes the induced homomorphism



OPERATIONS WHICH DETECT 0>γ 199

LEMMA 2.6. Let φ be the operation in s/(G)°. Then φ detects &x if
and only if the following two conditions hold:

(a) φ* = 0: τro(G) -> πo(G).
(b) φ*(v) = pεv with some unit ε e Z*y

Proof. First, suppose φ detects &>ι. Then the two conditions easily
follow from π^Σ^P-^G) = 0 and (2.5).

Conversely, we assume the operation φ satisfies two conditions (a)
and (b). From the condition (a), φ*(κ) = 0 and the map K ° φ is null-ho-
motopic. Hence there is a lifting τ: G -> 22 ( / ?"X )G such that π ° τ = φ.
Similarly, using the diagram chasing, from (2.5) and (b) we can deduce the
relation τ*(t) = 0>\ι). Thus φ detects ^ . D

EXAMPLE 2.7. Let i r: G -> 6w(/7) be the inclusion map. It is well-known
that there is a map of ring spectra \pn: G -* G which makes the diagram

(2.8) n n

bu(P) -* bu(P)

commute, where the lower map ψ" is derived from the Adams operation
in complex jRT-theory and («,/?) = 1. (See (0.2) in [22]). Furthermore, it is
easy to see that ψ / 7 + 1 - 1 satisfies the conditions (a) and (b). Hence

_ i detects^1.
The following is the key invariant property of operations which detect

THEOREM 2.9 (M. Mahowald and R. J. Milgram, [13]). Let φ be the
operation in s/(G)° which detects 0>ι

m Then φ* on π2(P-i)?ι(G) ^ multipli-
cation by

where f{n) = vp(n) 4-1, en e Z ( ^ and vp{n) is the power to which p is
raised in the prime decomposition ofn.

REMARK 2.10. The above result was stated in [13] without proof.
Although the idea of its proof is essentially derived from [13], for the sake
of completeness we will show it in the next section.

3. Proof of Theorem 2.9, Throughout this section we assume that
φ <=s/(G)°detects^1.
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First, consider the (stable) 2-cell complex

(3.1) M=S°Uaie
2^-V

where aλ generates ^2P-3(^°)(P) = %/P
The complex M has the property that &>ι is non-trivial in mod/?

cohomology. There is a cofiber sequence

(3.2) S2p~3 ^S°-^M^ S2{p~l).

By using (1.7) there is an inclusion map

a: M -> G.

We denote by β the composite of maps

We put A"M = M A M A AM (n times).
Then, using the Atiyah-Hirzebruch spectral sequence, we have

LEMMA 3.3. As an abelian group G°(ΛnM) is free over Z{p) and has
the basis

A82A . . - Λ δ J ,

where 8. is either a or β.

Similarly, using (1.6), (2.5) and (3.2), we obtain

LEMMA 3.4. There is a unit ε0 e Zfp) such that,

φ(a) = εoβ inG°(M).

LEMMA 3.5. Let n > 2. Then there are elements εf e Z{p) (1 < i < n)
such that,

φίμ(a A a A -" A a)) = εos(μ(β A a A •- - A a))

n — 1

n-k

where ε0 is given in (3.4) and S() denotes the symmetric sum.

Proof. The proof is similar to (2.7) in [13] and left to the reader. D
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Now consider the induced homomorphism

μ(a Λ a Λ ••• Λα)*: HJ/\M,Z\ -> #*((?,Z).

From (1.

μ(a Λ

Thus

(3-6)

5), we have

• •'• Aa)*(e2(P-l)®e2(p-l)

φ*μ(a A Λα)^ 2 ( r i )

On the other hand, if we put

(3.7) N = pnε0 +

-i)) = Φ*(Λn).

then it follows from (3.5) that we have

(3.8) φ*μ(a Λ Λα),(6 2 ( r l ) β βe^-i)) = ̂ An

Thus we have the following result.

PROPOSITION 3.9. Let φ be the operation in s/(G)° which detects &>ι.
Then φ* on H2{p_l)n{G^ Z) is multiplication by N where N is given in (3.7).

Similarly, using (1.6), we also obtain

COROLLARY 3.10. Under the same assumptions as (3.9), φ* on
π2(P-i)n(G) is multiplication by N where N is given in (3.7).

To prove Theorem 2.9, without loss of generalities we may assume ek

is an integer for 2 < k < n, and so it suffices only to show the following

LEMMA 3.11. For an integer k with 2 < k < n,

DEFINITION 3.12. For a positive integer m, it is possible to write
m = Σakp

k (0 < ak < p - 1) for unique integer ak, almost all of which
vanish.

