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LIAISON OF A UNION OF SKEW LINES IN P 4

JUAN C. MIGLIORE

At the moment we are woefully lacking a sufficient condition for
two subschemes in P" to be in the same liaison class, except for the case
of codimension 2. On the other hand, a theorem of Schenzel gives a good
necessary condition in any codimension < n. In this article we first give
a new proof of this theorem. We then apply this result to certain curves
in P 4 by considering hyperplane sections. Specifically, if C is a collec-
tion of t skew lines in P 4 , we ask when C can be linked to another set of
skew lines under the "extreme" conditions where C is degenerate and
where C is "general".

Partly because of the absence of a sufficient condition in general,
most results to date fall into one of the following two special cases:
restricting to codimension 2 subschemes, often in P 3 (cf. for example [B],
[BM], [LR], [Ml], [M2], [Rl], [R2], [Su]) or restricting to arithmetically
Cohen-Macaulay subschemes (cf. for example [KMU], [H], [PS], [U]).
SchenzeΓs necessary condition ([SI]) is a generalization of a theorem of
Hartshorne [Rl]. The proof given in this article is similar in nature to the
proof of Hartshorne's original theorem. It is worth noting that the
converse to the Hartshorne-Schenzel theorem is false (cf. Remark 1.3.3).
Thus one must look elsewhere for at least part of the sufficient condition(s).

Presumably the simplest situation outside of the two special cases just
mentioned is that of curves in P 4 . After re-proving the Hartshorne-Schenzel
theorem in §1, we apply it together with the techniques of [Ml] to the
question of when a set C of t skew lines in P 4 can be linked to another set
of skew lines. In §2 we consider the case where C is degenerate, and §§3, 4
and 5 treat the case where C is a "general" set of a skew lines. This
generalizes a result of [Ml] about unions of skew lines in P 3 . The idea
now is that for t > 4, the Hartshorne-Rao module (suitably generalized)
of C provides so much information about C that we can "weed out" all
the sets of lines not linked to C. Interestingly, for t = 2 and t = 3 we do
not have enough information to give a full answer. Again we feel the
absence of a sufficient condition for liaison.

Some interesting connections with liaison of unions of lines in P 3

emerge. For example if C is a degenerate union of t > 3 skew lines in P 4

(and in fact for more general degenerate curves) then all the degenerate
curves in the liaison class of C lie in the same hyperplane. Furthermore, C
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is not linked to any non-degenerate union of lines. Hence one has reduced
to the case of liaison in P 3. If C is a general collection of / > 5 skew lines,
on the other hand, the results are almost identical to those in P 3 in that C
is not linked to any other union of skew lines.

1. The machinery. In this section we give another proof of the
Schenzel-Hartshorne theorem and recall the techniques of [Ml] which we
will use here.

Throughout this paper, k shall denote an algebraically closed field.
Also, P" = P ; and S = k[X0,..., XJ (n > 3). (After Remark 1.3 we will
take n = 4). If two schemes V and V are directly linked by a complete
intersection X, we write V ~ XV. If they are linked we write V ~ V.

For any sheaf J^, Hl(^) = φ Hι(Pn, ^(j)) and h\^) =
dim^ Hi(Pn

9 &). For any fc-vector space W, W* = Homk(W, k). For any
graded 5-module M, Mv= Hornk(M,k). Finally, (P")* = {hyperplanes
in P*} is the dual projective space.

Let V be a locally Cohen-Macaulay, equidimensional scheme of
dimension r in Pw, where 1 < r < n - 2. Let (M^V) = Hl(Pn, Jv)
for 1 < i < r. (M')(F) is a graded S-module.

We now turn to the Hartshorne-Schenzel theorem. It should be
remarked that Chiarli has proved this theorem in dimension 1 using a
similar approach (cf. [C]). The proof given below was motivated by
conversations and correspondence with A. Geramita.

THEOREM 1.1 (Hartshorne-Schenzel, [Rl], [SI]). Let V ~ x W by a
complete intersection X, where Ix= (Fv...,Fn_r) and degi^ = dt. Let
d = Σd(. Then

(Mr~ifl)(W) = (M') v(V)(n 4- 1 — d) for! <i <r.

