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ENVELOPING ALGEBRAS OF LIE SUPERALGEBRAS

ERAZM J. BEHR

We review elementary properties of Lie superalgebras and their
representations. These are later used in a discussion of the enveloping
algebra U(L) of a Lie superalgebra L from the point of view of
non-commutative ring theory. In particular, we show that U(L) has an
Artinian ring of quotients, that Harish-Chandra's theorem holds for
U(L) and that in several cases gl.dim(£/(L)) turns out to be infinite.

Interest in Lie superalgebras, motivated mainly by problems in homo-
topy theory and particle physics, dates back to the early 60's. As a natural
generalization of Lie algebras, Lie superalgebras appear to be promising
as an ingredient of unified field theories currently under investigation.
They are also interesting from a purely mathematical point of view, their
enveloping algebras providing a varied and rich class of associative
algebras.

In this paper we will give a brief review of well-known facts about Lie
superalgebras and their enveloping algebras; in doing so we will con-
centrate on those results that seem to be of greatest use for ring-theoretical
considerations. We will then present some new results, in the hope that
they may eventually have a bearing on representation theory of Lie
superalgebras.

Sections 1 and 2 contain notation, definitions and examples of Lie
superalgebras and their enveloping algebras. In particular, we give an
example of an enveloping algebra whose nilpotent radical is non-zero. In
§3 we give some elementary results involving ideals and radicals of an
enveloping algebra; we also prove at that point that in several important
cases the enveloping algebra has infinite global dimension. In §4 we
concentrate on the existence of an Artinian full quotient ring and on the
non-commutaitve extension of Hubert's Nullstellensatz. Section 5 de-
scribes the Joseph-Small additivity principle for enveloping algebras, and
gives an application of that formula to certain primitive ideals. It also
contains Harish-Chandra's theorem generalized to the class of Lie superal-
gebras. Finally, in §6, we list several unresolved problems which, in our
opinion, deserve considerable attention and indicate possible direction of
further study of enveloping algebras.
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In all of the following, Proposition (Theorem, Example etc.) X.Y
means Proposition Y in Section X.

The article consists of a fragment of the author's Ph.D. thesis com-
pleted under the supervision of Lance W. Small, to whom we hereby
express our deepest gratitude. We would also like to thank the reviewer
for his valuable comments and suggestions.

1. Superalgebras. Throughout this paper, k will denote a field of
characteristic 0. A ^-algebra A is called a superalgebra (or a 2-graded
algebra) if A is a direct sum of two vector spaces, A = Ao Θ Al9 such that
for any α, ίG{0, l } , AaAb^ Aaob, where a°b stands for addition
modulo 2.

Elements of Ao are called even, while those of Ax are odd. Writing
x e A uniquely as x0 + xx (JC, e Λf) we have a conjugation mapping
defined by JC0 + xx := xQ — xl9 which is obviously an automorphism of
the algebra A. An ideal / of A is graded if 1 = 1. A superalgebra
L = Lo Θ Lx is a Lie superalgebra if its multiplication, traditionally
denoted by [x, y] instead of xy, satisfies two other conditions:

(i) for any x e La, y e Lb (α, 6 e {0,1})

[*>JΊ = -{-ϊ)ab[y>χ\ a n d

(ii) for any X G ^ J G ^ Z G LC (β, 6, c e {0,1})

]] =0.

It follows that Lo is an anticommutative subalgebra of L, in which
the standard Jacobi identity holds. Lo is therefore a Lie algebra.

EXAMPLE 1. Let Lo be the two-dimensional (abelian) Lie algebra
with basis {e9f} and let V be a two-dimensional vector space with basis
{ g, A}. Define a representation p of Lo on F by

P ( . ) - ( J _•) and

Finally, let φ be the bilinear symmetric mapping from V X V into Lo

given by φ(g, Λ) = e + / and φ(g, g) = φ( A, A) = 0. Setting I = L o θ F ,
we can define multiplication on L as follows:

[*,>>]:= p(x)(y) foΐχ£ΞL0, y <Ξ V and

[x, j;] := φ(x, y) for x, y e F.

It is easy to verify that L is a Lie superalgebra, usually denoted by
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The above example illustrates the fact that in general a Lie superalge-
bra essentially consists of: a Lie algebra Lo, a finite dimensional represen-
tation (p, V) of Lo and a suitably chosen bilinear symmetric mapping
φ: V X V -» Lo (the conditions that must be imposed on φ are explicitly
stated in [Sch]).

