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APPROXIMATION OF PRIME ELEMENTS
IN DIVISION ALGEBRAS OVER LOCAL FIELDS AND
UNITARY REPRESENTATIONS OF THE
MULTIPLICATIVE GROUP

LAWRENCE CORWIN

Let K be a locally compact, non-Archimedean field of residual
characteristic p, and let D be a central division algebra of dimension n>
over K. In constructing the irreducible unitary representations of D, a
technical question repeatedly arises. Let x € D, and let x; be “close” to
x (in the sense that, for the usual absolute value on D, |x — x| < |x]).
Let D, D, be the subalgebras of elements commuting with x, x,
respectively. Is it possible to pick a prime element n, € D, and an
element 1, € D, that are also close, and how close can 7, 1, be to one
another? The first part of this paper analyzes this problem. It turns out
that 7, n; can be chosen close enough to one another so that Clifford-
Mackey theory easily permits the construction of (D*) " only if p*> = n
or p?|n. The construction has been given in earlier papers except for the
case where p|n, p # n, and p?|n; the second part of the paper is a
construction of (D~)” in this remaining case.

We recall some details of the construction of (D*) *. Let 7 be a prime
of K, and let K, be an unramified extension of K of degree n, embedded
in D. One can choose a prime 7 € D such that #" = 7 and conjugation
by P is an automorphism of K, generating Gal(K,/K). We write
nan™ =a° a € K,; o € Gal(K,/K) is the Hasse invariant of D up to
isomorphism. (See [11] for these and other unreferenced facts about
division algebras.) Let R be the group of roots of unity in K, of order
prime to p; let O = O, be the ring of integers in D, and let P = 0O be
the prime ideal in O. Then one has

D*= U{n), U=(1+P)R,
where U is the group of units of O, the products are semidirect products,
and the first subgroup is normal. The main step in computing the
irreducible representations of D* is that of computing the irreducibles of
G =1 + P, and it is on this step that we concentrate. The general idea is
this: a representation 7, of G will be trivial on some normal subgroup
(1 + P™*1) of G. Choose m as small as possible; for convenience of

exposition, assume m odd, and let 2m’ = m + 1. Then 7, is a representa-
tion of G/(1 + P™*1), and (1 + P™)/(1 + P™*!) is an Abelian sub-
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group. Furthermore, (1 + P")/(1 + P"*!) = P" /P"*! via the map
1 + y — y. In this way, 71 + P™) can be regarded as a direct sum of
(1-dimensional) characters of P™, all trivial on P™*!. To describe these
characters, let x be an additive character of K that is trivial on P N K
but nontrivial on O N K; for x € D, let x,(y) = x(Trp x(xy)). Then
every character on D is of the form x , for some x € D; (P"™!)+ = {x,:
x € P~™), and restricting to P™ means that x is determined only
mod P~""*!. Given 7, we thus get x (mod P~""*!, and up to conjugation
by G) by the condition that x, occurs in 7|, , p». Determining =, then
becomes a problem in Mackey (or Clifford) theory.

It is here that the relation between n and p becomes important. One
needs to determine the w € G for which x (wyw™) = x (») for all
y €1+ P™, It is easy to see that w satisfies this condition iff w
commutes with x mod some sufficiently high power of P. In the tamely
ramified case and in the case n = p, one can arrange to have w and x
commute; this simplifies matters. (See [1], [5], [4], [3], and [10] for details
and further results.) For n = p%, however, matters are less simple. The
problem is that one can pick elements x € D such that [K(x):K] = p?,
but such that K(x) contains no extension of degree p over K. However, it
may be possible to choose x; such that [K(x;):K]= p, and x and x,
agree modulo some moderately high power of P. Certain elements com-
muting with x; commute with x , and not with any element in K(x) ~ K.
In [2], this problem was handled by showing that in the division algebras
D, , D, of elements commuting with x,, x respectively, one could find
prime elements 7,, 7, respectively that were congruent mod some mod-
erately high power of P; thereafter, the analysis could proceed roughly as
before.

It is therefore useful to consider the following type of approximation
question: suppose that x € P% ~ P/*! and suppose that x, = x mod P/,
J1 > Jo- Let D,, D, be the division algebras of elements in D commuting
with x, x; respectively. How close to one another can one choose an
element 1, € D, and a prime element n; € D, ? This is the topic of the
first half of this paper. It turns out, unsurprisingly, that the difficulties
arise primarily with wild ramification; much of the analysis, therefore,
deals with the case of totally wildly ramified extensions, and the notation
for this part (§§2, 3) is somewhat different from the notation in other
sections.

The results are rather negative; they show that the methods of [2]
apply directly only to the cases p?|n and p? = n. (One needs to replace
P*+17% in Theorem 4.2 by P%+1~* to use these methods, and in general
that is impossible.) In the second part of this paper, we construct the
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irreducible representations for the case n = pn, with n, prime to p. The
cases (n,p)=1 and n = p? have previously been treated, as noted
earlier.

PART I. APPROXIMATION THEOREMS

2. Some results on finite fields. Let £ be a finite field of characteristic
p; for each integer r > 0, denote by k, the extension field with [k,: k] = p”.
In particular, k, = k. Fix n > 1; we shall be interested primarily in the k,
with r < n. Let o generate Gal(k,/k). Write Tr, , for Try i, (f i 2 ),
and write Tr; for Tr, ,; write N, ;, N, for the corresponding norm maps.

PROPOSITION 2.1. (a) There exist elements a, . .., a, € k, such that
r—1
(2.1) o —a, =[], 1<r<n(andaf —a =1);
i=1

moreover, k, = k(ay,...,a,) = k(a,).
(b) For 0 < j < p", define B, = B(j) by
B, = [T am, where Y, mp='=j; B,=1.
i=1 i=1

Then the B; withj < p" give a vector space basis for k,/k.

(c) Let V, be the vector space spanned by the B; with i <j; in
particular, Vy = {0}. Then for all j > 1, there is a nonzero ¢ € K, (the
prime field) such that

ij’ — ,Bj — B, € Vj,l.
(d) Tr,(Bm_y) = (-1)"; forj < p" =, Tr,(B)) = 0.
Proof. We proceed by induction on n.
(1) Let n =1. As Tr,1 = 0, there exists a; € k; with af — a; = 1.

