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GENERALIZED ROTATIONAL HYPERSURFACES
OF CONSTANT MEAN CURVATURE

IN THE EUCLIDEAN SPACES, II

Wϋ-YI HSIANG AND HSUEH-LING HUYNH

Among various basic local differential geometric invariants of a
given hypersurface in the euclidean (n + l)-space, Mn c En+ι, the
mean curvature, i.e. the trace of the second fundamental form, is cer-
tainly one of the simplest numerical invariants with important geometric
meaning, namely, the first variation of "area". Therefore, complete
hypersurfaces of constant mean curvatures in En+1 naturally constitute a
nice family of simple global geometric objects that certainly deserve
special attention. Especially, those closed ones can be considered as
natural generalizations of "soap bubbles" and the problem of such
generalized soap bubbles in the euclidean spaces has been attracting the
attention of differential geometers since Euler and Monge.

This paper is the second part of a systematic study of hypersurfaces
of constant mean curvatures in En+ι which are of generalized rotational
types, succeeding a previous paper with the same title.

Historically, the study of rotational surface of constant mean curva-
ture in E3 can be traced back to the work of Delaunay in 1841 [8], in
which he discovered a beautiful way of constructing the generating curves
of such rotational surfaces, namely, the trace of a focus by rolling a given
conic section on the axis.

In the paper preceding this one [I], it was proposed to generalize the
study of rotational surfaces in the setting of invariant hypersurfaces of a
given isometric transformation group ((?, En+ι) with two-dimensional orbit
space, namely, hypersurfaces of generalized rotational types. Such isometric
transformation groups, (G, 2s*+1), of cohomogeneity 2 were classified in
[13] and they can be naturally divided into five types according to the
geometric shape of their orbit spaces, which are linear cones of angle π/g,
g = 1,2,3,4 and 6 respectively. The case g = 1 consists of the usual
rotational transformation groups, (O(«), En+ι), and it was proved in [16]
that the generating curves of O(w)-invariant hypersurfaces of constant
mean curvatures can again be obtained by rolling construction, a straight-
forward generalization of the above mentioned theorem of Delaunay. The
next case of g = 2 consists of those transformation groups (O(p) X
O(q), Ep+q), p,q > 2, and this is exactly the case studied in the paper
preceding this one [I]. One of the main results of [I] is the existence of
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infinitely many non-congruent 0(p) X O{q)-invariant immersions of
gp+q-i -* EP+q wjth constant mean curvature 1 for each given pair of
p, q > 2. The purpose of this paper is to extend the results of [I] not only
to all the remaining cases of cohomogeneity two orthogonal transforma-
tion groups with g = 3,4 and 6, but also to all cases of rank 2 isoparamet-
ric foliations. Roughly speaking, isoparametric foliations of euclidean
spaces are a kind of "geometric abstraction" of the orbital foliations of
the isotropy representations of symmetric spaces. In particular, the family
of rank 2 isoparametric foliations of euclidean spaces constitutes a geo-
metric generalization of the family of orbital foliations of cohomogeneity
2 orthogonal transformation groups classified in [13], and hence, foliated
hypersurfaces of such a given foliation are a kind of further generalization
of those generalized rotational types proposed in [I].

Let & be a given rank 2 isoparametric foliation of En+2, x0 an
arbitrarily chosen generic point, and ^(x0) the leaf passing through x0.
Then the normal plane of ^(x0) at xθ9 E*9 intersects perpendicularly
with every leaf of J^ and has an induced transformation group of Coxeter
type [20] (cf. §2A). Let Co be a Weyl chamber of the above associated
Coxeter group, (W,E2

o), and Mn+ι is a foliated hypersurface in En+2.
Then Co is a wedge region of angle π/g, g = 1,2,3,4 or 6, which
intersects every leaf of J^ exactly once, and hence, a foliated hypersurface
Mn+1 is uniquely determined by its generating curve, Mn+ι Π Co. In §2
we shall show that the generating curves of foliated hypersurfaces of
constant mean curvature h are characterized by a specific ODE (cf. §2C).
We state the main results of this paper in terms of the geometric behavior
of the global solution curves of the specific ODE (*, J*") of §2C.

THEOREM A. Let γ = {y(s) = (r(s),θ(s)); - o o < s < + o o } be a
global solution curve of (*, #") parametrized by its arc length s. Then there
exist two constants dx(hy &) andd2{h, 3F) such that

lim r(s) - sinθ(s) = dλ(h9
s-* - o o

Urn
g

namely, every global solution curve has the following two straight lines

as its asymptotic lines.
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THEOREM B. Every global solution curve, γ, can hit the boundary line
θ = 0 (resp. θ = π/g) at most once. There is a well-defined winding
number of γ, n(y), such that the total change of direction of y is given as
follows

σγ( + oo) - σγ(-oo) = (2n(y) - l)π + —

where oγ(s) denotes the directional angle of y at y(s) and σγ(± oo) are the
limiting values of oy(s) as s -> ±00.