Proof. We have a projective resolution

\ / \ Z1 \ Z1

n-l ^2 * V

Z1 \ Z1 \ Z< \

0 0 0 0 0

Sheafifying gives

0 -> j r -+ j r _ χ -> j r _ 2 -^ ... _> jr2 -^ j r -^ φ -» φv _^ Q

\ / \ Z1 \ Z1

(l.i.i) ^-i ^ 2 Jy

0 0 0 0 0
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Then
0 _» eg -»j£- -> . . . _> j r ~> j r _* JΓ _> Q
v/ ^n — r ^n — r—1 2 ^ 1 *̂  F v

(1.1-2) SF.-,-! ^ 2

0 0 0 0

Observe that <Sn_r is locally free since V is locally Cohen-Macaulay.
Hence Ferrand's mapping cone procedure is applicable (cf. [PS]) and we
have the exact diagram

n — r n — r—1 1 V

ΐ -> t ΐ
0 -^ &{-d) -* φ w ~ r ^(-α / ) -••••-> φ " " ^ ! - ^ ) -> ,/ χ -^ 0

where α, = ^ + +di_1 4- J ί + 1 + +dn_r. Dualizing and twisting
by -d and splitting off redundant terms gives

(1.1.3)

0 0 0 0

Now, by taking cohomology on the short exact sequences beginning with
the penultimate one and working leftward, we have

= 0 ( J ^ is free)

= 0.
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Therefore we have

(by (1.1.3))
-n- 1))* (Serre duality)
d - it - 1))* (by (1.1.2))

= Hi+\$2(d-n-l))* (by (1.1.2))
= #<(JV(</-«-l))* (by (1.1.2))
= (Mi)v(V)(n + 1 - d)

(Note that these isomorphisms preserve not only a string of fc-vector
spaces but actually the module structure, by functoriality.) D

COROLLARY 1.2 (Chiarli, [C]). Let C be locally Cohen-Macaulay,
equίdimensional curve in P". Let C ~ xC

f by a complete intersection X,
whereIx=(Fl9...9Fn_λ) and d = ΣdegFt. Then

M(C) = M{C'Y (n + 1 - d)

where M(C) = (Mι)(C). Π

REMARKS 1.3.

1.3.1. When n = 3, Corollary 1.2 is Hartshorne's original theorem and
M(C) is called the Hartshorne-Rao module of C.

1.3.2. The (M')(V) provide invariants of even liaison: if V and W are
evenly linked then up to shifts we have (M')(F) s (Λf'')(W). If V and W
are oddly linked then up to shifts we have (Mr~i+1)(W) = {Ml)(V) v .

1.3.3. The converse to Theorem 1.1 is false in general, even in the
form of the last remark. For example, it is known that there exist
arithmetically Cohen-Macaulay curves in P 4 which are not in the liaison
class of a complete intersection (cf. for example [KMU]). But for any
arithmetically Cohen-Macaulay curve, M(C) = 0. So M(C) does not
determine the liaison class. D

Now, in the case of curves in P 4 we need to study the graded module
M(C) = Hl{Jc). This involves both the dimensions of the various com-
ponents and the maps between the components induced by homogeneous
polynomials.
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For the former the main tool is the exact sequence

0 -> / c ( n ) -* ®γ>*(n) -* ®c(n) ~* °
which yields the long exact sequence

(1.1.4) 0 -* I(C)n ->Sn-» H°(Φc(n)) -> M(C)n - 0.

For the maps, it is enough to consider those corresponding to linear
forms L G ^ ; that is, we have homomorphίsms

ψm:Sι^Hom{M(C)n,M{C)H+ι).

To study these we must consider two cases. If L does not vanish on any
component of C then we use the long exact sequence associated to the
exact sequence

(1.1.5) 0 -* Jc(n) -+ yc(n + 1) -> / c n i / ( n + 1) -> 0

where H is the hyperplane corresponding to L and the inclusion map is
multiplication by L. If L vanishes on a component of C then we use
either the following (simplest case) or a variant thereof: say C = Y U λ
where λ is a line (reduced) which is disjoint from Y, and L vanishes on λ
but no other component. Then

(1.1.6) 0-+Sc(n)-+Sγ(n)-*Φλ(n)^>0 and

0 -> Jγ(n) -> Jc{n + 1)-+ ScnA" + 1) -• 0.

(The inclusion map in the second sequence is multiplication by L.) Note
that C Π H consists of λ together with a finite set of points in H = P 3,
and that the composition Jc{n) -» JY{n) -> *?c(n 4- 1) induces the ho-
momorphism φn(L).

Now, while dimM(C)n does not depend on the choice of L for any
n, the rank of φn(L) does. Furthermore, the collection of those L for
which φn(L) has a given rank is an isomorphism invariant and hence an
even liaison invariant. Also, with suitable re-indexing it is also an in-
variant of odd liaison. These invariants can be viewed as subvarieties of
the dual projective space (P 4 )* and there are formulas for the expected
codimension and degree of these subvarieties. In many cases we can
identify these invariants using only (1.1.5) and (1.1.6), without explicitly
describing φΛ. This is our technique here. See [Ml] for further details.