Then o, & k, the fixed field of o, and we must have k,(a;) = k;. Now
(a) and (b) follow. For (c) and (d), we use the formula

. J ;
@) () = (@) =l +ja 4 X (Yo
i=2 \1

Now (c) follows immediately; justlet j = 1,2,..., p — 1. As

jaf-ls(a{)"—a{mode_l, Jj<p-1,
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the second part of (d) is also immediate. Finally, the case j = p gives
(af)’ =(ay+ 1)’ =0af + 1.
Hence o fixes af — a;, or 38 € k with af — a; — § = 0. The roots of
X? — X — 8 = 0 are therefore a, and its conjugates. Write the coefficient
of X as a symmetric function of the roots:
p—1
-1=(-1)"" ¥ N(ew)/ap = (-1)" 7" Tr,(N(ey) /),
Jj=0
N =normin k,/k.

But the conjugates of «; are a; + 1,...,a; + p — 1, and thus N(«a,)/a,
= af "'modV,_,. Now the first part of (d) is obvious, since (-1)?~! = 1
mod p for all p.

(2) Now assume the result for » — 1. Then

Tr, B(p""' = 1) = pTr, ,B(p" ' —1) =0,
so that we can find a, € k, with a2 —a, = B(p"™' —1). As
Tr, B(p" ' —1)#0, a, & k,_,. Just as in (1), we get all of (a) and (b)
except for the claim that k, = k(a,). We do have k, = k,_,(«a,). Also,
B(p" ' —1) € k(a,), and (b) and (c), applied to k,_,, show that
k(B(p"~* = 1)) = k,_,. Hence

k(a,) = k(a,, B(p" ' = 1)) =k, (a,) =k,,

as required.

We need to prove (c) only for those B(j) with j > p™~ 1. We first
prove it for a!, 1 <i < p — 1. For i = 1, the result is immediate from the
definition of a,; in general, it follows from the formula

(ar)" = (@, + B(p" = 1))"

Now we deal with the remaining case: B, = a,8(/), 1 </<p"™' and
i > 0. Then

By = (a, +v)(B(I) + cB(I = 1) + 8),

y€V,-1,86€V,_;,and c € F?

n’

= Bj = ca;ﬁ(l - 1) + a;,8 +e €€ V,’pn—l,

which is (c) for B;. The same argument as in (1) now shows that Tr,; = 0
lf ] < pm~l‘
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We need more calculation to get Tr, B(p” — 1). For y € k,,, define
¥{0},v{1},... inductively by

y(Ob=vy, y{j+1}=v{/}"—v{j}.

An easy induction gives
o= (S .
(2.3) =X (j)Y{J};
j=0

in particular,

(2.4) v* =y + y{s} ifsisapowerof p.

Now let v = .. Applying (c) p times and using (2.4), we get
B — B, =cB,_,modV, , forsomec €F,

and an easy induction shows that if s is a power of p, then there is a
¢ € F, such that

Bs} =B — B =cB,_,modV,_,.

1 we get

Forr=p

n—1

a? —
a) =a,+c, ceF,

But o?" generates Gal(k,/k, ;), and k, = k, _,(a,). Thus, from (d) in
thecasen = 1,

Tr, ,,_y(a,/c)" " = 1.
As ¢?7! = 1, we have
Trn/n—ﬂ’ﬁ—l = -1,
or
Tr, —1B(p" — 1) = -B(p" ' = 1).

The inductive hypothesis on B( p"~! — 1) now gives the first part of (d).
We note two corollaries. The first was essentially proved in the course
of the above proof.

COROLLARY 1. If s = ap” with p + a, then for each j there is a nonzero
¢ € F, with

BY =B =By €V

(Ifj — p" <0, then B,_ . is taken to be 0.)
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Proof. This is an easy calculation from (c) and (2.3).

COROLLARY 2. If r <n, and if y € k, satisfies Tr, , v € k, then
Y€V i

Proof. This follows from (d) (applied to k,/k,) and the linearity of

the trace.
We now prove a result about “partial traces”.

LEMMA 2.2. Let r <'s; suppose that p + a. Then 3 a nonzero ¢ € F,
such that

ap* -1
( -‘_;0 Bfu ) - CB(J N ps") mOdV;‘P’ﬂf“’

Proof. For y € k,, define y{ j} as in the proof of Lemma 2.1. Then
(2.4) and induction give

i (.)Y{JP

j=0
Hence
ap® " "—1 ap*”"—1 i i
Y oy = )y (j)v{JP’}
1=0 i=0 ;=0
ap’”'~=1 ap’~' =1 /. ap®”"—1 s—r
i ., ap
= )Y (j)Y{JP}= > L rle)
Jj=0 i=j Jj=0 J
As
aps—r s . _
i+ =0modp ifp* "tj—-1
and
apS'—r
., | =amod p,
y
we have

r " =ar(p(p =)y,

o

where v’ is a k-linear combination of terms of the form y{ p'(ip*" — 1)},
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i > 1. Now let y = B,. Since (c) of Proposition 2.1 and an easy induction
shows that for each i there is ¢ € F, such that y{i} —cB,_; € V,_,, the
result follows.

Recall that N, ; is the norm map from k; to k; (j < i). We shall also
need the following result about norms and traces in & ,,.

PROPOSITION 2.3. Let s < m. Given a € kS, there exists a nonzero
A € k, with N, , A € k and Tr,(aX) = 0.

Proof. We use the following lemma:

LEMMA 2.4. Let q be a power of p; let ¢’ = (¢7 — 1)/(q — 1). Then
foralln > s, q' and (q*" — 1)/q’ are relatively prime.

Proof of the Lemma. Since
pn—s_l
¢"-1=(¢"-1) X ¢
j=0
and ¢/7" = 1 mod g7 — 1, we see that

(¢7" = 1)/(¢” = 1) =p"*modg” - 1.

Hence q’(q — 1) and (¢”" — 1)/q’(q — 1) are relatively prime. Similarly,
q’ and g — 1 are relatively prime, and this proves the lemma.

Proof of Proposition 3.3. Let |k|=gq, (¢ —1)/(g” — 1) =r. As
N, A =N, we need to pick A so that its order divides (¢ — 1)r =
(g”" — 1)/q’. Now let B generate kX as a cyclic group, and let a = '
From Lemma 3.4, we can find an integer a such that

(g —Drjt + aq’.

