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CONTINUATION OF BOUNDED HOLOMORPHIC
FUNCTIONS FROM CERTAIN SUBVARIETIES
TO WEAKLY PSEUDOCONVEX DOMAINS

KENZO ADACHI

Let D be a weakly pseudoconvex domain in C* with C*-boundary
and V be a subvariety in D which intersects 3D transversally. If oV is
nonsingular and consists of strictly pseudoconvex boundary points of D,
then any bounded holomorphic function in V' can be extended to a
bounded holomorphic function in D.

1. Introduction. Let £ be an open set in some complex manifold. We
denote by H*() the space of all bounded holomorphic functions in Q
and by A() the space of all holomorphic functions in £ which are
continuous in Q. Let G be a bounded strictly pseudoconvex domain in C”
with C%*boundary and M be a submanifold in a neighborhood of G
which intersects G transversally. Let M = M N G. Then Henkin [5]
proved the following.

FUNDAMENTAL THEOREM. There exists a continuous linear operator
E: H*(M) —» H*(G) satisfying Ef |y, = f.
Moreover Ef € A(G) if f € A(M).

In the present paper we shall extend the above results to the weakly
pseudoconvex case. Let D be a bounded weakly pseudoconvex domain in
C" with C*-boundary. Let ¥ be a subvariety in a neighborhood D of D
which intersects 9D transversally. Let V=V N D and D= {z € D:
p(z) < 0}. Suppose that ¥ is written in the form

V={zeD:h(z)=--- =h,(z) =0},
where h,,...,h are holomorphic in D and dhy A -+ AOh,# 0 on

! > p .
dD N V. In addition, we assume that 9V consists of strictly pseudoconvex

boundary points of D. In this setting we shall show the following:

THEOREM 1. There exists a continuous linear operator
E: H*(V) —» H®(D) satisfying Ef |, = f.
Moreover Ef € A(D) if f € A(V).
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In the case when p = 1, the above theorem is nothing but the result
of Adachi [1].

I wish to thank Professor N. Kerzman who gave me the validity of
Proposition 3. I also wish to thank the referee for several helpful sugges-
tions.

2. Some results. Let
s(¢,z)=(s,(¢,2)s...,5,(8,2)): 9D X D > C"

be a C* function that satisfies

(s,$ —z) = Zn: si(§—z;)#0 for({,z) €dD x D.

Jj=1

Then Hatziafratis [3] proved the following theorem.

THEOREM 2. For f € A(V') and z € V we have the integral formula

_K(@z)
)= [ IO =
where K(§,z) is a C*(n — p,n — p — 1)-form on 3D X D. Moreover, if
51($, 2),...,5,(8, z) are holomorphic in z, then K(§, z) is also holomorphic

in z.

Let G be a bounded strictly pseudoconvex domain in C” with C*®
boundary. According to the construction of Henkin [4], there exist a
neighborhood U of G, a neighborhood V of 0G, and a C* function ®:
V' X U = C such that for each { € V, ®(¢, z) is holomorphic in U and
such that ®(¢, z) = 0 implies { = z. Moreover, ® admits a division

o(¢,z) = imz(z—z)

where P: VX U— C of class C* and holomorphic in the second
variable. In addition, if we set

n

Ttz =21 §Zﬂi(§)(zi ~¢)

n

- gi)(zj - §j)

ij=1
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then there exists a positive constant r such that
®($,2)=T($,2)G(8,2) for {(§,z) e VX U:|§—z|<r} =S5,

where G (¢, z) is a non-vanishing C* function in S,.
Now we have the following proposition using the techniques of the
proof of Fornaess Imbedding theorem [2].

PROPOSITION 1. Let D be a bounded weakly pseudoconvex domain in
C" with C*® boundary. Let K be a compact subset of 0D and consist of
strictly pseudoconvex boundary points of D. Then there exists a strictly
pseudoconvex domain D in C* with C® boundary such that D > D and 3D
coincides with 0D near K.

In view of Proposition 1, if we can get the extension F to b, then
F|, is the required function. Therefore we may assume that D is a
strictly pseudoconvex domain. Let { ¢,} be a sequence of positive numbers
which converges to 0. Let D, = {z € D: p(z) < -¢,}, ¥V,= V' N D,; and
n—p=k.If fe H*(V), then by Hatziafratis [3], we have, for large »
and z eV,

K($,2)
1) = [ 100G

where K(¢§,z) is a C*(k, k — 1)-form depending holomorphically on z.
We set for z € D,

H()=[ s XKL2)

Then we have the following proposition which is proved by the same
argument as the proof of lemma 1 in Adachi [1].

PROPOSITION 2. For z € D|3V, H(z) =1lim,_,  H,(z) exists. H(z)
is holomorphic in D and H(z) = f(z) forz € V.

Let z° € 3V and S,o0, = {z: |z — z°| < ¢}. Then there exist a con-
stant o; > 0 and a biholomorphic change of coordinates on a neighbor-
hood of z° such that p is strictly convex in a neighborhood of

anzo,alﬂ VmSzo,q:{ZeSzoal p+1= =Zn=0}>
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and (9p/0z,)(z%) # 0 for some i (1 <i < p). Without loss of generality
we may assume that (0p/dz,)(z%) # 0. Let z € S,0.0,- We consider the
system of equations for {® = ({7, ..., ¢2) of the following form:

n

o [EEEE-a-

=z (i=2...p), = =t0=0.

LEMMA 1. There exist positive constants o6, (< 0,), v, and vY,, depend-
ing only on D and V, such that for any ¢ < 6, and any z € S0, , there
exists a unique solution {° = {°(z) of the system (1) which belongs to the set
S0, N V. Here the point {° = {°(z) has the following properties:

@ Iz = £ < [p(2) = pEO/m,

B 1z =8P 2|z, l* + -+ +lz,)> 2 malp(2) — p(E)].