We will now describe another natural way of constructing Lie superal-
gebras. If A = Ao Θ Aλ is an associative superalgebra, we will declare that
for x e Aa9 y e Ah (a, b e {0,1}) [x, 7] := xy - (-\)abyx. When this
operation is extended by linearity, A becomes a Lie superalgebra. One
important special case of this process is the situation in which A = Mr{k),
the algebra of all r X r matrices over the field k. Let r = m + n for some
non-negative integers m and n, and let

ijr = 0 lor 1 < i < m, m + 1 < j < r

and for m + 1 < i < r, 1 < j < m},

ιy = 0 for 1 < i < m, 1 <j<m

and for m + 1 < i < r, m + 1 < j < r}

or, symbolically

/* 0\ /0 *
i40 = I and ^i = L Q

By applying the above "super commutator" construction to A we obtain
the general linear Lie superalgebra pl(m, n) (see [Sch].)

Simple Lie superalgebras, which are of particular interest from the
standpoint of representation theory, have been completely classified in
[K]. Their list, along with the most widely used notation to which we will
henceforth adhere, can also be found in [Sch].

2. Enveloping superalgebras. Let L be a Lie superalgebra over the
field ky and let U be an associative fc-algebra with 1. U, together with a
linear map σ: L -» U is a universal enveloping algebra of L if

(i) for any x e La9 y e L6 (α, 6 e {0,1}),

x9y\) = σ{x)oσ(y) ~(- l ) σ(y)oσ(x)

and
(ϋ) for any associative /:-algebra J7' with 1 and a /̂ -linear map

of \L -* Uf which satisfies (i), there is a unique algebra homomorphism
r: U -» CT with r(l) = 1 and r o σ = σ\

It is well known (see eg. [Ro]) that a universal enveloping algebra of L
can be realized as a quotient of the tensor algebra T(L) modulo the
two-sided ideal / generated in T(L) by all elements of the form
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x <g> y - (~l)aby ® x - [x, y], where x e Lβ, j G L f e and α , K {0,1).
If σ denotes the natural mapping L -> Γ(L) -> T{L)/I = [/, then the
pair (I/, σ) is a universal enveloping algebra of L. We refer to (£/, σ) as //*£
enveloping algebra of L, denoting it by U(L).

From this point on we will be considering only finite dimensional Lie
superalgebras. In order to simplify notation, we will now quote a result
which is in fact a corollary to the next theorem.

Fact. The natural mapping σ:L -» U(L) is injective.
Therefore we can identify elements of L with their images under σ.

We will also use juxtaposition, rather than Θ, to denote multiplication in
U(L). The following generalization of the Poincare-Birkhoff-Witt theorem
describes the structure of U(L) as a vector space.

THEOREM 1 ([Ro], Theorem 2.1). Given any ordered basis {xl9...,xs}
of L consisting of homogeneous elements, the set of all products of the form

xi1 ''' xss (where xf = 1, pέ > 0 andpi < 1 whenever xt is odd)

is a basis ofU(L).

It is clear that if x e Lλ and [x, x] = 0 then x2 = [x, x]/2 = 0 in
U(L), which gives an early indication of significant differences between
U(L) and U(L0)—the latter never containing any zero divisors.

Another important characteristic of U(L) is the fact that it can be
filtered by the following ascending chain of its subspaces: £/(JL)(0) = k,
ί/(L)(1) = k + L and U(L)M = the subspace of U(L) spanned by all
basis monomials of degree < n. Then U(L) = Uί/(L)(z), and for any
Uj > 0 we have l/(L) ( / )£/(L)ω c U{Lγi+J\ We can now form the
associated graded algebra of U(L), which is defined as the Λ>direct sum

Gx(U(L)):= U{L)Φ) Θ U(L)a)/U(L)(0) Θ U(L)(2)/U(L){1) Θ - ,

with multiplication given by

(a + U(L)υ))(b + £/(L)ω):= α& + ί/(L) ( / + y""υ

and extended to Gr(£/(L)) by linearity. It follows immediately from
Theorem 1 that

where m = dim^ Lo, π = dim^ Lx and A(y l 5..., Yn) is the exterior alge-
bra on n symbols. It follows that Gr(U(L)) is a (left- and right-)
Noetherian ring, so that U(L) is Noetherian on both sides as well.
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The following result, which can be found in [Sch], is easy but useful.