Let A = 847, Then the order of A divides (¢ — 1)r, and a\ has order
dividing g¢’. But then aA € k_, so that Tr,aA = 0.

3. Prime elements in sub-division algebras: Totally wildly ramified
case. We begin by describing the notational conventions in this section,
since they are somewhat different from those for other sections. We
assume that the index of D over K is p" (so that dim x D = p2"); we
choose x € D, and assume that K(x) is totally ramified over K. We
assume further that x is in general position, or that |x| < |x + z| for all
z € K. Define n by |x| = p™.
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We recall some results from [7]. For each j € Z, let x; be an
element such that x ;= xmod P~"*/*! and [K(x,):K] is minimal
(subject to the above condition). For j < 0, we have x, € K, and we
take x ;= O there; for sufficiently large j, we may take x ; = x. The
fields K(x;,) are all totally ramified over K. There are integers s, = 0,
Sy>-+->5,_, such that for each r, [K(x,):K]> [K(x( _y)):K] These
integers are the jump points of x. Set s_, = —o0, s, = 0o, and define
X, =X 1, with x, = x. We may (and henceforth do) assume that
xy=x,if 5,_; <j <s, Wecall the x; the approximating elements for
x. Let D, = algebra of elements commuting with x,. We shall be inter-
ested in how closely we can approximate a prime element in D, by one in
D,_,.

Write K, for the unramified extension of degree p” that is normal-
ized by n, and let K, be the subfield of K, of degree p® over K. (Note:
K, is what was called K, in the introduction.) We write k, for the
residue class field of K, (and of D); this corresponds to the notation in
§2. The residue class map ¢ — 0/P = k,, is bijective on R U {0}, and we
generally identify R U {0} with k,, for notational ease. Thus we write a
typical element y € D as X% 8n/, §, € k,. We use a, (1 <j < n) and
B; = B(j) (0 <j <p"—1) for the elements of k, so denoted in §2, and
write

(3.1) x= 3 .

Let [K(x;):K]=p“ =e;, and let a, + b, = n. Since x is in general
position, m is divisible by p® but not by p”**. Furthermore, (y_,n~")?"
€ K. It follows that we may assume y_,, € K, possibly by replacing 7
with some en, 7 € k,. (Every element of the form ¢n~"?", ¢ € k, can be
written as (¢’n~")”" with ¢’ € k, essentially because ¢’ — (c’)” is an
automorphism of k. See p. 55 of [2].) It also follows from p. 55 of [2] that
we may assume (after conjugating x by an element of G) that

(3.2) K, cD,

Note, incidentally, that a ; increases with j, while bj decreases.
Our first job is to find a “normal form” for the x .

PrOPOSITION 3.1. By possibly conjugating x in D, we may assume that

o0

_ = J
X Xi1 = Z ‘Yl;jn ’

J=-mts,_,

with ¥, _ .., = cB(p™ — p"~) for some nonzero c € k.
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Proof. Induction on i. For i =1, this is just our assumption that
Y_, € k; thus assume i > 2. Apply Satz 8 of [7] with v = x,_,, w a prime
element in D, such that w = 7 mod P?, and B = v,_,, 0 """ if ¢, is the
irreducible polynomial satisfied by x,_;, then

¥(x,) = (Trm/hl_ly,;_mﬂhl)n” mod P?*1,
where b is an integer divisible by p® but not by p”-1. Set
§= Trn/blfl(‘Yi;—mﬁ-shl)'
Then 8 € k,,_ . Furthermore,
(80")7" = (N, 58)n"" € K;

otherwise, N, ,,8 € k,\ k and Hensel's lemma implies that K(x,) is not
totally ramified over K. But since § € k,, _,

N8 = (N, 08)

Hence N, ;8 € k, and there exists d € k with N, ,_,(d/5) = 1.
Suppose that 8 & k. Set h = b,_, — b,; let -m + 5, = g. Then p’|g,
but p”-1 + g. Hence

(80%)"" = (N,,,_8)n®" = (dn?)”,

and so 6% and dn? satisfy the same equation over K. Therefore, they are
conjugate in D (and, in fact, by an element of K, ). That is, there is a
prime 7’ such that

8n% =d(n')*.
Hence ()% = d P(dy®)?" = d (805" = d P(dn®)? =y, or
(n)?" " =qn?"". But x,_, commutes with K, ; hence in the expansion
of x,_,
s . .
X, = 2 v Vn’ say,
Jj=-m

we must have y'"" = 0 unless p”-'|j. It follows that the expansion of
x,_, is the same if we use powers of 7" instead of powers of 1. On the

other hand, we have
0

_ — ’oat) ’ _
Xy X-1= Z Yz;/'n ’ Yt,—m+s, - Yr’,—m+s,d/8’

Jj=m=s,_y
so that

4
Trnz/b,_1Y1:—m+s,_1 = k
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As 7m, 1’ are related by a conjugation in D, this all means that we may
assume that § € k. Now Corollary 2 of Proposition 2.1 says that

YI n+s, (S Vn pb, 1,,°

To limit v,_, .,  more, we conjugate. Write
Yienss,, = aB(p” = p")+vy, Y€V, _,,  and a€ck.

The inductive hypothesis gives v,_, ., , = c¢(p" — p»-2), ¢ # 0. Write
B = B(p™ — p?-); conjugate x with 1 + 8y~ -1, § €k, . Then 1 +
dn* %~ commutes with the y,n’ such that j < -m + s,_,, and the effect
of the conjugation (mod P~""%-1) is to change y to

y = (B8 — B,

Let 0’ = 0% %, so that o’ generates Gal(k,/k,); set ¢=" "1t =g"”
Then o” = (o’ )"P' """ p ta, and, in the notation of §2,

B8 — 88 = B(8+ cd{p") +8) —(B+ doB{pt) +B)8

(where ¢, d, € k,; 8 € span(8{ p» + 1},...,8{p"}); and B’ €
span({ p"-1 + 1},..., B{ p"})) = coB8{ p"} — ddB{ p"-1} + B8 — 8B’
But § € V,,,, and it is not hard to verify that B8 { p®) can be any linear
combination of B{ p™ — p®-2},...,B{ p™ — p"-1 "'}, while the remaining
terms are in me_ oo Hence we can choose 6 so that

y— (B8 = B8) € Vyu_ i,

and we may therefore assume that y € V,n_ .. Continue inductively;
the next step is to conjugate with 1 + §5%~ %2, where § € k, , and thus
to move y into V,»_ ;. Since b, = m, we eventually move y to 0. Hence

we may assume that
Yi:—m+s,=aB(pm-phI_l)a a€k~

If @ =0, then x,,= x(, . This is impossible, since s, is a jump point.
Hence a # 0, and the proof is complete.