REMARK. By our definition, each instance of the solution curve γ
hitting 9C0 will contribute 1 to the winding number n(y). Therefore, it is
not difficult to show that n(y) > the number of boundary points on γ.

THEOREM C. (i) To each integer k > 0, there exists a global solution
curve y with n{y) = k and not hitting 3C0. (ii) To each k > 1, there exists a
global solution curve y with n(y) = k and hitting dC0 exactly once at the
line θ = 0 (resp. θ = π/g). (in) To each k > 2, there exists a global
solution curve y with n(y) = k and hitting dC0 twice.

THEOREM D. There exist infinitely many non-congruent ^-foliated
immersions of Sn&ι -» En+2 with constant mean curvature 1, for each rank
two isoparametric foliation, J^, ofEn+2 with g = 2,3,4 or 6.

REMARKS, (i) In the case g = 2, the above four theorems constitute
the main results proved in [I], In this paper, we shall provide a unified
proof of the above results which cover all cases of rank two isoparametric
foliations with g = 2,3,4 or 6.

(ii) In the special case of g = 2, there exist two auxiliary functions
(denoted by / and / in [I]) which are automatically monotonic along any
given solution curve. These two auxiliary functions together with their
monotonicity play a crucial role throughout the whole proof of [I]. How-
ever, in the cases g = 3,4 or 6, the corresponding auxiliary functions are
no longer monotonid It is exactly the lack of such monotonicity for the
cases g = 3,4 and 6 that makes it necessary to seek a different approach
other than that of [I], especially in the proof of Theorem A.

(iii) The above four theorems describe some of the major geometric
features of the "generating curves " of foliated hypersurfaces of constant
mean curvatures. Conceptually, they constitute an extension of the classi-
cal theorem of Delaunay to considerably greater generality, which also
happens to include many varieties of new examples of "soap bubbles".
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(iv) The techniques developed in this paper can also be applied to the
study of soap bubbles in symmetric spaces, cf. [12].

2. Isoparametric foliations of the Euclidean spaces and foliated
hypersurf aces of constant mean curvature.

A. Isoparametric Foliations of the Euclidean Spaces.
An isoparametric hypersurface in a space of constant curvature (i.e., a

euclidean, spherical or hyperbolic Riemannian manifold) is, by definition,
a level surface of an isoparametric function, namely, a function /:
Mn+\c) -> R satisfying Δ/ and |v/ | = 0 (mod/). Geometrically, the
level surfaces of such an isoparametric function constitutes a "parallel"
foliation of hypersurfaces of constant mean curvatures. We shall call such a
foliation a codimension one isoparametric foliation of Mn+1(c). Such nice
geometric structures were first studied by B. Segre and E. Cartan. In a
series of papers [3, 4, 5, 6] of E. Cartan, he was particularly fascinated by
the profound depth of the spherical case and its mysterious connection
with the Lie group theory. This subject was somehow forgotten until it
was revived by a sequence of recent papers by Nomizu [19], Mϊmzner [18],
Ozeki-Takeuchi [21], Feras-Karcher-M'ύnzner [9]. Higher codimensional
generalization of isoparametric foliations was proposed in a recent paper
of Terng [22], namely, a submanifold Nn in Mn+k(c) is called isopara-
metric if its normal bundle is flat and the principal curvatures in the
directions of any parallel normal vector field are constant; an isoparamet-
ric foliation of Mn+k(c) is, by definition, a parallel foliation by isoparamet-
ric submanifolds and their focal varieties. We refer to [22] for a general
theory as well as some basic theorems on isoparametric foliations in
En+k.

A typical example of isoparametric foliation (which, in fact, motivates
its definition, cf. [22]) is the orbital foliation of the adjoint action of a
compact connected Lie group G on its Lie algebra g. It follows from the
maximal torus theorem of E. Cartan that the above orbital foliation has
the following basic geometric properties:

(i) the principal orbit type is G/T,
(ii) the Lie algebra of a given maximal torus, Γ, i.e. a Cartan

subalgebra If}, intersects every G-orbit perpendicularly,
(in) the Weyl group W = N(T)/T acts on ΐ) as a group generated by

reflections and Q/G = ϊ)/W.
The above result was generalized by E. Cartan himself to the setting of the
isotropy representation of a symmetric space M = G/K, namely,