2. Degenerate skew lines. The goal of this section is to prove the
following:

THEOREM 2.1. Let C be α union of t > 3 skew lines lying in α
hyperplane H = P 3 which corresponds to a linear form L e Sv Let C" be
any set of skew lines in P 4 . If C — C then C also lies in H. Furthermore,
they are linked in P 4 if and only if they are linked in P 3 .
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Once this is proved, we need only recall the following theorem from

[Ml]:

THEOREM 2.2. Let C be a union oft>3 skew lines in P 3 and let C be

an arbitrary union of a s skew lines in P 3 .

(a) If C lies on a quadric surface Q then C ~ C if and only ift = s and

C" also lies on Q.

(b) If C does not lie on a quadric surface then C is not evenly linked to

any other set of skew lines, and is oddly linked to at most one other.

(C) A general set oft>4 skew lines in P 3 is not linked to any other set

of skew lines. Π

To prove Theorem 2.1 we need some preliminary results.

LEMMA 2.3. Let C be a union oft>3 degenerate skew lines in P 4 in a

hyperplane H and let Cf be any degenerate curve in the liaison class of C.

Then C also lies in the hyperplane H.

Proof. Let L be the linear form corresponding to H.

CLAIM 2.3.1. For all «, φn(L) :M(C)n -> M(C)n+1 is the zero homo-

morphism (and similarly for C).

This is essentially the content of Remark 2.7 of [Ml], but we include

the proof since it is short.

We have the exact sequences

0 -+Jc{n) -> Θj>*{n) -> &c{n) -» 0

and

0 -> < V ( Ό -> Sc(n + 1) -> JCyΉ(n + 1) -> 0

where the inclusion map in the second sequence is multiplication by L.

Taking cohomology, these sequences yield

. . . -*0->M(C)n+1-> . . . ,

and again the composition is φn(L). The same proof works for C".

CLAIM 2.3.2. φo(L'):M(C)Q -> M(C)ι is never zero if L' is not a

scalar multiple of L.



LIAISON OF A UNION OF SKEW LINES IN P 4 159

For a general L' this follows from the long exact sequence associated
to (1.1.5):

0 - H\JC)

One checks from (1.1.4) that dimM(C)0 = t - 1, and clearly A°(./c) = 0
and Λ°(c/C(l)) = 1. In order for φo(Z/) to be zero, then, we would need
^Vcni/ 'W) = *• B u t ^°("*cn/r(l)) counts the (vector space) dimension
of the family of hyperplanes (i.e. 2-planes) in Hf = P 3 containing the
points of C Π /f', which is at most 2 (which happens when the points of
C Π H' are collinear).

The only other possibility is that V vanishes on one component of C,
say λ. Then using the long exact sequences associated to (1.1.6) (taking
n = 0) we get

. -* H°(SY) -> H°(Θλ) -> M(c)o -> M ( y ) 0 ->•••,

0 - i / ° (Λ) - H°(Sc(ΐ)) -> i / 0 ( / c n , ' ( l ) ) - M(Y)0

Now, Λ°(JZΓ

y) = 0 and hQ(Jc{\)) = 1. There is exactly one plane in
H' = P 3 containing C Π ̂ r , namely the plane H Π ΐΓ'. (Recall that Hr

contains a component of C.) Hence Λ°(Λ:n///(l)) = 1 a n d the map
M(Y0) -> M(C)2 is an injection. Then composing, we get kerφo(Z/) =
H°(Θλ), which is 1-dimensional. Since dimM(C)0 = t - 1 > 2, we are
finished with Claim 2.3.2.

Now let C be any degenerate curve, and say Lλ vanishes on C . If C"
is evenly linked to C we look at the first non-trivial component of M(C'),
say in degree m. Let ypm:Sx -> Hom(M(C')m9 M(C')m+1). From Claim
2.3.1 we have ψm(Lx) is zero. From the ideas of §1 we know that
ψw(L x) = 9O(LX) (abusing notation). But we have just seen that φo(£') is
zero if and only if V is a scalar multiple of L. Therefore Lx is a scalar
multiple of L and C and C are in the same hyperplane.