LEMMA 3.2. (a) Let n, = n + 8,m* + 8n° + -+ - be a prime element of
D; suppose that y € P' commutes with n,mod P**2 with s >t (i.e.,
[y,m,]1 € PS*?). Then there exists y, € K(n,) such that y, = y mod P**1.
(Note that K(m,) is the algebra of elements commuting with m,, since
[K(n,):K]=p")

(b) If m, is such that §, = 0 unless j = 1 modp” (where r < m), and if
y =X e, withe =0 unless p'lJ, then one can pick y, as above so that
K(y,) is totally ramzfzed of degree < p"~".
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Proof. Let y =Y¥% en’; let e,m' be the first nonzero term. If
i > s + 1, there is nothing to prove. If i < s, then ¢7n' commutes with 5
(as one sees by computing [y, n,]); thus ¢, € k. Now y — ¢, commutes
with 7, mod P**2, and |y — ¢,1}| < y. Proceed inductively to produce y,.

(b) Continue with the notation of (a). We must have p’|i, and our
construction gives y, = X%, ,7?1, where ¢, € k and &) = 0 unless p’|).
Hence K(y,) € K(nf") € K(n,), so that K(yl) is totally ramified. As nf’
commutes with k,, the division algebra D, of elements commuting with

y, hasindex > p” over K(y,), and this implies that [K(y;): K] < p"™".
We are now ready for the main result of this section.

THEOREM 3.3. (Approximation Theorem.) Let notation be as mentioned
previously.

(a) There exist n,,...,nm, for Dy,..., D, respectively, such that for
2<i<t,

Z Z al(ljn/?

=1 l<i<i
where 80, ,=1; 8{) ek, _; 8]) 0 forj<s,_,—s_,andl<i—1;
and 8(9,. e ks fOl‘j <S8
(b) We have m, = L5, 8,7 m/, with 87, = 0 unless p"|j — 1.

REMARK. From (a), i is congruent mod P*-17%-2%2 to the prime
element X727, 7°8{0, ./ | of D, ,. As the proof will show, we cannot
generally do better

Proof. We use induction on ¢. For ¢t =1, the first statement is
vacuous, while the second simply states that D, has a prime 7, such that
conjugation by 7, generates Gal(K,, /K).

Assume the theorem for ¢+ — 1. From Proposition 3.1,

x,— x,_, = cB(p™ = ptr)ym+simod Pt ce k ~ {0).
We first find a prime 7} in D such that 7,,...,7,_, (from the inductive
hypothesis), and 7, satisfy (a), (b) and

(¢) m, commutes with x, mod P~"*%-1%2
We do this by following the procedure in the proof of Proposition 3.1.
Modulo P~"*5-1%2 we have

[T’l X t] [T’t 1 € p"— pPi- 17
= C(Bp"—phr—l — Bpl’"_ph"l)n—m+s,»1+l

-m+s,_;+1
9

m+s,_1]

=yn
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say, where y € V,._, .. Now consider 7,_; + Sy Tstl s e ky, .
Modulo P~"*$-1%2 we have

S, 1—S,_2+1 — ;o1 S-2+1
[smcy ot x| = [Bmpmt ot x,
(since x, — x,_, € Pu-171)
— s,—S8,_1+1
- (8)6,_1 - xt—ls)ntl—ll .

But x,_, = x,_, + B,»_,»» + higher order terms (which disappear in the
commutator once we work mod P~"*%-1%2) and x,_, commutes with §.
Thus (mod P~""5-172)

[8ni-i7 2" x,] = B (8 — 857

Also, 8°" """ =84 '8{ p"}, ¢’ € k\ {0}; as & runs through ky,
8{ p"-'} runs through the elements of ¥V, , ,b,_,. By choosing & ap-
propriate, we may arrange to have

[7’1—1 + a,nf,_,i—-s,_z, xt] — .Y(t42),n-n+s,,1+1m0d P_'1+X"1+1,

Y(t—2) & I/pn_Ph,,z .

Continue inductively; the next step involves adding §'n}} " to n,_; +
dm;-{~“> and showing in the same way that for an appropriate 8’ € k,,
we get the commutator to be

-m+s,_+1 -m+s,_,+2
Y- 30 Y (mod P TR) oy € Vo s,

After (¢t — 1) steps, we get 1'.

Now let x/ be an element in K(n}) with x, = x,mod P~"*%-1"2 and
[K(x;):K]=[K(x,):K]; this is possible because of Lemma 3.2 and the
minimality of [K(x,):K]. If x, = x;, then we are done. If not, then for
some r > -m + s, + 2 with p”/r and some y € V,u_ .4,

x,— x,=yn"mod P""!.

The argument to prove this is like the one at the start of the proof for
Proposition 3.1. Let F be the minimal polynomials satisfied by x,, and
suppose that x, — x, € P"~'\ P’. Then we have x, — x/ = yn’mod P"*!,
with y # 0; moreover, F(x;) = (Tr,, ,v)n"modn""", where p”|h — r.
But K(F(x,)) C K(x,), which shows that p”|h. Hence p”|r. Next,
F(x!) - (n)~" commutes with n’; hence Tr,, 5y commutes with 7', and this
shows that Tr,, ,,v = 1. Now apply Corollary 2 of Proposition 2.1.

Modulo P"*? (as the next calculations are also to be understood), we
have

r+1

[n/t?Xt] =nn Y € me_ph,.
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We now argue as in the first part of the proof to remove y,. For § € k,,_,
we get

[8m;=3%%, x,] = ¢(8B(p" = p"-)

or—s,+l

- B(p" = p1)8 ),
0#cek.
Since

88(p" - p")°
_.B(Pn _ pb,_1)80‘r e _a{pb,}ﬁ(pn _ pb,—l) + V;)"—pl’l—l,

and since 8{ p”} can be arbitrary in ¥,s,_,_ 5, we can find § so that

r—sp+1

—s,_1+1 — 1
[0 + 8n;3 " x| = Y- Yy € Vomo g

Now iterate, next adding 6, ,m;"3*"' to put the commutator in
(Vo pb,_z)n’“. The same inductive argument as earlier shows that we can
find #” commuting with x,mod P'*? and satisfying (a) and (b). The
theorem follows by using induction on r and then taking limits.