(i) a normal plane, ί), to an arbitrary principal K-orbit in p automati-
cally intersects all X-orbits perpendicularly
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(ii) there is an induced Coxeter group (W, ί)) such that p/K = ϊ)/W.
Let Mn be a given isoparametric submanifold in En+k and Ek be the

normal plane of Mn at a point x e Mn. Choose an arbitrary base point
JC0 on Mn. Then Ek intersects Mn peφendicularly at a finite number of
points and, moreover, there is a unique parallel translation ΠX i X2: Ek

o =
JE£ -» !?£ = is *o for each given pair of points xv x2 e 2?^ n Mw, thus
generating an induced transformation group (W,Ek

o). It was proved in
[22] that (W, EkJ is automatically a group generated by reflections, called
the associated Coxeter group of Mn c En+k. It follows from a theorem of
Chevalley [7] that the ring of ^-invariant polynomials of Ek = R* is a
free algebra generated by k homogeneous generators, say {wz; 1 < i < k).
It was proved in [22] that each «• extends uniquely to a homogeneous
polynomial on En+k = Rn+* which is constant on Mn and moreover,

u = (ul9...,uk): En+k

defines an "isoparametric map" whose level surfaces form an isoparamet-
ric foliation of En+k. As one can see from the above brief account of
isoparametric foliations, it is exactly a kind of "geometric abstraction" of
the orbital foliations of these isotropy representations of symmetric spaces.

B. Foliated Submanifolds of a Given Isoparametric Foliation.
For a given codimension k isoparametric foliation on En+k, let

(W,Rk) be its associated Coxeter group and p: En+k -> Rk/W be the
associated projection map. By definition, the above, map, p, is a Riemann-
ian submersion of a particularly simple kind, namely, in the terminology of
O'Neill [20], the submersion tensor A is identically zero and the second
fundamental form tensor T is constant along each generic fiber. A
foliated submanifold of En+k is, by definition, a submanifold which
consists of a suitable subcollection of leaves. Hence, a foliated submani-
fold, Mn+d

y intersects with the normal section, R*, transversally and is
uniquely determined by the above intersection, Mn+d Π R*.

The tangent bundle of each isoparametric submanifold Mn in En+k

has a splitting as the orthogonal direct sum of the subspaces of equiprin-
cipal-directions:

TMn= 0 Σ{Ej\timEj = mj9\ *j <> g).

The integral submanifold of Ej passing x0 e Mn Π R^ is a round sphere
of dimension m} which intersects R* at the antipodal point of x0, say xj9

and moreover, {Π 1 <j < g) are exactly those generating reflections
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of W. We shall call my the marked multiplicity of the jth reflection
hyperplane, HJ9 and call the above structure a Coxeter group with marked
multiplicities. Observe that the projection map p: EnΛrk -» Rk/W is a
Riemannian submersion with A = 0 and T completely determined by the
above Coxeter group with marked multiplicities. Therefore, it forms a
complete set of invariants for the local geometry of the given isoparametric
foliation. In particular, it is quite straightforward to write down the second
fundamental form of a foliated submanifold, Mn+d c En+k, in terms of the
second fundamental form of its image, Md c Rk/W, and the following
set of distance functions, namely,

( v the distance between x and the ]
'{*' = jth hyperplane HJ91 < j < g

where x e Md c Rk/W and Rk/W is identified with a chosen Weyl
chamber of (W,Rk).

C. Rank Two Isoparametric Foliations and Foliated Hypersurfaces of
Constant Mean Curvatures.

In this paper, we shall mainly exploit those rank two isoparametric
foliations on euclidean spaces to construct families of examples of constant
mean curvature hypersurfaces. For a given rank two isoparametric foliation
on En+1, its associated Coxeter group is a dihedral group, (W; R2), whose
fundamental domain, R2/W, is a wedge with its angle equal to π/g,
g = 1,2,3,4 or 6 [cf. 13]. Since the cases g = 1 and 2 have already been
treated in [16] and [I] respectively, we shall only discuss here the remain-
ing cases of g = 3,4 and 6 as follows:

(i) If g = 3, then it was proved by E. Cartan [4, 5] that there are
exactly four cases with uniform marked multiplicities 1, 2, 4 and 8
respectively. They are the orbital foliations of (SO(3),R5), (SU(3),R8),
(Sp(3), R14) and (F49R

26) respectively.
(ϋ) If g = 6, then it was proved by Abresch [1] that they must also be

with uniform marked multiplicities 1 or 2.
(iii) The case g = 4 is certainly the most involved and also the most

interesting one. There exist a large family of non-orbital examples ob-
tained by means of orthogonal representations of Clifford algebras [9] and
the exact extent of possibilities of marked multiplicities is still not yet
completely determined. We quote here the following theorem of Abresch
[1]:

THEOREM 2.1 [Abresch]. Let m_< m+ be the marked multiplicities of
the two generating reflection lines of a given rank two isoparametric foliation
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with g = 4. Then they satisfy one of the following three conditions:

(4A): m + + m_+ 1 is divisible by 2K := min{2σ 12σ > m_ },

(4B1): m_ is a power of 2 and 2m _ divides m + + 1,

(4B2): m_ is a power of 2 and 3m_= 2 -(/w + + 1).

Let M Λ + 1 be a foliated hypersurface of constant mean curvature in

En+1, Co = R2/W be a chosen Weyl chamber of its associated Coxeter

group (W,R2) and γ = Mn+1 Π Co be the generating curve of Mn+ι.