If C is oddly linked to C we look at the "last" map in M{C) rather
than ψw as above, and we again compare it with φ0. As before, this will be
zero for scalar multiples of the linear form L and non-zero otherwise.
Since ranks are preserved under transposes, a similar argument works here
and we are done Lemma 2.3. D

LEMMA 2.4. Let C be as above and let C be a non-degenerate union of s
skew lines in P 4 . Then C is not linked to C .
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Proof. Let \po:S1 "* Hom(M(C')0>
 M(C')i)- A very minor modifica-

tion of the argument in Claim 2.3.2 above shows that ψo(L') is never zero
except in the case where s = 3 and V vanishes on the trisecant of C" (see
§3). Either way M(C) cannot be isomorphic to a shift of M(C') or
M(C')v so the result follows immediately D

Proof of Theorem 2.1. We have thus far shown that any set C of skew
lines in the liaison class of a degenerate set C of skew lines must lie in the
same hypeφlane. It is conceivable, through, that to reach C" from C one
must "leave" the hypeφlane. That is, they might be linked in P 4 but not
in P 3 . We now show that this does not happen.

Without loss of generality let the hypeφlane be given by the vanish-
ing of X4. Since φn(X4) is identically zero, M(C) can be viewed as a
k[X0,..., XJ-module, as can M{C). Since C ~ C" we have (up to shifts)
either M(C) s M(C') or M{C) = M(C)v as k[X0,..., XJ-modules, so
the same is true as k[X0,..., Xjl-modules. But then by Rao's theorem (cf.
[Rl]) C ~ C ' i n P 3 .

It is trivially true that if C ~ C in P 3 then C ~ C in P 4 . Therefore
we are done. D

REMARK 2.5. If C consists of two skew lines in P 4 then this argument
fails since M{C) = k (in degree 0) so there are no non-trivial maps to
study. One may conjecture, though, that Theorem 2.1 remains true in this
case: if C is another pair of skew lines then C - C if and only if they lie
in the same hypeφlane. In fact, it seems reasonable to conjecture that if C
is any degenerate, non-Cohen-Macaulay curve in P 4 and C is a degener-
ate curve in the liaison class of C in P 4 then they lie in the same
hypeφlane and are linked inside that hypeφlane. D

REMARK 2.6. The techniques which we have used here can clearly be
used for degenerate disjoint unions of / lines in any projective space P n ,
provided M(C)λ is non-zero. D

3. Three non-degenerate skew lines. For the remainder of this paper
we assume that C is a non-degenerate union of t skew lines in P 4 . The
case t = 3 is the only one for which we cannot give a full answer using
these techniques, although we will give a partial result.

Observe that for t = 3 we have from (1.1.4) that

(2, ι = 0,
dimM(C),= 1, i = 1,

10, iΦ 0,1.
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(The last also uses the easily-verifiable fact that C imposes 3( d + 1)
conditions on hypersurfaces of degree d for d > 2 since C is non-degener-
ate.) From these dimensions we expect that for the generic L e Sl9

rk φo(L) = 1 (where again φ 0 : Sλ -> Hom(M(C)θ9 M{C)λ)) and that those
L for which this fails form an algebraic set of codimension 2 and degree 1
in Sλ (or in P ^ = (P4)*) (cf. [Ml], Lemma 1.4).

The techniques described in §1 show that this is indeed the case, and
from this we can say something about liaison:

PROPOSITION 3.1. Let C be as above and let C be any union of s skew
lines in P 4 . If C - C then

(a) C and C" are evenly linked,
(b) s = 3,
(c) C and C share a common trisecant.

Proof. For any union Z of / skew lines we have dim M(Z)0 = / - 1,
and we know that if t = 2 then M(Z) = k. Therefore M{C)v does not
correspond to any union of skew lines, and by Corollary 1.2 we are done
with (a). Having this, (b) is trivial.

Now, observe that C has a unique trisecant, say a. We shall show that
this is the dual of the plane in (P 4 )* which we anticipated above. If
L e Sλ does not vanish on any component of C and if H is the
corresponding hyperplane then using (1.1.5) we have rkφo(L) = 0 if and
only if h°(JcnH(\)) = 2, which holds if and only if L vanishes on a (so
C Π H consists of three collinear points). This continues to hold for those
L which vanish on a and a component of C since the set of L for which
φQ(L) drops rank is closed.

If L e Sj vanishes on a component of C but not on a then using
(1.1.6) one checks that rkφo(L) = 1. Therefore, a is an invariant of the
even liaison class of C, and we are done. D

It is very unlikely that the converse of Proposition 3.1 is true.

4. Four general skew lines. From now on we will consider only a
general collection C of t skew lines (i.e. an open subset of the appropriate
product of Grassmannians G(2,5)* where G(2,5) is the Grassmannian of
lines in P 4 ) . For t = 4 this will mean that C has no quadrisecants and
finitely many trisecantε, all of which are disjoint. Let C = U 4

= 1 λz be such
a curve. We adopt the notation [λz, λ ;] to denote the linear space spanned
by A, and λy.
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LEMMA 4.1. (a) Any three components of C are non-degenerate.
(b) There are exactly 4 trisecants, any 3 of which are non-degenerate.
(c) The union of the trisecants is directly linked to C.