PROPOSITION 2. U(L0) is a subalgebra of U(L). Moreover U(L), as a
U(L0)-module (both left and right), is free with finite basis.

Proof. Let { JCX, . . . , xm9 yv..., yn} be a homogeneous basis of L such
that x. e Lo and j/. e Lτ for all i = 1,...,m and j = 1,...,«. The
vector subspace of C/(L) spanned by all monomials cf1 jc£m with
/?, > 0 is, by the standard Poincare-Birkhoff-Witt theorem, isomorphic to
U(L0). The relations xtXj = XjX{ + [xi9Xj], which hold in both U(L0)
and £/(L), make it easy to verify that the vector space isomorphism
mentioned above is in fact an algebra isomorphism, which proves the first
assertion.

Since there are exactly 2n monomials y?1 - y*» (^, = 0 or 1), they
can be labeled Yo = j f jw° = 1, Yv..., y, -where 5 = 2M - 1. By Theo-
rem 1 we then have U(L) s t/(Lo)yo Θ U(L0)Yι Θ - - Θ t/(L0)y, as
left ί7(L0)-modules. Moreover, this form of elements of U(L) is unique,
so that the set (y0, Yv . . . , Ys] is a free basis of the left
£/(L0)-module ί/(L). The analogous statement for "right" instead of
"left" can be proved in the same way by starting with the ordered basis
{yl9...9yn9xl9...9xm}of the superalgebra L. Π

EXAMPLE 1. We will now use the above remarks to describe (in
considerable detail) the enveloping algebra of L = pl(l, 1). If

x = / i o\ (o o
Xι lo o r Xi lo l

Then {x1? x2} is a basis of Lo and { ĵ, j 2 ) is a basis of Lv Let yo = 1,
^i = yi> Yi = yi a n (^ 3̂ = ΛΛ According to Proposition 2 we have
ί/(L) s U(L0)Y0 Θ f/CLo)^ Θ C/(L0)y2 Θ U(L0)Y3 as left ί7(L0)-mod-
ules. Since Lo is abelian, U(L0) is simply the commutative polynomial
ring k[xly x2]. It follows from the multiplication table for L that we have
the commutation relations

- i)y 2, y3x1 = x1y3 and
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i.e. U(L) is a normalizing extension of U(L0). In addition, it is easy to
compute that

YJi = 0, Y,Y2 = Y3, Y,Y3 = 0,

Y2YX = -Γ 3 + Xl + x2, Y2Y2 = 0, Y2Y3 = (Xl + x2)Y2,

γ3γ, = (Xl + x2)γlf y3y2 = o and Y3Y3 = (Xl + * 2 ) y 3 .

All structure constants of l/(X) can now be derived from the above data.
A laborious but straightforward computation shows that U(L) is a prime
ring—even though it has many zero-divisors. However, in general an
enveloping algebra of a Lie superalgebra need not even be semiprime,
which is the main point of the next example.

EXAMPLE 2. We will consider the 7-dimensional subspace of M4(k)

with basis xx = -en + e22 + £33 + £44* *2 = eu " e w X3 = ~ e2i + e34>

Λ = 1̂3» Λ = 2̂4» Λ = ^14 + *23 a ϊ l d ^4 = *32 ~ e4V w h e r e /̂y denote

the matrix units. It is easy to see that this subspace is actually a
subalgebra of the Lie superalgebra pl(2,2), which is usually denoted by
b(2). The even part of b(2) (spanned by xv x2 and JC3) is the special linear
Lie algebra sl(2). According to Proposition 2 we can take the following
elements of U = ί/(b(2)) as a free basis over the algebra Uo = J7(sl(2)):

712 =
a n d y i5 =

Using the commutation relations in U obtained similarly as in Example 1
one can verify the following facts:

(i) the generators Yn and Y15 are normalized by Uθ9 i.e. U0Yi = Y)t/0

for / = 11,15 and
(ϋ) the vector subspace / = U0Yn Θ UQY15 satisfies IYj c / for all

i = 0,..., 15. This shows that / is a two-sided ideal of U. Moreover, since
IYn = (0) and IY15 = (0), it follows that I2 = (0) so that the nilpotent
radical of U is non-zero, while an enveloping algebra of a Lie algebra is
always not only a prime ring, but even a semiprimitive one.