Then one has the following characterizing ODE of γ, namely,

LEMMA 2.1. In terms of the polar coordinates (r, 0), 0 < r < oo,

0 < θ < ττ/g, the above generating curve, y = Co Π Mn+1, of a foliated

hypersurface of constant mean curvature h is characterized by the following

ODE (*,&):

(i) the case g = 3: k = 1,2,4,8

(*)3 ^ = (3*

k f cos σ sin(σ + 77/6) sin(σ - ττ/6)

~ cos(0 + π/6) " cos(β - τr/6)/'

(ii) /Ae cα ê g = 6: A: = 1,2

(*)6 ^ -

A: ί cosσ sinσ sin(σ + ττ/6) sin(σ — τr/6)

r\ sin^ cosβ cos(^ + π/6) cos(0 - τr/6)

sin(σ + π/3) sin(σ — τr/3)

" cos(0 + τr/3) " cos(0 - ir/3)/'

(iii) the caseg = 4: {k, /} = {w+, m_}? (c/. Theorem 1.1)

<ίσ _ , , . . . .χτ , k I cosσ sinσ

sin(σ + fl /4) sin(σ — τr/4) |

r\cos(0 + π/4) + cos(0 - τr/ 4 )Γ

where s is the arclength parameter of γ and σ is the angle between the

positive x-direction and the tangent direction of γ.
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Proof. Let v(r,θ) be the /t-dimensional volume of the isoparametric

submanifold passing through the point (r, θ). Then it is not difficult to see

that

where c 0 = a suitable constant, pt(r, θ) is the distance between (r, θ) and

the ίth reflection line, and mi is its marked multiplicity. Moreover,

straightforward computation will show that

and hence the characterizing ODE (*) g for each of the specific cases of

g = 3,4 and 6.

3. Some analytical lemmas and the proof of Theorems A and B.

A. The Analysis of the ODE (*, &) in the Neighborhood of dC0.
At a boundary point of Co, say (r, 0) or (r9π/g)9 the ODE (*,

becomes singular because the denominator of one term tends to zero.

However, one has the following lemma of existence and uniqueness on

solution curves of (*, J5") passing through a boundary point:

LEMMA 3.1. To each point P = (r,0) (resp. Q = (r9π/g))9 r > 0,

there exists a unique solution curve of (*, J^) passing through P {resp. Q)

which forms a perpendicular cusp point at P (resp. Q) and depends on r

analytically.

We refer to Proposition 5 of [I] and Proposition 1 of [11] for a proof

of the above Lemma 3.1.

From now on, we shall always assume, for simplicity of notation, that

h = 1. We shall denote the unique solution curve passing through (Z>, 0)

(resp. (b9ir/g)) by γ ( W ) (resp. γ ( M / g ) ) and moreover, use γ (^ 0 ) (resp.

Y(6,o)) t o denote the segment of y(b0) which consists of points after (resp.

before) the cusp point (6,0). For a given b > 0, it follows from Lemma

3.1 that there exists a sufficiently small 8(b) > 0 and two coordinate

systems {(w, y)} and {(v, y)}9 of the δ(Z?)-collar neighborhood of the

segment { ( r , 0 ) ; 6 < r < o o } such that

0 <y = rsinfl < 8(b)

and γ (7 0 ) (resp. γ(%)) is exactly given by u = r (resp. v = r) for all

b < r < oo.
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In such a 8(b)-collax region, the value of r sin# is very small and

hence the curvature, dσ/ds, of a solution curve inside this region is

dominated by the term fccosσ/rsinβ. Therefore, unless γ is, in fact, the

curve u = r0, a solution curve γ will make a rapid turn back as it

approaches the boundary θ = 0, as indicated in the following Figure 1.

\

v
O,o) (> ,o) 0 = 0

FIGURE 1

LEMMA 3.2. Lei γ,, 0 < / < 1, be a continuous family of solution curves

of (*, J*"), u(t) (resp. v(t)) be the u-coordinate (resp. υ-coordinate) of the

entrance (resp. exit) point of yt and (u(t), y(t)) be the (u, y)-coordinate

of the unique y-minimum point of yr If y(t) > 0 for all 0 < t < 1 and as

t -* 0

limj>(0 = 0, limu(t) = r0

then the directions of yt at the y-minimum point, 0 < t < 1, must be the

same and lim u(t) = Y\mv(t) = r0 as t -> 0.

Proof. Since y(t) is assumed to be positive for all 0 < t < 1, it follows

directly from the continuity of yt that the direction of yt at the j-mini-

mum point must be the same.

Let tn be an arbitrary sequence with lim tn = 0. Without loss of

generality, one may assume that, as n -> oo,

lim u ( t n ), lim v (t n), lim σn and lim σ̂  all exist

where on and o'n are respectively the entrance and exit direction of yt.