(d) ΛVc(2)) = 3.

Proof. Three skew lines in P 4 have either a unique trisecant (when
they are non-degenerate) or infinitely many (when they are degenerate).
By hypothesis, then, (a) and the first part of (b) are done. Because the
trisecants are assumed disjoint, one sees that the union of C with the
trisecants is a so-called double-four configuration, which is a complete
intersection. (From (1.1.4) one checks that C lies on at least 3 indepen-
dent quadrics, which can be chosen to meet properly, and all 3 contain the
trisecants by Bezout's theorem. But the complete intersection of these
quadrics has degree 8 and so must be the union of C and the trisecants.
See [DR] for more on double-fours.) Therefore we are done with (c) and
(d) also. As for the second part of (b), note that the hyperplane spanned
by two trisecants coincides with one of the hyperplanes [λz, λy], so the
proof is finished. D

Now, let C be the union of the trisecants. The goal of this section is
to prove the following:

THEOREM 4.2. C is the only other union of skew lines in the liaison class
ofC.

Proof. Observe first that dim M(C) 0 = dimM(C)1 = 3 and all other
components are zero. (Recall that Λ°(</c(2)) = 3 from Lemma 4.1 and use
the exact sequence (1.1.4).) Hence any set of skew lines which can hope to
be evenly or oddly linked to C must have exactly four components.

Now, we shall show how to recover the double-four C U C from
M(C)y proving that C and C" are unique. To begin, note that we expect
the set of L's for which rkφo(L) < 3 to form a cubic hypersurface in
(P 4 )*; and since one can easily construct a hyperplane which meets C in
four non-coplanar points (so h°(*fcnH(Y)) = 0 and rkφo(L) = 3 by
(1.1.5)) this must in fact be correct, (cf. [Ml], Lemma 1.4). Call this
three-fold T.

We are interested in knowing something about the subvarieties of T.
An amusing fact (which we will not need) is that T is ruled, in the sense
that for any point P of T there exists (at least) one line contained in T
which passes through P. The main part of the argument is the following:
let H be the hyperplane corresponding to P e T c (P 4)*. If H contains
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a component λ, of C then there is actually a 2-plane in T containing P
(see below). If H meets C properly, then the fact that P e T means that
h°(Jί

cnH(l)) > 0, so the four points of C Π H lie in some 2-plane Λ. But
there is a pencil of hyperplanes containing L, corresponding to a line on
T which contains P.

It is more important in the present context to study the 2-planes in T.
Any such 2-plane is dual to a line in P 4 . What may these lines be? A
partial result is the following:

CLAIM 4.2.1. (a) The 2-plane dual to a component λ, of C lies in T.
(b) The 2-plane dual to a trisecant of C lies in T.
Part (a) follows from the exact sequences (1.1.6), taking n = 0, and

one observation: let L be a linear form vanishing on one component, say
λ, and let H be the corresponding hyperplane. Since h°(Θλ) = 1, the
exact sequences (1.1.6) will give us dimker(φo(L)) = 1 (and so rkφo(L)
= 2) once we show that h°(JcnH(V>) = 0. But C Π H consists of the line
λ and three points. If h°(Jί

cnH(l)) > 0 then there is a 2-plane containing
λ and these three points. This 2-plane then contains the three trisecants of
C which involve λ, so these trisecants are not disjoint. This contradicts
the original hypothesis on C

Similarly, part (b) follows from the exact sequence (1.1.5), again with
n = 0. (Here we use the fact that given any three collinear points and one
other point, they are coplanar.) This completes the proof of Claim 4.2.1.

Now, consider the set of linear forms L for which rkφo(L) = 1. We
shall show that the projectivization of this set is a union of six points.

Let Y =λιuλ2 and Z = λ3 U λ 4 and let I be a linear form
vanishing on Y. Consider the following two exact sequences (in analogy
with (1.1.6)):

0 -» Jc -» Jz -> &γ -> 0,

where again H is the hyperplane corresponding to L. Since h°(Θγ) = 2
and all the other global sections are zero, the composition gives
dimker(φo(L)) = 2, so rkφo(L) = 1. The same can be done for Y equal
to any pair of components of C, so projectivizing we get the six points of
T dual to the six hyperplanes [λf, λy].