4. The general approximation theorem. We now remove the restric-
tions on D that were imposed for §3; thus [D:K]=n? and n is
arbitrary. Let x € D and write x = X7 . Y,m’; we assume for notational
convenience that x is in general position. Let s,,...,s,_; be the jump
points of x, and let x,,..., x, = x be approximating elements for x; note
that s = j,. Write L, = L(x;), and let e, f; be the ramification index
and residue class degree respectively of K(x,)/K; let e} = e,/e;_,, f/ =
1i/f,-1- (We define e, = f, = 1.) Finally, set D; = algebra of elements
commuting with x .

LEMMA 4.1. Let E, be the maximal tamely ramified extension in L;. By
conjugating x in G, we may arrange to have E, C E, C --- C E,.

Proof. Let x, = a;m%, and let (n, jo) = my, n = nym,. Then K(xg°)
is unramified over K. Let n, = n,p":, where (n,p) =1, then E, =
K(xg™) is the maximal tamely ramified extension in K(x,). Let y = x£",
and let D, be the algebra of all elements commuting with y.

Let / be the residue class field of D,, k, the residue class field of D.
Then [k,:1] = e(E,/K) is prime to p. Define

S ={8eck,:8 €D},

T = {e € k,:Tr, ,6'e = 0 for all nonzero & € Sj}.
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It is easy to verify the following facts (proved as Lemma 2 of [3]):

(a) S, = /,S, is a vector space over / of dimension 1 if f(E,/K)]|j
and of dimension 0 otherwise.

(b) T is also a vector space over /, and S, ® T, = k,. (This uses the
fact that [k, : /] is prime to p.)

() If0#8€S,then S, =85 =S,6 and

J
T, =8T¢ =T8".

Furthermore, v, € S,

We show first that we can conjugate x by an element of G so that
x € D,. The proof is by induction (plus an easy convergence argument).
Suppose that (by conjugating if necessary) every term in the expansion of
x through y,n/ commutes with y (ie, v, €S, if i<j). Foree T, _,,
consider

(1+ &1 )x(1+en/*t0)" = x +(8Y,ZN_IO - Ec'jo)nf“modP’+2

Jo
=x+ {(e)n/*!, say.
From (c), {(¢) T, 0On the other hand,
{(8) — 0 =9 [8n1+1-10’ 'anjo] = O E= [Ernj"'l_jo’y] = O

=1 .
€E SJ+1“J0'

Hence { is injective from 7,,,_ to T ,,, and (a)—(c) imply now that { is
bijective. Hence we can choose & so that the coefficient of /%! after
conjugation lies in S, ;, and this is the inductive step.

Thus we have x € D,. A simple application of Hensel’s lemma shows
that every K(x,) contains a tamely ramified extension conjugate to E,. As
this extension is in D, and the center of y is E}, the extension must be E|.

Now the lemma follows by induction on 7, since henceforth we can

work inside D,.

THEOREM 4.2. With notation as above, D, ., has a prime congruent
mod P*+17%"1 10 an element of D,.

Proof. We work by induction on j. In view of Lemma 4.1, D, and
D, ., both contain the tamely ramified extension E;; thus (by passing, if
necessary, to the algebra of elements commuting with E,) we may assume
that K(x,) is totally wildly ramified over K. Similarly, we may assume
that K(x ) 1s totally ramified over K.
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Let E; , be the tamely ramified piece of the extension for K(x,, ),
and let L be a totally ramified extension of L, in D. We may assume
further that x ,, x; commute with L. Let D, be the algebra of elements
commuting with L, and let, e.g., D, , be the subalgebra of elements in
D, commuting with x;. From Theorem 3. 3, we can choose primes 7,1,
in D,,and D, respectlvely with 7, = n,,, mod P%+~%~! Then M+t
is also a prime in D, ., because L is totally ramified over E,, ,, while
n, € ij.

REMARK 1. It is natural to ask whether the result of the theorem is
best possible. If (n, p) = 1, the answer is certainly “no”; in fact, Lemma
4.1 says that in that case, we can find primes 7, for D, such that n, € D,
for i <j. If n is a power of p, the answer (for totally ramified extensions)
is “yes” in general; it is easy to construct examples by paralleling the
constructions in the proof of Theorem 3.3. In the general case it appears
that one cannot do better than Theorem 4.2, but I have not checked an
example in detail.

REMARK 2. The proof of Theorem 4.2 actually proves a bit more than
what is stated. Since the stronger result will be useful in what follows, we
state it here as a corollary.

COROLLARY 4.3. In the situation of Theorem 4.2,

(@) If jo is the largest index < j, such that s; is a jump point with wild
ramification, then there is a prime in D, congruent mod Pn=50*! to an
element of D, ;

(b) If there is no index < j, where wild ramification occurs, then for
everyj < j, D, C D,

5. Commutators in division algebras. We shall later need a result about
commutators, which we prove now. Let G, =1 + P/, G = G,.

PROPOSITION 5.1. Lety € [G,G] N G, h > 2; let r be any integer > h.
Then we can write y mod G, as a product of commutators,

y= (upUl)(“{’U/l) e (U, Ur—h)(u:—-h’ U;—h)’

where each u,, u; is of the form 1 + 8 (8, € k,) and the v;,v] are of the
form1 + gq"*/ =2,

Proof. By an obvious induction argument, it suffices to consider the
case r = h + 1. In what follows, all calculations on G are performed
modulo G,. Write y =1 + X%, y,n’. If x is any character of D* that
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factors through the norm map, then x(y) = 1. This implies in particular
that if w € K N (1 + P'7*"), then Trj, ,w(y — 1) = 0; see, e.g. Theorem
1 of [2]. Thus Tr, v, = 0if n|h.

In general, we have

(uy,v,) =1 ‘{’(813i7 - 518f’h_1)7)h-
If n|h,let 8, = 1. Then

(“1»01) =1 +(Ef - 81)’7}';

as v, has trace 0, we can choose & so that (u;,v,) = ymodG,. In this
case, we can let u; = v] = 1.
If n t+ h, write

h+1 h4(1—-1)

Ao =878y - 87,
where 7 is the smallest integer such that n = h + 1; let A = §""'A,. Then
No(818) — 87" ') = (Ngy)” — Aey.
So for fixed §,.
y, = 8,60 — 67" forsomee €k, = Tr, ,i(Agy,) = 0.