We will now recall the role that the ring-theoretic structure of U(L)
plays in the representation theory of L.
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A representation of a Lie superalgebra I is a A>linear map p of
L into the space of endomorphisms of a vector space W9 for which

= p(x)°ρ(y)-(-l)abp(Y)°p(x) whenever x e L
β,and a, 6 e {0,1}.

It is clear that given any representation p: L -> End(f^) the resulting
action of L on PF makes WK into a left ί/(L )-module, and that every left
ί/(L)-module can be thought of as being a representation space of L. We
will recall that a ί/(L)-module IF is s/m/?fe if U(L)W Φ (0) and the only
subspaces of W which are invariant under the action of U(L) are (0) and
W itself. In this situation the annihilator of the t/( L)-module W, i.e. the
ideal Ann(W) = {x e l/(L) | * Ϊ F = (0)} is called primitive, while ΪF is
then isomorphic, as a ί/(L)-module, to a factor U(L)/M for some
maximal left ideal of U(L).

Thus the study of representations of a Lie superalgebra L is equiva-
lent to the investigation of modules over the ring U(L). In particular,
irreducible representations of L are equivalent to simple ί/(L)-modules.
This in turn motivates our interest in primitive ideals of ί/(L), which will
be evident in the following sections.

3. Elementary properties of the algebra U(L). As in the proof of
Proposition 2.2, we will fix an ordered basis {x l9..., xm9 yl9..., yn} of L
in which xt e Lo and yj e Lλ for i = 1,..., m and j = 1,..., π; the
monomials jf1 jtf» with ^ e (0,1} will be labeled Yo = 1, 7 1 ? . . . , ?;.
For brevity we will use the symbols Uo and U to denote the enveloping
algebras of Lo and L respectively.

PROPOSITION 1. (i) U is a left and right Noetherian ring,
(ii) for any right ideal A of C/o, the equality AJJ = U implies A = Uθ9

(in) every simple right U0-module embeds in a simple right U-module,
(iv) if </(-) denotes the Jacobson radical, then

S(u) n t/0 c/(c/0) = (o).

Proof, (i) See remarks in §2.
(ii) Let x e Uo. Then x tΞ U = AU = AY0® AYλ ® ®AYS, i.e.

x is of the form a0Y0 + +<z5Γ5, with the coefficients α, being uniquely
determined by x. Then x = Λ0, and hence Uo c >4.

(iii) Let M be a simple right £/0-module. Then M = UQ/A for some
maximal right ideal A of C/o. Since M Φ (0), (ii) implies that AJJ Φ U. U
is right Noetherian, which allows us to pick a maximal right ideal of U for
which A U c B. Then U/B is a simple right [/-module, and the canonical
mapping of ί/0-modules Uo/A -» U/B is injective.
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(iv) Let x G^/([/) Π UQ. Then x annihilates every simple right U-
module and hence, by (iii), Mx = (0) for every simple right ί/0-module M.
It follows that x ^^{UQ). It is well known that Uo is a semiprimitive ring,
sothat/(C/0) = (0).

Part (iv) of the last Proposition can be proved in a more general case:

PROPOSITION 2. Let I be a two-sided ideal of U, and let Uf = [///,
C/o'= U0/(I Π Uo). Then

(i) for any principal right ideal A of ί/0', AU' = U' implies A = UQ
and

(ii) /([/') n ι/0' c

. (i) Assume that Λ = α£/0' and AW = [/'. Then 1
', so that 1 = ay for some y & U'. Since the right [/(/-module I/' is

Noetherian, the chain of C/Q-submodules

must stabilize. Hence for some r > 1 we have

r =yr = *o

with jcf ^ UQ for all / = 0,..., r — 1. Multiplying this equation on the
left by ar we obtain 1 = arx§ + +αx r _ 1 e yl, which shows that
A = 1%.