We now claim that these are the only points where rk φo(L) = 1. If L
vanishes on exactly one λt then we have already seen that rk φo(L) = 2. If
L does not vanish on any λi then from (1.1.5) we get rkφo(L) > 2 since
h°(SCnff(l)) < 1. (This latter is true since C has no quadrisecant.)
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It follows that from M(C) we can recover the six hyperplanes
[λ,., λj]. Intersecting three of these at a time gives a line in P 4 , so we get
20 = comb(6,3) distinguished lines. Four are the original components of
C (e.g. λx = [λv λ2] Π [λl5 λ3] n [λv λ4]) and four are the trisecants (e.g.
the trisecant to λ1? λ 2 and λ3 is [λ1? λ2] Π [λv λ3] Π [λ2, λ3]).

Unfortunately, there are 12 other lines which we must "weed out" in
order to recover the double-four. Each of these 12 lines passes through
two vertices of the double-four. For example, we will check that the
diagonal line in Figure 1 is the intersection [λ1? λ2] Π [λ2, λ3] Π [λ1? λ 4].

λ

\
Q

R

]

k

Fic

2 λ

P
T

HJR

3 ;

.El

Note first that [λ1? λ2] Π [λ2, λ3] is the plane spanned by λ2 and the
trisecant to λ1? λ2 and λ3. Intersecting this with [λ1? λ4] gives a line.
(Otherwise it is the same plane as [λ1? λ2] Π [λ1? λ4], which contains λ1?

which would mean that λλ and λ2 are coplanar and hence not disjoint.)
But one can check that λ2 meets [λ l5 λ4] at P (since any three λ, are
non-degenerate) and the trisecant to λl9 λ2 and λ3 meets [λl9 λ4] at Q
(since if this trisecant lay in [λ1? λ4] there would be three trisecants in this
hyperplane, contadicting Lemma 4.1). Therefore, the intersection [λv λ2]
Π [λ2, λ3] Π [λv λ4] is the diagonal line [P, Q] in Figure 1.

Using this type of reasoning, one can find the 12 lines and describe
them as follows. Let P and Q be any vertices in Figure 1 which are not on
the same line but which are opposite vertices of a "quadrilateral". There
are 6 such quadrilaterals and hence 12 such choices of P and Q (ordering
is not important here). Then [P, Q] is one of the 12 lines.

Now we can finally recover the double-four from M(C). We have
seen (Claim 4.2.1) that the 2-planes dual to the λ,- and to the trisecants lie
on T. We shall show that the duals to the other 12 lines do not lie on T,
which distinguishes the double-four among the 20 lines and concludes the
proof. To do this, for any of the other 12 lines we show that there exists a
hyperplane containing it which meets C in exactly four points which are
non-coplanar (and then invoke (1.1.5)).
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For convenience we shall examine the line [P, Q] of Figure 1. We first
claim that this line does not lie in [λ3, λ 4]. For if it did, then Q would lie
in [λ3, λ 4 ]. But the point R also lies in [λ3, λ4] since it is on the trisecant
to λl9 λ3 and λ4, so [Q, R] = λx must lie in [λ3, λ 4]. This contradicts
Lemma 4.1 (a) that no three of the λ, are the same hyperplane.

Hence the line [P, Q] meets [λ3, λ4] in a point, say Pv Let H be a
hyperplane containing [P, Q] and meeting C properly. Then H meets λ3

and λ 4 in points P3 and P4, respectively. Since [P, β], P3 and P4

determine H, clearly we may choose H so that P1? P3 and P4 are
non-collinear. But then for such an H the lines [P, Q] and [P3,P4] are
skew so C Π H = P U Q U P3 U P4 are four non-coplanar points. D

5. Five or more general lines. We now let C = U = 1 λ; be a general
collection of t > 5 skew lines in P 4 . In this case, one generality assump-
tion that we make is that the curve C have maximal rank, i.e. that the
restriction map pn: H°(ΦPΛ(Π)) -* H°(Θc(n)) be either injective or surjec-
tive for all n. (Equivalently, for all n either h®{Jc(n)) = 0 or dimM(C)n

= 0.) This is valid since those sets of t skew lines with maximal rank
correspond to a dense Zariski open subset of G(2,5)' (cf. [HH]). Another
assumption is that any three components of C are non-degenerate.

Before stating the main theorem of this section, we recall a fact whose
proof is a standard application of the geometry on a Grassmannian. I am
grateful to Tony Horowitz for pointing this out to me and for several
related conversations which proved useful for part of this section.

LEMMA 5.1. Given six sufficiently general lines in P 4 , there are exactly

five 2-/7lanes meeting each line.

In this section we will prove the following (compare with Theorem
2.2(c)).