Then we define
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Then the following is well-known:

LEMMA 3.13. (a) vp(m\) = (m - a(m))/(p - 1).
(b) vp({n

k)) = (a(k) + a(n - k) - a(n))/{p - 1).
(c) For integers a, j and θ with 1 :< a < p - 1, j > 0, θ > 1, (θ, p)

— 1, we have the relation

a(apj - θ) = a - a(θ) +(p

Proof of Lemma 3.11. If k > vp{n) + 1, then vp(n) + 1 < k < k +
vp((D) and the assertion holds. Thus we may suppose k < vp(n) + 1.

We put v = vp{n), n — apv + p"+1λ, k = psθ > 2, where θ and a are
positive integers with (θ, p) = (a, p) = 1. Then

(3.14) α(λ) = α ( « ) - α , a(k) = a(θ).

Since 2 < k < v + 1, p'θ = k < v + 1 < p" < ap". Hence,

n - k= (aρv - psθ) + pr+1λ withO < ap" - psθ < pv+1λ.

Therefore,

α(n - A:) = a(ap" - psθ) + a(p"+1λ) = a(ap'~s - θ) + a(λ)

= (a- a(θ) +(p- l)(v - s)) + α(λ) (by (3.3), (c))

= a(n) - a(k) +(p - ΐ)(v - s) (by (3.14)).

Hence

(3.15) a(k) + a(n - k) - a(n) = (p - l)(v - s).

Thus,

= A: +(α(fc) + α(« - fc) - «(»))/(/» - 1) -(v + 1) (by (3.13))

= fc+(y-j)-(F + l) (by (3.15))

= k-s- 1.

That is,

(3.16) D = k + pp((n

k)) -(vp(n) +
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If s = 0, then & = 0 > 2 a n d s o D = λ : - s - l = 0 - l > O . If 5 > 0,
using p > 3 we have s + 1 < p s . Hence, D = k — s — 1 = psθ — s — 1
> />f — s — 1 > 0. Thus, from (3.16), we have the desired result. D

COROLLARY 3.17. Let φ be the operation in sf(G)° which detects 0>ι.
Then φ# on H2tp-ι\n{G, Z) is multiplicaton by

Pf{n\

where f(n) = vp{n) + 1 and εn e ZfpY

4. Applications. In this section we show how any operation which
detects 0>x gives an elementary proof of the non-existence of mod p Hopf
invariant and demonstrate its usefulness in the analysis of the action of
mod p Steenrod algebra on the mod p cohomology of certain spectra with
few cells.

Let KZ be the Eilenberg-MacLane spectrum for Z. We note that
Hm(G9 Z) = G+(KZ) = **(G Λ KZ).

LEMMA 4.1. The modp restriction of hn is dual to 1 <8> 0>n(ι) in

Proof. Since χ(^n) ® 1 + 1 % 0>n is decomposable over stf® stf, the
assertion easily follows from (1.2). D

Note that KZ has the (stable) cell-structure

(4.2) KZ = S ° U η e 2 U ••-.

Thus there is a cofiber sequence

(4.3J o —> AZ —» A = A Z / J .

Then we have the exact sequence

(4.4) -» 7ry(G) Λ #,.((?, Z) = Gy(«Z) ^ Gj(K) Λ ^ ^ ( G ) ->

LEMMA 4.5. /// > 0, ί/ie«

G(K) = [Z/PnMh")} Θ direct sum of Z/p's ifj = 2(p -
J \ direct sum of Z/p '5 otherwise.
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Proof. The assertion follows from (1.2), (1.6) and (4.4) D

LEMMA 4.6. Let φ be the operation in s/(G)° which detects 0>\ Then

<Kp*(hn))=Pf{n)anp*(hn) in G2(p_l)n(K), where f(n) = vp(n) + 1 and

an is a positive integer with (an, p) = 1.

Proof. Since Φ(p*(hn)) = p*(φ(hn)), the assertion follows from
(3.17). D

REMARK 4.7. In general, pm > m + 1 for m > 1.

Thus, if n is a positive integer with vp(n) > 1, then pn > pf(n) and so

THEOREM 4.8. (The non-existence of the mod/? Hopf invariant; [5],

[12], [17]). Let p be an odd prime. Then for i > 1, there does not exist a

(stable) two cell complex X = S° U em with @n non-trivial, where n = pι

andm = 2(p — \)n.

Proof. Suppose X exists, then there exists a map λ: X -> KZ with

λ*(0 = e° and λ*(em) dual to &>n, where we put

H*(X,R) = R{eo,em} and ^*(X, Λ) = R{e\e™}

for R = Z or Z/p.

It is easy to see that there is a map r: 5"" -» K such that, the diagram

S° ^ X -^ Sm

(4.9) || U | τ

S° $ KZ ^ K

is homotopy commutative.

Thus, applying the functor ir+(G Λ —) we have the commutative

diagram

Gm(X)

(4.10) || | λ .

Let φ be an operation in jtf(G)0 which detects ^ x .
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Then it is easy to see that τ*(ι* ® em) = aρ*(hn) for some unit

a e {Z/p«)\ Hence u(φ(^ 0 O ) = α β ^ ' + W * , , ) * 0.