(ii) Let <3 ̂ β(Vf) n t/0

7. If x is any element of J70', then (1 - ax) is
right invertible in U\ or (1 — ax)U' = ί/Λ But then by (i) we have
(1 — αx)£/0' = UQ, i.e. (1 - ax) is right invertible in UQ. It follows that
a e/(i/ 0 ' ) . D

We will now note an easy consequence of Proposition 2.2, which deals
with dimension GK (Gelfand-Kirillov dimension) and K.dim (classical
Krull dimension).

PROPOSITION 3. (i) GK(C7) = GK([/0) = dim^L0 < oo,
(ii) K.dim(t/) < dim^L0 < oo.

Proof, (i) It follows from §2 that there is a filtration of U such that
Gτ(U) = k[Xv...9Xm] 9kA(Yv...,7J. By [KL, Lemma 3.10] we have
GK(Gr(ί/)) = m, while [BK] implies that GK(U) = GK(Gr(ί/)).

(ii) By [BK] again, K.dim(ί/) < GK(ί/) = dim^ Lo. D
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It should be remarked here that the frequently considered relations
between prime and primitive ideals of Uo and U (e.g. "lying over", "going
up", cutting down") pose serious problems in the situation at hand. To the
best of our knowledge, the question whether a prime ideal of U inter-
sected with Uo must be prime (or even semiprime) in t/0, has not been
answered yet. This is also the case with a number of related questions,
some of which are listed in §6. Apart from a partial answer in a special
case (Proposition 5.2), we have been able to prove only the following fact:

PROPOSITION 4 (Incomparability). Let Abe a subring of B such that the
right A-module B is finitely generated and let A be right Noetherian. For any
prime ideal P of A and any pair of prime ideals Qv Q2 of B satisfying
QiΠA=P(i = l, 2), the inclusion Qλ c Q2 implies Qx = Q2.

Proof. Let A' = A/P and B' = B/Qx—both being right Noetherian.
Assume that Qλ Φ Q2 and let Q = Q2/Qv Q, as a non-zero ideal of the
prime ring B\ contains a right regular element. Then [KL, Proposition
3.15] implies GK(£') < GK(B'/Q). However, both Bf and B'/Q are
finitely generated as right ^'-modules, so that by [KL, Proposition 5.5] we
have GK(B') = GK(A') = GK(B'/Q). This contradiction proves that
Gi = Qi Π

COROLLARY. For any prime ideal P of Uo the prime ideals Q of U for

which Q Π UQ = P are incomparable.

It should be reiterated that it is not known to us whether such prime
ideals of U exist at all!

So far we made no mention of the third important dimension func-
tion, gl.dim(ί/). The reason why it was left out of Proposition 3 is that it
behaves in a significantly different way than either Krull or GK dimen-
sion, as we shall see shortly. A reasoning fashioned after [AL] implies that
finiteness of gl.dim([/) is closely linked with a property considered in §2,
namely with the existence of those non-zero elements x of L, for which
[JC, x] = 0. The remainder of this section will be devoted to proving that
such elements always exist in the case when L is a classical simple Lie
superalgebra. In what follows, we will list all such superalgebras (follow-
ing [Sch]), exhibiting in each of them a non-zero element x with [x,x] = 0.
We will assume here that k is an algebraically closed field. Without
further explanation we will often represent elements of pl(m, n) as block
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matrices of the form

). BeMmJk),

and D e Mn{k).

We note that if x is an odd element of the above form then A = D = 0
and

0
0

We will denote the r X r identity matrix by Ir.

Case 1. L = sp(m, n), m,n>\,mΦn.L consists of matrices with
supertrace 0, i.e. those block matrices for which tr{A) = tr(D). Take x to
be a matrix with A = B = D = 0, C Φ 0. Then [x, x] = 0.

Case 2. L = spl(m, m)/k /2m—same as case 1.

Case 3. L = osp(m, n), n = 2r, m, r > 0. Here Lx consists of those
block matrices from pl(m, n) for which 5 Γ = JΪC, A = Z> = 0, where if
stands for the matrix (_° 75). It can be seen that if C = (§), Q and C2

being in Mrm{k), then 5 must be of the form [C[,-C[]. Let now etj

denote the (i, 7)th elementary matrix and let ξ e A: be any square root of
- 1 . Setting Cλ = en + e12 £ and C2 = 0 we obtain matrices 2? and C
such that BC = 0 and the only entry of CB which is not trivially 0 has the
form -1 - ξ2. Hence the block matrix x e Lx created in this fashion
satisfies [x, x] = 0.