Then it follows from the assumptions limy(t) = 0, limΐι(t) = r0, and

Lemma 3.1 that

I i ( i J H ( ^ ) = r0
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and limσw (resp. limσ^) must be equal to the entrance (resp. exit) direction
of γ(ro>o) F°Γ otherwise, those γ^ with large n should be a [/-shaped curve
with the bottom part coasting very closely along the singular boundary
0 = 0.

Such a solution curve is impossible because the dominating large
value of the term k cos o/r sin θ will make any solution curve sharply turn
away from the line θ = 0.

B. The Analysis of Two Auxiliary Functions.
In analyzing the geometric behavior of global solution curves of

(*,J^) for the special case of g = 2 in [I], there are two auxiliary
functions, denoted by / and /, which play the key role throughout the
discussion of [I]. One of the crucial properties of these two auxiliary
functions of [I] is their monotonicity along any given solution curve (cf.
Proposition 4 of [I]). In this subsection, we shall again introduce the
following two auxiliary functions and study their properties along certain
specific segments of solution curves.

DEFINITION. For g = 3,4 and 6, set n = 3k, 2k + 2/ and 6k respec-
tively; and let kf = k if g = 3 or 6, kf = / if g = 4. Define

π\]k' . ί mm
/•cos θ + 7r sin σ + — -

2 g!\ I 2 g

k' + 1

/ = [r sinfl^cosσ + 7-

k'+l

As we shall see, the behavior of γ as s -> - oo is governed through an
analysis of /, in the same way that / governs the behavior of γ as
s -> + oc. Henceforth we shall only exhibit our lemma for /.

Since y = sin σ, we have

ds = yky — σ
y

where the dot denotes differentiation with respect to s. Thus we see that /
is a first integral of the equation

kcosσ
σ = (n + 1) +

y

*In the ensuing discussion, both rectangular coordinates (x,y) and polar coordinates
(r,θ) will be used as convenient.
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obtained from the ODE (*, 3^) by removing the terms contributed by all
but one factor in the volume function (see the proof of Lemma 2.1). These
equations were thoroughly studied in [16]. In particular, the asymptotic
line as s -* - oo stated in Theorem A is a solution of the above equation
with σ = 0.

dJ_

ds

LEMMA 3.3. Along a given solution curve of ODE (*,

(i)

k sinσ [3 cos0 sinσ + sin0cosσ] , „

yk 1 L forg = 3;

r(j + cos 20)

k sinσ[((A: + /)cos20 + /) sinσ + /sin20cosσ]
= <

Jor 8 ~ 4;

ky

. L c o s 4 5 c o s 2 5 1 . . . . s i n 2 0
sinσ 3—x 1 r h -r sinσ + sm40 4 r— cosσ

rcos0 (cos 20

forg = 6.

(ii) The ranges of non-monotonicity ofJ are given as follows: (dJ/ds) <
0 if and only if π — a.<σ<<πora<σ<Q, where

(1/3 tan 0 forg = 3;

sin2
- forg = A\

tanα(0) =
+ /)cos20

Γ . . . , sin201
sin 40 + — r —

2 J
*[cos 40 cos 20 11

Λ 2 + 2 + 4 j

forg= 6.

Proof, (i) For g = 3, compare the expression for dJ /ds in Remark (ii)
with the ODE (*, J*"); we have

dJ_ _ kyky f sin(σ + ττ/6) sin(σ - π/6) \

~ds ~ r \cos(0 + 7r/6) cos(0 - τ r /

The assertion follows by direct computation, noting that y = sinσ. For

g = 4 or 6, the proof is similar, (ii) follows easily from (i).

REMARK. For g = 3, 4 and 6,

J> -
k 1

n + 1 I k + 1 '
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The lower bounds are attained by the straight lines y = k/(n + 1), which
will be shown to be the asymptotic lines of Theorem A.

Let us now consider a segment of a fixed solution curve γ of the ODE
(*, &) which contains a local maximum for yy at s = sx followed by a
local minimum for yγ at s = s0. We will allow y(s0) to be a boundary
point, viz. yy(s0) = 0. Referring to Figure 2, we define certain functions
of y for yγ(s0) < y < yy(sx). Set s0 > s(y) > sλ> s'(y) so that yx >

y(s) = y{s') > y0. Let a(y) = σ(s) - <π and a\y) = π- σ(s'). Set J(y)

= J(s), J\y) = J{s'). We define s\ a\ J' only when s' is in one-to-one
correspondence with y, which means that they are defined where 0 < a'
< ττ/2.

FIGURE 2

We have come to the important cancellation lemma that helps to
overcome the non-monotonicity of /.

LEMMA 3.4. Fory < yλ and when s' is defined,

J(y)>J'(y), *{y)>a'(y).