Proof. From the system (1), we have

G-n- X2 (B0)

i=p+1 821

We set

-1
0(6) = —22(0)[720))
then a,(¢) is C* in a neighborhood of z°. We set by recurrence that

§1(1)= zy, ¢W = (gl(f),zz,. ., 2.,0,. 0)

b p’

n
P=nt L alv):,

i=p+1

Then

(=50 < B vl 500 = 60721z
i=p+1

<L - g,

Therefore {{’} converges. lim _, , {V = { % is the solution of the system
(1). The strict convexity of the function p and the equation (1) imply

4 p(£%) = p(2) + 8% — 2> < 0,

(5) p(£%) —p(2) + 3I§° — z]* = 0.
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From the inequality (4), we have the inequality (2). From the system (1),
we have

2 2 2 2
IKO—ZI =|Zp+l| ++|Zn| +|§10—21‘
n

£ ate)] 2]

i=p+1

2 2
Slzpal + oz, [0+

2 2
<V (lzpual + - +1z,0).
Together with the inequality (5), we have

80— 2" 2]z, [ + -+ +z, " 2 val0(2) - p(52)).

This completes the proof of Lemma 1.

3. Proof of Theorem 1. At first we prove that if f € H*(V'), then
H(z) € H*(D).Let z € S0, N D,. We set

~ _ FK(K, 2)
Hilz) = fanszo,,l ®(¢,2)%

It is sufficient to show that

|H,(z)| < vsiggflf(f)l-

LEMMA 2. Let f(z) € H®(V). Then for any point z° € 3V and any
point z € (S, , N D,) |0V, (6 < 06,/2), we have

ldf[,,({o + Az - ¢%))

< v4sup | £($)].

dA {EV

A=1

Proof of Lemma 2. We set & = (|z,,,]> + - -+ +|z,|*)"/?, where z =
(z1,...,2,) € 9(S,0, N D,)|V,. By Lemma 1, we have

1,2

p(z) - p(§°)} .

<[¢®-z|< { < .
‘ l Z‘ T (Yﬂ’z)l/l

Since

n

?_P_ 0 Q___ ) =0
,‘gl agl({ )(g‘l zl) 2
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it follows that

> 30250~ z) | < wells — 2]+ o).

i=1 i

On the other hand, we have

% 9K
mieomy _ OEEC
d\ A=0 W, NS0 4 q)(gaz)k

KL 5 (2w
Jj= J
_'/Z;V,nszo',l (¢, z)k+1

Therefore we have

dH,(¢° + N\ (z - ¢9))
dA

gl f($)]dA
< 76'[81’.,0&0,.,1 Iq’(f, Z) |k

|£(§)le(|$ — 2] + &) dA
+
7£nn&%1 1@(s,2) [

A=1

where dA is surface measure on 0V,. We can choose coordinates
(m($), .., m,($)) in 8,0, such that

m($) = o(§) — p(2) +iIm®(§, z).
Then we have
2 172
0(5,2) 1> 3| (1 +1E - =) + 2]
By the estimates of Henkin [5], we have

dH (L% + N(z - %)
dA

A=1

< yosup | f(§)].
eV
This completes the proof of Lemma 2.

By the same method as the proof of Henkin [5] (cf. Adachi [1]), we
can prove that

sup | H(z)| < viosup | £(§)

zeD (e
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The next step is to show that if f € A(V'), the H(z) € A(D). In order
to prove this statement, we need the following modified version of N.
Kerzman [6]. In the Theorem 1.4.1" of Kerzman, V is a manifold. But the
proof of the theorem is applicable in our case.

PROPOSITION 3. Let f € A(V'). Then there exists a sequence { f,} of
holomorphic functions in a neighborhood of V in V such that ||f, — f||, = 0
when k — co.

From Proposition 3 we can suppose that f is holomorphic in v
VeV cV cV) Let z°€dV and let z € S,,, N (D,|dV,). By
using Stokes’ formula, we have ’

_ fO)K(E,z) = (¢, 2)
H,(z2) 1% (ID({,z)k ’/(‘V’—V,)nS,o,zaf(K)a{((D({,z)k)
- [ a(K(f,z)k)_
- V)lSz.,zq ®($,z)

Therefore it is sufficient to show that

_ = | K(§,2)
/(V'— V)08, f({)ag( (¢, Z)k)

is continuous at z°. In order to prove this fact, we need the following.

LEMMA 3. Letz € S,0 ,,, N (D,|3V,). Then it follows that
ldF,(f" +A(z-¢°)

< ynelloge|sup | f({) ],
A=1 eV

where §° = {°(z) is the solution of the system (1).

Proof of Lemma 3. We can write

N A(S,2)
E(z) f(V'—V,)ﬂSZOzaf({) o(¢,2)"

1) i:l(:j —2)B(%,2)

+f
(V' =V,)"S04, ®(¢,z) !
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where A(¢, z) and Bj(§, z) are (k, k)-forms which are smooth in ({, z) and
holomorphic in z. Therefore

dF,(§° + Mz - 1%))

dA el
ed\
< le-/(-V’—V,,)nS,o,Z, If(g) I(I)({, Z) lkﬂ
|f) 1S = zle(]§ — z| + &) dA
+ .
713'/”/,_%)“820’20 I(I)(§', z) lk+2

By applying the estimates of Henkin [5], we have the inequaltiy (6). This
completes the proof of Lemma 3.

Using the method of Henkin [5], we can prove
|F(2) = F(2°)| < 7140|10g0|{su13 |£(§) |+ o sup |grad f(£)].
E ’

eV’

Therefore F,(z) is continuous at z°. This completes the proof of Theorem

1.
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