Case 4. L = b(w), n > 3. Lλ consists of block matrices in which A,
B, C, D are all n X n, A = D = 0 and 5 Γ = 5, Cτ = -C. Take 5 = 4
and C = 0.

5. L = d(w)/A: J 2 M , n > 3. Lλ consists of those In X In block
matrices for which B = C e sl(«). Take 5 = ertl; then

BC=

and so [JC, x] = 0.
We now continue our list considering those classical simple Lie

superalgebras which do not arise as subquotients of pl(m,n). The last
three cases cover the remaining (exceptional) simple superalgebras.
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Case 6. L = Γ(σ1? σ2, σ3), σ, # 0, σx 4- σ2 + σ3 = 0. For any element
JC = xλ ® x2 <8> JC3 of the standard basis of Lx (see [Sch] for a detailed
definition of this family of algebras) the bracket [JC, JC] is given by a linear
combination of terms which all contain a factor Ψ(x,x)9 where Ψ is a
certain skew-symmetric bilinear form. It follows that [x, x] = 0 for all
such x e Lv

Case 7. L = Γ2. Here Lx is a tensor product of the algebra of trace
zero Cayley matrices Co and a 2-dimensional vector space V equipped
with a skew-symmetric bilinear form ( , ). The product of two elements
of L is defined by [c ® υ,d ® w]:= (ϋ,w)Φ(c,rf) + 4tr(α/)Ψ(ι;,w),
with Φ being a certain skew-symmetric form on Co and Ψ a symmetric
form on V (see e.g. [Ka]). Thus [c ® y,c ® y] = 4tr(c2)ψ(ϋ, y), and the
task of finding a non-zero x e Lx with [x, x] = 0 reduces to the problem
of producing a Cayley matrix c Φ 0 with tr(c) = 0 and tr(c2) = 0. This is
easily done as follows: let c n = 1 and c2 2 = - 1 ; the off-diagonal entries
of c come from the 3-dimensional vector algebra, whose standard basis we
shall label {i,j,k}. When (for instance) x = c12 = c21 = i, multiplication
in Co gives

where ( , ) is the standard inner product on V (see e.g. [J] for a complete
treatment of Co). It is clear that tr(c2) = 0, as desired.

Case 8. L = Γ3. According to [SNR], Lλ is spanned by vectors JC for
which [JC, JC] is a linear combination of the basis vectors of Lo with
coefficients involving, as factors, diagonal elements of two matrices:

0
-1

Ό
0
0
0
1
0
0

,0

0
0
0
0
0
1
0
0

I.
0
0
0
0
0
0

-1
0

the charge

0
0
0
0
0
0
0

-1

1
0
0
0
0
0
0
0

conjugation

0
1
0
0
0
0
0
0

0
0

-1
0 -
0
0
0
0

matrix in R3, and

0)
0
0

-1
0
0
0
0

the charge conjugation

' matrix in R7 (see [P].)

It follows that [x, x] = 0 for JC being any vector in that basis of Lv
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Using terminology of [AL] we can now conclude that if L is a
classical simple Lie superalgebra over any field k, then L is not abso-
lutely torsion free.

PROPOSITION 5. If U is the enveloping algebra of a classical simple Lie
superalgebra then gl.dim(t/) = oo.

Proof {cf. [AL], Proposition 1.8). Let x Φ 0 be an element of Lλ for
which [JC, x] = 0. The one-dimensional subspace k x of L is an abelian
subalgebra of L, whose enveloping algebra V = U(k x) c U has in-
finite global dimension. It follows from Theorem 2.1 that U is free over F,
so that any projective CT-module is also projective over V. This shows that
gl.dim(t/) =oo. D

4. Rings of quotients and Hubert's Nullstellensatz. It is well known
that U(LQ), as a prime Noetherian ring, can be embedded in an Artinian
simple full ring of quotients (see e.g. [Go]). Even though U(L) is, in
general, not even semiprime (cf. Example 2.2), it turns out that it also
possesses an Artinian full quotient ring—but of course not always a
semisimple one. The technique employed here in proving this result has
been used quite frequently and in many variants, e.g. in [Bo].

THEOREM 1. Let A be a Noetherian ring with an Artinian full quotient
ring, and let B be a ring containing A in such a way that B is finitely
generated as a left and right A-module. If every regular element of A
remains regular in B, then B has an Artinian full ring of quotients.