Let § = 8%, so that A, = 88° --- 8° . From Hilfsatz 4 of [7], we can (by
choosing 8§, appropriately) make A, any element such that

N, xAo€k,  s=(h,n).

Write n = p"on;, where ( p, n;) = 1. Suppose first that p" + h; let s =
p’es;, and set s’ = p*on,. From Proposition 2.3, we know that there exists
N, such that N, N € kg, Try Ny, = 0. Since n/s’ is a power of
p» N, s is an automorphism on k. Thus we can multiply A, by an
element of kj to get Ay with N, ,.A, € k, Try /Ay, = 0. Thus we can
find §,, ¢, to prove the lemma. Here, too, we have u; = v} = 1.

Therefore we may suppose that p"°|h. Restrict attention to elements
8§, € k,; it is not hard to see that it suffices to consider the case n, = 0.

We are now in the tamely ramified situation. Note that
’ ’ o oh~1 10 ro 1
(uy,v)(uf,0]) =1+ [(8181 - & 81) +(8{el -8/ s{)]n".

We need to show that the sum in brackets can be made equal to any
element of k,. It suffices, since Tr, ,, is faithful on k, to show that then
(a) there exists &, 8, such that Tr, ,.(8,&] — 818{’%1)}, = 1; and
(b) if Try .,k = 0, then 38, & with k = dje] — &8" .
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Part (b) is easy; in fact, we can take §, = 1. As for (a), fix 6, and
suppose that Tr, (8¢} — £,87"") = 0 for all ¢, Then Trkn/ke{’(Sf” - &)
= 0 for all ¢;; hence 8" — 8, =0, or " fixes 8,. We need only choose §,
to be outside the fixed field of o” to complete the proof.

PART II. REPRESENTATIONS OF DIVISION ALGEBRAS
OF INDEX pn,, p t n,.

6. Some simpler cases. Let D be a division algebra of index pn, over
its center K, where K has residual characteristic p and (p,n,) = 1. We
use the notation of §§1 and 4.

We wish to determine the irreducible unitary representations of D*.
In general, we work by determining those of G. Any such representation
has a kernel containing some (1 + P"*!) = G, for an m > 0; choose
m to be as small as possible. In this and the next few sections, we assume
that m is odd; we remove this assumption in §9. Let m = 2m’ — 1, and
let x be a character on the Abelian group G,,/G,, ., that is nontrivial on
G,. As noted in §1, one can write x = x, for some x € P~™\ P~ "*1,
Let sg,...,5,_; be the jump points for x. We shall assume until §9 that
the s, are all odd.

The construction of the representations of G is done by (mathemati-
cal) induction. We assume that the representations of the corresponding
group G’, and of D', are known if D’ is a division algebra whose index
over its center K’ is a proper divisor of n (of course, K’ also has residual
characteristic p). We also assume that all irreducibles of G containing x .
are known when x’ € P~"*! In this section we deal with some relatively
easy cases, leaving the hard work for §§7 and 8.

Case 1. x is not in general position. Then there is a central element
Xo € P~™ such that x — x, € P~™*!, We may let x, = y_,n", in fact.
If x is any character of K*N G satisfying x(1 + 89™) = ¢(y_,8), then
X ° Np i agrees with x, on P™. Therefore x = Xx(Xx°Npk) ' is a
character on P™~'. Moreover, m, contains x; < m, ® (x ° Np ) con-
tains x ,, and the representations containing x ; are assumed known.
Henceforth we assume that x is in general position. Write

oo}
x= 2 vy, xe=v.,.m"€K.
j=-m
Case II. t = 1. Then K(x,) and K(x) have the same ramification
index and residue class degree. The following argument is like that in [6];
indeed, it applies whenever ¢ = 1 (regardless of »). It is also not strictly
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necessary for the construction in our case, but I think that it may be
useful to have the following result stated explicitly.

THEOREM 6.1. Suppose that x is in general position and that t = 1.
Then y € D* commutes with x, on G,, <y € G,, - D,. Moreover, X,
extends to a character on G,,D.. Let x be any such extension. For each
representation w, of DX trivial on G,, N D} extend m, to G, - D, by
making it trivial on G,,. Then x ® m, induces to an irreducible representa-
tion of D*; moreover, every representation of D* containing x , is obtained
in this way.

Proof. Satz 2 of [8] gives the result about elements commuting with
x,-f we g, and y € G,, - D, then x ((w, y)) =1 because y com-
mutes with x , while x, is 1 on (D), D) N G,,) because x, factors
through the norm map on D). Hence x, extends to G,, - D). x, ® 7, is
a multiple of x . on G,,, and Theorem 6 of [9] implies that it induces to an
irreducible representation of D. Finally, we show that we obtain all
representations of D™ containing x, which are trivial on 7”. We may
assume that x(7") = 1. The set S = {7, € (D))" :m, is trivial on G,, N
D) and on 7"} satisfies

% (Dimm)* = (G0 D,:G,0 1 D] e,(g" ~ 1),

THES

since the left-hand side is [D: (%"} - G, ]. On the other hand,

-1
[DX:DXX : Gm'] = [G:Gm']([G N Dx:Gm' N Dx]) (n/el) ((q 1)) .
Since x, appearsin 7 = Ind; px_ p<(X, ® ) exactly (dimm,) times, we
see that the w-primary subspace in Indg ny_ p-Xx, has dimension
(dimm,)?[D*:D) - G,]. Hence, by Frobenius reciprocity, these sub-
spaces account for a subspace of dimension
L (dimn3)[D*:Dy - G,] = [G:G,]n(q" = 1) = [D*: G, (u")],

THES

or for all of Ind 5, (,»y _, p=X - This proves the theorem.

REMARKS. 1. We have dealt with D rather than G in this theorem;
obviously, there is a similar theorem for G. When we come to deal with
the case m even, the representation x , will not extend to G,, D), and we
need to use a Weil representation; see, e.g., [4].
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2. In general, K(x) is not determined up to conjugacy by x mod p~"";
this is most evident in the case where K(x) is inseparable. This fact makes
it more difficult to arrange for a good parametrization of (D) ".