THEOREM 5.2. Let C = U = i λ, be a general collection of t skew lines in
P 4 , where t > 5. Then C is not linked to any other disjoint union of lines in
P 4 .

Proof. As usual, the first step is to compute the dimension of the
components of M(C). Because of maximal rank, we have

ί^\ i i («+l)-comb(n + 4,4), t(n + 1) > comb(« + 4,4),
d i m M ( C ) « = \ θ , /(« + l ) ( )
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We first consider the case of odd linkage. This means that we must
ask whether M(C)V (with a suitable shift) can be the Hartshorne-Rao
module of any union of skew lines. To do this, we recall a trick introduced
in [Ml].

For any curve Γ, let an = dim M{Y)n as long as either dim M(Y)n Φ
0 or h°(Jγ{n)) = 0, and an is undefined otherwise. (If Y has maximal
rank then h°(Jγ(n)) = 0 is enough.) Let bn = 2an+1 — an — an+2 as
long as this is defined. In the case of skew lines of maximal rank, the last
condition on an allows one more bn in case t(n + 1) = comb(w -f 4,4).
Then one checks that for C a collection of t skew lines of maximal rank,
bn = comb(« + 4,2) as long as it is defined. In particular, since / > 5 we
have b0 = 6, and if t > 9 we also have bx = 10.

Suppose C were oddly linked to a disjoint union of lines C". We have
similarly defined integers b'n for C , and we get that the sequence {b'n} is
the reverse of the sequence {bn} (using Corollary 1.2). In particular, b'o is
the last bn.

Of course C need not have maximal rank, so there are more
possibilities for the b'n. We have in particular

6, Λ°(./c,(2)) = 0,

15, *Vc(2))-l,
0 4, *Vc(2))-2,

3, *Vc(2))-3.

Since b'o is the last bn and {bn } is a strictly increasing sequence beginning
with 6, we immediately conclude that b'o = 6 = b0 and b0 is the only term
in the sequence. Hence Λ°(JZΓ

c/(2)) = 0 and t < 8. Furthermore, using
these facts and the explicit dimensions of M(C)n for 5 < / < 8 we also
see that no shift of M(C)v can be the Hartshorne-Rao module of a union
of skew lines C" if t = 5,6 or 8.

We thus have only to show that a general set of 7 skew lines is not
oddly linked to any set of skew lines. If t = 7 we get dim M(C)Q = 6,
dimM(C)! = 9, dimM(C)2 = 6 and dimM(C)rt = 0 otherwise. Hence C
could in principle be linked to another union C of 7 skew lines. We now
rule this out. We will show that φ x : Sx -> Hom(M(C)V M(C)2) is incom-
patible with the <po for any such C".

As usual, <pό would have to drop rank on the planes dual to the
components of C". Since ΦQ is the transpose of φ1? we now check that φx

does not drop rank on any planes in (P 4 )* and this will complete the
question of odd liaison. The main step is the following claim.



LIAISON OF A UNION OF SKEW LINES IN P 4 167

CLAIM. 5.2.1. Let C = λλ U Uλ6 U λ and Y = λx U Uλ6.
Let L be a general linear form vanishing on λ and H the corresponding
hyperplane. Then ψι(L):M(C)1 -> M(C)2 is surjective.

We have exact sequences (1.1.6):

0 -> H\JC{\)) - H«(JΎ{\))

One easily checks *°(0λ(l)) = 2, dimM(C)X = 9, dimM(Y)1 = 7,
dimM(C) 2 = 6 and Λ°(JΓ

C(2)) = 0. Less trivial is h°{JCnΉ{2)) = 1. To
see this, note that C Π H consists of λ together with the 6 points H Π Xt.
But by Lemma 5.1, for general L vanishing on λ these 6 points are
non-coplanar, and no four are collinear since a general C has no quadrise-
cants. Hence these 6 points together with λ impose 9 conditions on
quadrics in H and h°(JCnH{2)) = 10 - 9 = 1 as desired.

Now, φλ(L) is given by the composition M(C)λ -> M(Y)1 -> M(C) 2.
The dimensions above imply that both maps are surjective, so φ^L) is
also surjective and we have proved Claim 5.2.1.

This says that if we want to find those L for which φ^L) drops rank,
we need not consider those L vanishing on just one component of C. If φλ

is to drop rank on a 2-plane in (P 4)*, then the general such L must meet
C transversely so the exact sequence (1.1.5) applies:

0 - tfVc(l)) - # V c ( 2 ) ) - * V c n * ( 2 ) ) - M{C\

- M(C)2 - .