Proof. Let T be the set of all regular elements of A. We will show
that by attaching formally inverses of elements from T to the ring B we
obtain an Artinian ring in which all regular elements of B are invertible as
well.

Let Aτ denote the full quotient ring of A. Define Bτ to be the tensor
product B ®AAT, which clearly is a finitely generated right A^ module. It
consists of elements of the form b ® ί"1, where b e B and t e T (see e.g.
[St, Proposition II.3.2]). Since Aτ is right Artinian, Bτ is an Artinian
module.

We will now prove that T is an Ore set in the ring B. Given any
t e T let φ/ be the endomorphism of the right A -module B defined by
ψt(b) := tb. By [St, Proposition Π.3.5], Aτ is flat as a left ^(-module. This
implies that the extension γ, := φ, Θ id is an injective endomorphism of



ENVELOPING ALGEBRAS OF LIE SUPERALGEBRAS 21

B ® Aτ. But Bτ is Artinian, and hence yt is also surjective. Then for
b e B the element b ® 1 is an image of όx ® if1 for some bx& B and
*! e Γ. It follows that btλ = rf^, which is the required right Ore condition.

Finally, if b is any regular element of B, b is also regular in
Bτ—which is Artinian. Considering the descending chain of right
ideals... c b3Bτ c b2Bτ c bBτ we obtain bn = bn+1q for some π > 1
and q e 2?Γ. Then (by regularity of b) 1 = 6#, or Zr1 = # e Bτ. There-
fore Bτ is a full quotient ring of B. D

COROLLARY. If L is a finite-dimensional Lie superalgebra then U(L)
has a full quotient ring which is Artinian.

Proof. U(L), as a finite, free module over the prime ring U(L0),
satisfies all hypotheses of the theorem. D

We will now note that U(L) enjoys two more properties which are
known for enveloping algebras of Lie algebras.

Several authors have considered the following non-commutative gen-
eralization of Hubert's Nullstellensatz:

DEFINITION. A fc-algebra B satisfies the Nullstellensatz if, for every
simple 5-module M, the division ring EndB(M) is an algebraic fc-algebra.

We also have the following related property:

DEFINITION. A ring B is Jacobson if every prime ideal of S is an
intersection of primitive ideals.

Using the results of [Me] we easily obtain

PROPOSITION 2. // L is a finite-dimensional Lie superalgebra, then
U(L) is a Jacobson ring satisfying the Nullstellensatz.

Proof. U(L0) is an almost normalizing extension of the field k, which
obviously is a Jacobson ring. U(L)> as a finite ί/(L0)-module, is then a
poly-(finite/almost normalizing) extension of k. [Me, Theorem 4.6] im-
plies the thesis. D

The Jacobson property of the Noetherian ring U(L) has the following
immediate consequence:

COROLLARY. The Jacobson and prime radicals of U(L) coincide (and
hence ^{U^L)) is a nilpotent ideal).
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5. Additivity principle for Goldie rank and a theorem of Harish-
Chandra. Let A be a Noetherian ring contained as a subring in a ring B.
If Q is a prime ideal of B then P = Q Π A is not, in general, prime in A.
However, the set of those prime ideals I of A which are minimal with
respect to P c J, is finite. Their intersection is the smallest semiprime
ideal of A which contains P. In the remainder of this section we will
preserve the notation used above, with IV...,IS denoting all the distinct
prime ideals of A minimal over P. We will now present an approach,
originated in [JS], to the question of relationship between the ideals P
and Q.

DEFINITION. The ring extension A c B (with A Noetherian) satisfies
the additivity principle for Goldie rank if, for any prime ideal Q of B,
there exist positive integers zv...9zs such that

where rk( ) is the Goldie (or uniform) rank of a ring.
In [JS] the additivity principle was proved for a certain class of ring

extensions, in particular for the case in which m is an ideal of a
finite-dimensional Lie algebra g, and A = f/(m), B = £/(g). This result
was subsequently generalized in [Bo] to the case of so-called restricted ring
extensions:

DEFINITION. A ring extension A c B is restricted if, for any b e B,
AbA is Noetherian as a left and right ^4-module.

This easily implies

THEOREM 1. The ring extension U(L0) c U(L) satisfies the additivity
principle.