Case 111. The first jump point involves only tame ramification. From
Lemma 4.1, we may assume that the yjnf all commute. Now the construc-
tion of [5] (or [1]) yields all irreducible representations of D> that agree
with x, on G,,, and hence all such representations agreeing with x . on
G- The proofs are exactly as in [1]; we omit details.

Case 1V. The first jump point is not totally wildly ramified. Let K,
be the largest tamely ramified field in K(x,); we may assume again
(Lemma 4.1) that every y;n/ commutes with K. Let D, be the algebra of
elements commuting with K, and construct all representations o of
D§ N G containing x , | DyN G,,. The same construction as in [1] shows
that there 1s a subgroup N, of G,, on which x, is trivial, which is
normalized by Dg‘N G, and which satisfies

N()(D()Xn G)::Gm'(DOXm G)’ NOO(ng G)gGm+1'

Then we can extend o to G,.(Dj N G) by making it trivial on N,,. Induce
o to G to get an irreducible 7 containing x,. That = is irreducible and
that every =« containing x, is obtained in this way can be proved
essentially as in Case III, by following the corresponding proofs in [1].

7. Extending x ,. We henceforth assume that
(a) the element x is in general position;
(b) the first jump point of x, s, = —m, is totally wildly ramified.
Let —s; = 257 — 1 (recall that we are assuming that the s; are all odd), and

define H = H_ to be the group
Gs (Gs{ N Dx,) e (G’ N Dx,_l)(G N Dx,)'

’
0 St-1

We wish to show that x, extends to a character of H. This is equivalent
to:

TueoREM 7.1. If y € [H, H] N G, then x . (y) = 1.

Proof. This follows the lines of the proof of Lemma 8 of [2]. We write
y as a product of commutators. We note that

(7.1) (UIUZ’W) = (vlvzvfl, Ulwvfl)(vlaw)
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and
(7.2) (v,ww,) = (U,wl)(wlvwl‘l,wlwzwl‘l).

In this way, we can let y be a product of commutators of the form (v, w),
where v =1 + yn,, w =1+ y7’, and n,, 7 are specified primes, while
Y¥,0 € k,. Similarly, we can commute commutators by using

uuy = “1( uf1“2“1)>

where, if u, = (v,w), then u u,u; = (u7 vuy, uy wu,).

We proceed by a lengthy sequence of steps.

(a) If v,w € H and vwv™"' € G, = G, then w € G, (since G, is
normal in G), and x (vwv™!) = x (w), since x (owv™!) = x -1, ,(w) and
elements of H preserve x . In particular, x ,((v,w)) = 1.

(b) The following computation will arise repeatedly in the proof: if x
and v commute, then

1 1

Trp xx(vuw™™! — w”) = Trp x (vxuo”™! — xuv”) = 0,

since Try, x(ab) = Trp x(ba).

(¢ Let H'=H!=Gy(G,nND,)---(G, ND, ) If u,veH,
then (u,v) € G;; and x,((u,v)) = 1. To prove this, it suffices to consider
the case where u € G, N D, and v € st N D, , as repeated use of (7.1)
and (7.2) shows. Assume i < j, for definiteness; write u = 1 + u,, v =
1 + v,. Then modulo P™*!,

(u,0) =1 +(ug, — voug) +(vou§ - uovouo) +(Uouovo - uovg)

= (1 + ugvy — vouo)(1 + vou2 — ugvouo)(1 + vouevy — ugwd).
Since ugv, — vyu, € P91, we have
X (1 + uguy — voug) = X, (1 + ugvy — vouo) = 1,
from (b) (note that x; and v, commute). The other terms are taken care of

similarly.
(d) Now (a) and (c) reduce us to considering

(7.3) w=(u,0,) - (u,,0,),

where one of each u;,v; is in G N D,. We shall assume for notational
convenience that u €GN D, for all j; this will not affect the proof. We
may also assume that u, = 1+ u;, v,=1+v,, where the U,V are
“monomials”:

(7.4) Ujo = ény; Uio = eny, a=a, b=,
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where 8, e€k,, v, € G,ND,, and 7,7, are primes for D, D,
respectively. We fix these primes so that 7, is congruent mod P*~* to an
element n; of D, .

We may assume also that for the first r, commutators, and only for
these, we have v, € D, . Then the product of these commutators is in
G,,_ .1 (since every other commutator is in Gy,_ ), and we may, there-
fore, assume from Proposition 5.1 that a; + b; > s,_; for all j. (In fact,
we can have a; = the order of a prime in D,, for j < ry).

Write u} = 1 + uj,, v = 1 + v}, where

(7.5) ujo=28(m,), vo=en’ (m), u primesin D, related to7,,n,

as in Theorem 4.2 and Corollary 4.3);
the a, b, §, € in (7.5) agree with those in (7.4). Let
y = (u,00) - (ur, ).
Then y’ is a commutator in D, , so that
X5 () =1.

The proof consists of showing that x ,(y) = x, ().

(e) Write (u;,v,) =1 + w,; o + w,;, where

o0 ) - .
"o Zl (1) (o2 = w0 )
-

write y = 1 + w, + w;, where w, = X7_; w; . If one multiplies out all the
commutators, w; consists of all terms of degree > 2 in the v, For
instance, we have (mod G, . ;)

o]
— i i-1 _ i i 2 i—1,2
W= Zl (1) () 00, 040 "0;.0 = ) 045 0050 + 00U} V20 = U 00 o' v%0)s
P

and w; is a sum of the w,,;, plus products of the w;, and w;,. Thus

w, € P"; asw € G,,, we have w, € P"™, and
XL+ wo + wy) = X, (14 wp)x, (1 + wy).
Similarly, we write (u},v)) = 1 + w/, + w/; and
y =, vp) - (ug o) = 1+ wg o+ wi;
the same argument as above shows that

Xxl(J") = Xxl(l + Wé)xxl(l +w(), w;andw] € P™.
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(f) We have

Xx(l + WO) =1

from (b), since each u; commutes with x. Similarly, x, (1 + wg) = 1.