Proof. First observe that / = (n + l)/(k + l)yk+ι - cosα yk, and
a similar relation holds for /', a'. Hence the two inequalities in the lemma
are equivalent. Now

It suffices to show that the integrand is positive.
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Recall Lemma 3.3(i). For g = 3,

df] _ i ^[3cos0sinα + sin0cosα]
Ty '

_ d/1 J-Scosfl'sinα7 + sJnfl'cosα']
φ L ~ y r'(|+cos20')

It is clear that r < rf and 0 > θ\ so that the denominator of [~<
is greater than the denominator of [ — dJ/dy]s, > 0. We need only show
that

[3cos0sinα: -f sin^cos^J —[ — 3cosθ'sma' -f sin^'cos^7] > 0.

But

the last quantity > 3 cos θ sin a + cos a sin θ - sin 0'

> (3cos0sinα 4- cosαsinfl) — sin#, since θ > θ\

> min{3cos0 - sin0, sin0 - sin0} > 0 forO < Θ < ^,

since the minimum of the sum of the positive terms occur either at a = 0
or a = 7r/2.

For g = 4, the same argument reduces the assertion to showing that

[((k + /) cos20 + /) sinό + /sin20cosα]
7 + /)sinα/ + /sin20/cosα/] > 0.

The last quantity > min{(A: + /) cos20 + / - /sin20, lύnlθ - /sin20}
> 0 for 0 < θ < π/4.

For g = 6, we need to show that

L/COS40 cos20 1 \ . / . sin20\ ]
3 1 — ^ — + — 2 — 4 | S i n α + ( s i n 4 ^ +

 2 ) C o s α

cos40' cos20'
4

The last quantity > m i n { 3 ( ^ + ^ + i ) -(sin40 4-

/ . λύ t sin20\ / . Λύsm40 -f- —~— - sm40 +

> 0 for 0 < θ < 25°.
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Although 25° falls short of the full range for θ, this estimate suffices

for our purpose, as it is impossible for a local maximum of y to occur

with the specified orientation, and with θ > 25°. In fact, the present case

compares favorably with the minimal equation (h = 0) for the same group

of transformations, where such behavior is established in [10] (cf. Proposi-

tion 1, especially paragraph (b)).

As a simple but important consequence of the fact a(y) > a\y), we

have the following

COROLLARY 3.4. There is a local minimum for yΎ at s2 with s2 < sx and

Proof. Since sx is a local maximum of yy, clearly there is an s2 < sx

such that either yy(s2) = 0 or s2 is a local minimum of yγ, and further-

more that all points on γ between sx and s2 are neither local j-minima

nor boundary points.

Let us assume yy(s2) = 0, or yΎ(s2) is a local minimum but with

yΎ(s2) < yγ(s0). In either case, we can find an s' such that s0 > sλ > s > s2

and .yγ(s0)
 = 7o = yΎ(sΊ- B ^ then a(y0) = 0, a(y0) = σ(s) - <π > 0. This

contradicts Lemma 3.4 and proves the corollary.

C. The Proof of Theorems A and B.

In order to establish Theorem A, namely, that all global solution

curves of the ODE (*,IF) are asymptotic to the line y = k/(n + 1) as

s —» — oc (and the corresponding statement for s —> + oc), let us first

record a lemma which is, in essence, covered in [I].

LEMMA 3.5. Suppose γ is a solution curve of the ODE (* , J*~) such

that, as s —> — oo, yy remains bounded, xy —> 4- oc, and J < 0. Then γ is

asymptotic to y = k/{ n 4- 1) as s —> — oo.

Proof (sketch). Recall that the ODE (*, &) takes the form

/:cosσ ( v
σ = C + — - — + φ{x,y,σ)

where C is a constant and φ(x, i , σ ) - > 0 a s x - > + oo and y bounded.

Now

J = , yk+ι + c o s σ yk, h e n c e -j- = ykyφ(x, y,σ).
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If γ behaves as in the hypothesis, then for a sufficiently large s0, s > s0

implies that 0 < y < M and \φ(x, y9o)\ < δ/Mk+1 for some prescribed
8 > 0. Whence

M k + l

y(s0)

Mk\y(s)-y(s0)\<δ.

Thus the curve γ is closely approximated by a curve defined by / = Jy(s0)
< 0, which is an x-translational invariant, slowly oscillating curve; when

JΎ(so) = ~[k/(n + ΐ)]k(k + 1)> i e Λe infimum for /, this curve is the
line y = k(n + 1).

Moreover, when s is very large and negative, θy is very small. By
Lemma 3.3(ii), the range of σ for which (dJ/ds) < 0 appears only for a
glimpse.

Let us assume, contrary to the desired conclusion, that γ is not
asymptotic to the line y = k/(n + 1). Then we can remove segments of γ
including parts where (dJ/ds) < 0, and apply the estimate in the proof of
Theorem 1 [I] to obtain a contradiction; for details, we refer the reader to
that paper.

In [I], by virtue of the monotonicity of the analogous auxiliary
function /, one can easily see that \J — negative constant] < δ eventually
(s -> — oo) for all solution curves. Here we shall first prove this for a
certain class of solution curves, and then extend the conclusion of the
theorem to all curves by continuity, noticing that asymptoticity is a closed
property relative to the deformation of solutions.