Proof. If be U(L) then U(L0)bU(LQ) is a submodule of the
Noetherian ί/(L0)-module U(L) and, as such, is Noetherian itself. There-
fore the extension in question is restricted. Moreover, by Proposition
3.3(i), GK(ί/(L)) < oo and all hypotheses of [Bo, Theorem 7.2] are
satisfied.

We will now note that under certain special circumstances the additiv-
ity principle can be used to relate simple ί/(L)-modules with simple
ί/(L0)-modules, which in turn may provide a way of classifying irreduci-
ble representations of L in terms of the better known irreducible represen-
tations of Lo. This is the motivation for the next result.
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PROPOSITION 2. Let Q be a prime ideal of U(L). Suppose that there
exists a right U(L)-module M such that Q = A n n ^ ^ M ) and that M, as
a right U(L0)-module, is of finite composition length. Then the prime ideals
IV...,IS of U(L0) are all primitive.

Proof. Choose a composition series (0) = Mo c Mλ c c Mn = Mof
the ί/(L0)-module M. If P, = A n n ^ ^ M / M ^ ) then MPnPn_λ Pλ

= (0), so that PnPn.λ Pi c P c n/,.. Hence for every i = 1,..., s the
product PnPn_λ - " Pτ is contained in the prime ideal /,.. Therefore there
is an integer j (1 <j < n) for which Pj c /.. Obviously, P c Py9 more-
over, Py is primitive, and hence prime. It follows from minimality of /,.
that Pj = /„ which proves the assertion. D

It should be pointed out here that the Proposition applies, in particu-
lar, to the situation when Q is an annihilator of a finite-dimensional
simple [/(L)-module M, which of course will have finite composition
length as a ί/(L0)-module.

Our last result will be a generalization of the well known theorem
obtained for Lie algebras by Harish-Chandra.

THEOREM 3. For every non-zero element x e U(L) there exists a
two-sided ideal I of U(L) such that x £ / and dimkU{L)/1 < oo.

Proof (cf. also [Bos, Lemma 1.1]). Let J^ be the collection of all right
ideals of U = U(L) which are of finite codimension. We will first prove
that 0 ^ = (0). Let x be a non-zero element of U. Invoking the nota-
tion of Proposition 2.2 we write x as a sum xQY0 + +xsYs with
x. G UQ = U(L0) for i = 0,..., s, so that xy Φ 0 for some y (0 < j < s).
It follows from Harish-Chandra's theorem that there exists an ideal Jo

and Uo such that Xj £ Jo and ί70//0 is finite-dimensional. Consider / =
ΣJOYP which is clearly a right ideal of U. The vector space U/J is iso-
morphic to a direct sum of s + 1 copies of Uo/Jo—hence dimk{U/J)
is finite. By definition of / and freeness of £/, x £ /.

Let us now consider a non-zero x e £/ again. By the above we can
find a right ideal J oΐ U which has finite codimension and does not
contain x. U/J is then a finite-dimensional right [/-module. If / =
Annv{ U/J), x £ /—otherwise we would have Ux Q J and x e /. £///
is also a finite-dimensional faithful right [///-module, so that U/I can be
embedded in the finite-dimensional vector space Έnάk{U/J). Therefore /
is a two-sided ideal of finite codimension, not containing JC. D
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6. Some open questions. We conclude with a list of selected prob-
lems which the author was unable to solve, and which seem to be
important for the understanding of the structure of enveloping superalge-
bras. In what follows, L is a finite-dimensional Lie superalgebra, Uo =
U(L0) and U = U{L\

The most obvious type of question regards the relation between ideals
of U and those of UQ.

Question 1. Let / be an ideal of U and IQ = / Π Uo.
(i) If / is prime, is /0 prime?

(ϋ) If not, is it always semiprime?
(iii) If / is primitive, is 70 primitive? prime?
It may be interesting to consider these questions in the special case

when L is a classical simple Lie superalgebra.

A related problem, connected with irreducible representations of L, is
of considerable interest in view of Proposition 5.2:

Question 2. Does a simple [/-module have finite composition length
when considered as a ί/0-module?

Finally, we can ask how often does the situation described in Exam-
ple 2.2 occur:

Question 3. What characterizes, in terms of L, those enveloping
algebras for which /(£/) = (0)?
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