C Π H then consists of 7 points in the hyperplane H, and for φx(L) to
have less than maximal rank we need that these 7 points fail to impose
independent conditions on quadrics. This can happen if and only if either

(1) all 7 points are coplanar,
(2) 6 of the points lie on a conic or
(3) 4 of the points are collinear.

We have already seen that no 4 can be collinear for a general C. The other
two possibilities are ruled out by Lemma 5.1, since only finitely many
planes can meet 6 general lines (corresponding to only a union of lines in
(P 4 )* rather than a union of 2-planes) and no planes meet 7 general lines.

To summarize, we have shown that φx cannot drop rank on any
2-plane in (P 4 )*. Therefore M(C) v(-2) is not the Hartshorne-Rao mod-
ule of any union of skew lines, and C is not oddly linked to any other
union of skew lines.
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We now turn to even liaison. Our goal is to show that for t > 5 C can
be recovered from M{C). For t > 6 the argument is much the same as
above: the linear forms L vanishing on a component of C drop rank, so
we get correspondingly a union of / 2-planes in (P 4)*. Since no other
2-plane in (P 4 )* corresponds to rank-dropping L (by Lemma 5.1 and the
usual exact sequence) we recover C from this union of 2-planes.

We thus have only to consider the case t = 5. For this we make one
more generality assumption: if λ is any trisecant (say meeting λl9 λ 2 and
λ3) then λ does not lie in the hyperplane spanned by the other two lines
(in this case λ 4 and λ5). To justify this we start with a general collection
of four lines as described in §4 and check that to fail to have the desired
property is a (union of) closed condition(s) on the Grassmannian of lines
G(2,5). For example, let us check in Figure 2 that the set of lines λ5 for
which the trisecant to λ3, λ4 and λ5 lies in the hyperplane [λ 1 ?λ 2] is
contained in a closed set in G(2,5).

λ 1 X 2 X 3 X4

FIGURE 2

In order to be such a trisecant, in particular it must lie in the
hyperplane [λ3, λ 4]. If it also lies in [λx, λ2] then it lies in the plane of
intersection of these two hyperplanes. Since any 3 of the 5 lines are
non-degenerate, this plane meets λ3 and λ 4 each in a point, thus uniquely
determining the line which must be the trisecant. So λ5 must meet this
line, which is a closed condition.

Now, let us consider again the linear forms L for which φo(L) drops
rank. As before, those linear forms vanishing on a component of C drop
rank, giving a union of five 2-planes in (P 4)*. We now claim that no other
2-planes in (P 4 )* will correspond to rank-dropping L, so as before C can
be recovered from M(C) and we will be done. To prove this, it is enough
to prove that there is no line λ in P 4 with the property that every
hyperplane through λ meeting C properly meets C in 5 coplanar points.
Call this property (A).
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Note first that given five general lines, the set of 2-planes in P 4

meeting all five is a curve in <?(3,5). We shall show that this is incompati-
ble with the existence of a line with property (A).

The main claim is that no matter how λ is chosen, there will exist two
components λ. and λj of C such that λ does not meet either λ, or λy and
does not lie in the hypeφlane [λ , λy]. If λ is a trisecant then this follows
from the above generality assumption and the fact that a general choice of
five lines has no quadrisecant. Otherwise, there will be at least three
components λ , λy and λ^ which do not meet λ. But the intersection of
the three hypeφlanes [λ,-, λy], [λy, λ J and [λi9 λk] is the trisecant to λ/9

λj and λ^, so at least one of these three hypeφlanes must fail to contain
λ.

Assume then that λ does not meet either of λi and λy and that λ
does not lie in the hypeφlane [λ,., λy]. Suppose further that λ has
property (A).

Choosing general points Pt e \t and Py e \j9 together with λ,
uniquely determines a hyperplane. If we can show that choosing general
points Pi e λz and Pj e λy, together with λ, uniquely determines a
hypeφlane which meets C in exactly five points then we are done: by
property (A) there is a 2-plane through these five points (two of which are
Pi and Pj) and varying the points P{ and Py gives a 2-dimensional family
of such 2-planes in G(3,5) rather than a curve.

Pi

FIGURE 3

Let Qi G λz and Qj e λy be general points (see Figure 3). If the
hypeφlane [λ, Pi9 Pj] is the same as the hypeφlane [λ, Qi9 Qj] then this
hypeφlane contains λ, A, and XJ7 contradicting our assumption, so these
hypeφlanes must be different. But the general hypeφlane through λ can
be determined in this way (since λ does not meet either λ, or λy) and the
general hypeφlane through λ does not contain any component of C.
Hence we have accomplished our goal of the previous paragraph and
hence have proved Theorem 5.2. D
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