LEMMA 3.6. Consider a solution curve γ such that for one value sQ of s,

yγ(s0) is a local minimum of yy with oy(s0) = 77, or yy(s0) = 0, and also

Jy(s0) < 0. γ is asymptotic toy = k/(n 4- 1) as s -> — 00.

Proof. First we argue that there is a local maximum of y at some
γ O J with sx < sQ. Assume the contrary; then as s -> - 00, either y
increases without bound or γ approaches a horizontal line asymptotically
from below. The latter possibility is dismissed since solution curves with
large x and bounded y are oscillatory. For the former possibility, / -»
+ 00 as .y0 > s -> — 00. However, note that dJ/ds > 0 for m < σ < 3ττ/2.
Also, the situation depicted in Figure 3 is prohibited by the differential
equation. Together it means that / would decrease as s0 > s -» —00,
which is a contradiction.
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FIGURE 3

We are now placed in the hypothesis of Lemma 3.4. Apply Corollary

3.4 and the above argument repeatedly. We obtain a succession of j -local

minima y0 < y2 < y4 < as s -* — oo; and, in between, a succession

of j-local maxima yl9 y39 y5, Let si be the corresponding parameter

values to these points. Note also the points y(st) where st_x > st > st (i

an odd integer) and y(st) = y(si+1).

By Lemma 3.3(ii), / ( s ^ ) > J(st) > /($,-). By Lemma 3.4, J(st) >

J(si+1). Hence 0 > Jo > J2k+ι for all k. This implies that as s -> - oo,

/ < 0 and y remains bounded. It is also obvious that x -> +oo. The

required asymptoticity of γ now follows from Lemma 3.5.

Observe that r = 1 is a solution of the ODE (*, &). It is part of a

global solution curve Γ2 with a point where y = 0; as an immediate

corollary of the above lemma, we have

LEMMA 3.7. The solution curve Γ2 is asymptotic to the line rsinθ =

k/(n 4-1) as s -> - oo, and to the line r sin(ττ/g — θ) = k'/(n + 1) as

s -» 4- oo.

A feature new to the cases g = 3,4 or 6 is the possible appearance of

points of inflection on a solution curve, where y = 0 and y = 0. In the

previous case g = 2 of [I], the last condition would force the solution

curve to be the horizontal line. We restrict our attention to those points

where σ = π and σ = 0.

LEMMA 3.8. (i) The above mentioned type of point of inflection along any

solution curve occurs on the locus defined by

- 2 ^ /org=3

k Ifl
y (2k + 2/ + 1) (2k + 21+ l)(x2 - y2) J°r 8

k 2
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(ii) Given any point on the locus, there exists a unique solution curve
having this point as a point of inflection.

(ii) The set of solution curves possessing a point of inflection of the above
type is closed.

(iv) A solution curve having a point of inflection of this type is asymp-
totic toy = k/(n + 1) ass -> — oo.

Proof, (i) The locus is obtained by putting σ = π, σ = 0 into ODE
(*, J£~). (ii) is immediate and (in) follows from (i) and (ii).

For (iv) let y(s0) be the point of inflection. It is easy to see that yy is
in fact increasing with increasing s near y(s0), hence there is a jMocal
minimum or a point with y = 0 at some y(s^) with s0 > sv Then apply
Lemma 3.6.

We shall now use crucially the continuity principles established in
§3A. Note that they cover the circumstance under which some of the
solution curves may contain boundary points during a continuous change
of initial conditions.

LEMMA 3.9. Let {yt: 0 < t < 1} be a continuous family of global
solution curves with γ0 = Γ2 (cf. Lemma 3.7). Then yλ is asymptotic to
y = k/(n + 1) as s -> — oo.

Proof. Let Σ = {t e (0,1): γ, is asymptotic to y = k/(n + 1) as
s -> -oo}. Σ is open. Indeed, let t0 e Σ. Then on γ,o we can find a
y-local minimum γίo(^o) wi^1 σ(*so) = π> ό(sQ) < 0, and J(s0) < 0. These
are clearly open conditions, so that such points can be found on curves in
a neighborhood of γ v Lemma 3.6 then implies the asymptoticity of these
neighboring curves.

Now if yx has a point of inflection, then Lemma 3.8(iv) will give its
asymptoticity. Otherwise there is an interval (1 — ε, 1] on which no curve
has a point of inflection, by Lemma 3.8(iii) . Furthermore, since Σ is
open, one may assume without loss of generality that all the curves in
(1 — ε, 1) are asymptotic. Let t e (1 - ε, 1) and s(t) be parameters at
which yt(s(t)) are }>-local minima of yt with Jy{s(t)) < 0. If s{t) is
unbounded as t -> 1, then we see that yλ is governed by Lemma 3.5 and
therefore asymptotic. So we assume s(t) -> sx < oo; three possibilities
arise:

(a) όy(s(t)) -> 0. yι(sλ) is a point of inflection of γ1? contrary to
assumption.
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(b) όy(s(t)) is bounded and +> 0. yi(sx) is a 7-local minimum with
J < 0. yx is asymptotic by Lemma 3.6.