On the other hand, since φ detects &1, φ factors through Σ2(p~λ)G

and φ(** 0 ej = 0.

This is a contradiction and completes the proof. D

THEOREM 4.11. Letp be an odd prime.

(1) If r Φ 0 (mod2(/? — 1)), then for i > 1, there does not exist a

{stable) three cell complex X = 5° U em'r U em with &>n non-trivial

where n = p\ m = 2(p - \)n = 2(p - l)p\ 0 < r < n and H*(X,Z/p)

is torsion-free.

(2) // r = 2(p - l)λ;, /Λe« forp = 3 and i > 2, or p > 5 and i > 1,

there does not exist a {stable) three cell complex X = S° U em~r U em with

&n non-trivial, where n = p\ m = 2{p — l)n = 2{p — l)pι and 0 < r <

n.

Proof. The proof of the statement (1) is similar to (4.8) and we show

(2). Suppose X exists, then using (4.1) there exists a map λ: X -> KZ with

λ*(0 = e° and λ*{em) dual to &\ where we put L = X/S° = Sm~r U

) = R{eQ,em_nem) and H*{X, R) = R{e°9e
m'r,e™}

foτR = ZoxZ/p.

It is easy to see that there is a map r: L -> K such that, the diagram

S° ^ X X L = ΛΓ/S°

(4.12) || | λ i r

S° ^ KZ ^ K = KZ/S°

is homotopy commutative.

Thus, applying the functor π*{G Λ —) we have the commutative

diagram

«•-«?) £ Gm(x) - σm(L) - o

(4.13) || l λ . | τ .

*m(G) - Hm(G,Z) ί: G m ( ^ ) - 0

where the horizontal sequences are exact.
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Let φ be an operation in stf(G)0 which detects 0>ι.
Then, for some unit a e Z (* }, τ*(ι* ® ew) = aρ*(hn).
Hence, from (4.6) we have

(4.14) τ*(φ(ι, β ej) = aanp
i+1p*(hn) Φ 0,

τ*(φ2(t* ® em)) = aalp2ι+2p*(hn) Φ 0,

where we put φ2 = φ o φ.
On the other hand, L = S"""' U e w = Σ " 2 ^ * ? 0 U er) and there is a

cofiber sequence

Since r = 2(p — \)k, we obtain the following commutative diagram:

X φ * ^ Φ X Φ *

φ Φ* I? Ψ Φ *

O v /~* ί O w l T /~i / V — W Γ i v /~< ί C /* 1 v Γ\

where φ^ and φ7'# are induced from φ and three horizontal sequences are

exact. Let σ w " r : G r(Σ r~wL) -^ Gm(L) be the iterated suspension isomor-

phism, and we put σw" r(t s | s ® ̂ )̂ = i* ® ew for ^ ® e; e G r(Σ r~mL).
Since φ detects ^δ l, it factors through Σ2(/7~X)G and the induced

homomorphism φ'^ is trivial.
Hence there is a unique element b e Z ( / ? ) such that, φ(ι* 0 ê ) =

bi'*(vk), since ^ ( S 0 ) = ττr(G) = Z^p){vk).
Thus, using (2.9) we have

Φ2(** ® e;) = bεkpΛkΨ*(vk) with / ( * ) = vp(k) + 1.

Since σ " " ^ / ^ ^ ) ) = vk ® em_ r, we have

(4.17) Φ(** ® ̂ m ) = b{vk ® em-r)->

where/(A:) = ^(A:) + 1.
Now we put λ*(vk ® em_r) = c - hn (mod direct sum of Z/p's) for

some c G Z ( i ? ). Then, from (4.13) and (4.17), we have

(4.18) 7*^(1* ® ew)) = bcρ*(hn) (πίod direct sum of Z/p9s)9

τ*{φ2((>* ® em)) = bcεkp
f(k)p*(hn) (mod direct sum of Z/p's),

where/(A:) = vp{k) + 1.
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Since the order of ρ*(hn) is pn, using (4.14) and (4.18), we have

ί + 1 = vp(bc) (mod/?*),

2i + 2 s Vp{bc) + vp(k) + 1 (mod/?M).

Hence vp{k) Ξ= / (mod/?*).
Since 0 < r = 2(p - l)k < 2(p - l)n = m, 0 < ^(λ;) < i. Thus,

there is a positive integer d such that,

Therefore, pn > n = pi > i > i - vp(k) = φ n > pn. Thus /?w > /ιπ and
this is a contradiction. D

REMARK 4.19. When p = 3 and i = 1, we check that a (stable) three
cell complex X = S° U aχe

4 U e12 with ^ 3 non-trivial on the mod 3
cohomology is indeed possible, where aλ = αx(3) generates π3(S°)(3) =
Z/3.
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