(c) ό (s(t)) is unbounded, y^s-^) is a boundary point with the correct
orientation, and so γ1 is asymptotic, again by Lemma 3.6.

Now every global solution curve can be linked to Γ2 through a
one-parameter family, and Theorem A is therefore proved.

The first statement of Theorem B, namely that a solution curve
cannot contain two points on the same boundary, is a direct consequence
of Corollary 3.4. As in [I], we define σy so that it has a jump of 4- π at a
boundary point (cusp). By Theorem A, ]ims_> + O0σγ(s) = 2nπ + (π/g),
whilst

DEFINITION. The integer n associated with a solution curve is called
its winding number.

Theorem B follows.

4. Evolution of global solution curves and the proof of Theorems C
andD.

A. Examples of Some Solution Curves and Their Winding Numbers.

EXAMPLE 4.1. Let Γo be the unique global solution curve with 0(0) =
τr/6, τr/12, and μ for g = 3,6,4 respectively, where

cotμ - tanμ _ /
cot(ju - 77/4) - tan(μ - π/4) k '

σ(0) = 0(0) + τr/2; r(0) = δ. For sufficiently small δ, there is a small
s < 0 such that T0(s) is a 7-local minimum with σ = π, J < 0. Therefore
no loops are formed for s < 0. Similar behavior is observed relative to the
boundary θ = π/g. Hence π(Γ0) = 0.

EXAMPLE 4.2. As δ -> 0 in the last example, the solution curve tends
to γ0 with r(0) = 0 and n(y0) = 1. Let γ be a curve with a point on the
boundary 0 = 0. Deforming γ through a one-parameter family of curves
with cusps towards γ0, we obtain a curve I\ with a cusp on θ = 0 and
«(Γ1) = 1. Similarly we get a Γ/ with a cusp on θ = π/g and n(T[) = 1.

EXAMPLE 4.3. The curve Γ2 of Lemma 3.7 has exactly two cusps and
n(T2) = 2. The segment between the cusps represents an embedded hyper-
sphere of constant mean curvature. By the theorem of Alexandrov [2], Γ2

is the unique curve with this property.
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LEMMA 4.4. For every integer N > 0, there exists a global solution curve
γ with n{y) > N.

Proof. We give a proof for g = 3. The other cases are similar. For
r > 9 and π/2 <θ< π/4,

cosσ sin(σ + π/6)

0 cos(0 -

kf 1 1
r\sinl5° cos75c

sin(σ - π/6)

cos(0 - π/6)

1

cos 15°
Consider a solution curve γ with r(0) = R and 0(0) = τr/6. Choose

R so large that R > 9 and (2A: + 1)/2Λ > (2JV - l)w + π/3.
By Theorem A, there exist s1 < 0 such that 0(ίx) = τr/12, and s2 > 0

such that 0(s2) = ττ/4. Then

[Δσ]^2 = Γ σds> Γ (2k + 1) ds > (2k + l)2Rsίa ^
sl Sl

(2k + 1)
- — — ^ (2N ~

7Γ

Since the situation of Figure 3 is untenable on any part of the curve
γ, it cannot "unwind" beyond s = st and s = s2. Hence n(y) > N.

B. Deformation of Global Solution Curves.
We shall now obtain all the curves stated in Theorem C by deforma-

tion of known examples, following the method of §3 [I], which we
summarize below. It is important to know that the winding number
cannot be changed except by a transition through boundary points. The
behavior of neighboring curves near a cusp is portrayed in Figure 4.

(1) We start with a curve with a large winding number N guaranteed
by Lemma 4.4. It may have no cusps, one cusp, or two cusps.

(2) If it has no cusps, then by deforming it through a one-parameter
family towards Γo, we obtain as an intermediate curve a γ with n(y) = N
and γ contains one or two cusps.

FIGURE 4
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(3) If γ has one cusp, by deforming it through a one-parameter family
of curves, each having one cusp, towards I\ or I\', we obtain a γ' with
n(y') = N and two cusps.

(4) Deform γ' further along curves having one cusp towards Tλ or Γ\',
we obtain γ " with n(y") = N — I and one cusp.

(5) We may obtain curves with two cusps and a smaller winding
number by repeating (3).

(6) Let γ be a curve with one cusp, then by a small deformation near
the cusp, we get a curve γ' with no cusp and w(γ') = n(y) — 1.

These deformations, together with the examples 4.1, 4.2, 4.3 and 4.4,
prove Theorem C. The segment of a solution curve between two cusps
generates an immersion of Sn+1 into En+1 with constant mean curvature
1. Examples with unequal winding numbers are clearly non-congruent.
This proves Theorem D.

For the topological types of the hypersurfaces generated by other
types of curves, we refer the reader to [I].
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