Moreover, w; and w; are congruent mod P~* + 1. The reason is that
each term of w is at least quadratic in the u,; moreover, if u ,,o appears,
so does v, By Corollary 4.3 (applied to j, = O) = u; Ovj’ 0
mod P* st , where v, € D, and ¢ is the order of u/ g/ . ThlS order is
at least P *1 Thus U g0 = = i oVjo mod P™” s-. Now suppose that the
term of w, contains a product u;q, 0410005 where v, € D, ;, and
r’ > r. Then u,y,, and u/ ., are in P! (and congruent mod P~ s
hence the products are congruent mod P™~***1 and therefore con-
gruent mod P™*'. The remammg terms in w,; are of the form u, v; %y or
v, 0l oVj0- But, eg., u gl = ujovj'%mod P"’ ¥ =pPmoand x,, X,
agreeon G,,.

(g) It follows that x, (1 + w{) = x (1 + wy); () and (f) give

X (W) = X, (1 +wg) (1 +wi)) = 1,

since (1 + w))(1 + w{) is congruent mod P™*! to a commutant in D,.
This proves the theorem.

8. Construction of the representations. In this section, we construct
“enough” representations of H = H, so that inducing to G produces all
the desired irreducibles. This is not too difficult, but takes some time.

Recall that K(x,) is totally wildly ramified. Hence we may (and do)
assume that y_, € k. This implies that the residue class fields of D, ..., D,
are all extensions of degree prime to p. The residue class field of D, is
k,,; let [, be the residue class field of D, and let k(x,) have ramification
mdex and residue class degree ¢, f; respectively.

We know that H_ is generated by G, and elements 1 + 87, where 7 J
is a prime of D, that is close to an element of D;, §€/, and r > s/
Moreover, 7, = 8 7% mod P! for some & € k, . For each integer r, let

S (j)= {8 € k,,; there is an element of D, congruent mod P! to 8y’ },
T.(j) = {e €[, :Tr,(no/,j(e‘o‘"l) = 0 for all nonzero § € S,(j)}.
We sometimes write S,, 7, for S,(¢), T,(¢).

LemMma 8.1. (a) So(/) = |,
(b) If 6 € S,(j) is nonzero, then

S,er(J) = 87S,(j) = 85,(j)"
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and

T,.,(j) = 87T, (j) = 8T, (j)".
(c) Both S,(j) and T,(j) are vector spaces over l;, and S,(j) @ T,(j)
=k,
(d) Dim y S J) = 1if F;|rand 0 otherwise.

Proof. This is essentially done as Lemma 2 of [3].
Now let N be the subgroup of H generated by G,, and the elements
l+en;eD,NHwithe€eT,.

LeEmMA 8.2. (a) N is normal in H,
(b) H/N = (G N D,)/(G,; N D,).

Proof. (a) Since
(1+ &)1 +em2) =1+ em} + e mod P

if the 1 + &7} are generators of N, and since 7} is congruent to an
element of D, modulo P™, it is not hard to see that N is composed
entirely of elements of the form

0
(81) w=1+ Y en/, 2j,2mandeg T if j<m,
J=h
while H is composed of elements of the form

(e o]

(82) y=1+Y 8n, §esif2j<m.

Jj=1

To prove (a), it suffices to show that every element of the form (8.2)
normalizes the elements of the form (8.1).
Write
W=WW o Wy, w=1+emn! forj<m’;

then w,, € 1 + P Similarly, one can write

y=y -y, y;=1+38n] withd €8, for2j<m’;

Y, €1+ P°and2s > m'.

Then y, commutes with wmod1 + P™ and w,, commutes with each
yymod1 + P™ . Tt thus suffices to show that yw,y ' €N for i <s and
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Jj < m’. This is a straightforward calculation:
yw, =1+ ey + (8 — 8, )n
+(8;€7,8;°:+/ _ £j81/018i,a'+/)7’[21+_/ + o,
and repeated application of Lemma 8.1 shows that w, ytenN.

As for (b), G N D, injects into H and hence maps into H/N; from
the form of elements in N and H given in (8.1) and (8.2), it is easy to
verify that the map is surjective and has G,, N D, as kernel.

Any representation of G N D, that is trivial on G,, N D, can thus be
as a representation of H trivial on N. Take an extension of x, to G
(guaranteed by Theorem 7.1); call the extension x, as well. Then x, ® o
is also a representation of H, and is a multiple of x . on N.

Let H' =G, (G, NG,)---(G_,_ ND, NGN D). The key re-
sults we need about H’ and H are contained in the following proposition:

ProrosiTioN 8.3.(a) [H':H]=[H:G,,(G N D,)].

(b) If y € G is such that x (ywy™) = x.(w) for all w € G, then
y € H’; conversely, y € H' = x (ywy™") = x(w) forallw € G,,.

(¢c) If y € H' is such that x (ywy ') = x . (w) for all w € H such that
ywy~l € H, theny € H; conversely, x ,(ywy™") = x (w) ifw, y € H.

Before proving Proposition 8.3, we show how it solves the problem
of constructing representations of G containing x,. For each o €
(D.NG/D,. N G,)" let 7, = Ind% (o ® x,).

THEOREM 8.4. The , are distinct irreducibles of G, and Ind¢, x, =
@®o[H’:H)Dimo)m,.

Proof. The irreducibility follows from Proposition 8.3 (c) and Theo-
rem 6 of [9]. Proposition 8.3 (c) and Theorem 7 of [9] also imply that the
m, are distinct.

Frobenius reciprocity says that o, appears in Ind‘(’}mx_\. with a multi-
plicity equal to the multiplicity of x, in 7| G, But

770'6,,, = @ c® nyy"IGm = (dlmd) @ Xypxy=1s
yeG/H yeG/H
and x,,,-1 = X, ©y € H'/H from Proposition 8.3(b). Thus the multi-
plicity of =, is [H': H]dimo. Finally,
[H':H](dimo)dimz, = [H':H|[G:H] dim*¢

=[G:G,,(D, N G)]-dim*e
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by Proposition 8.3(a). Summing over o shows that we have accounted for
a subrepresentation of Ind¢, x, of dimension

Y [G6:G,(d, n G)|dim’e = [G:G,.(D, N G)][D,NG:D N G,]

=[6:G,],
and hence for all of Ind¢, x,.

We still need to prove Proposition 8.3. For part (b), write w = 1 + w,,
w, € P™. Then

Xs(ywyt) =y oTrD/K(xyWOy—l) =y °TfD/K(y—,XyW0)~
This is equal to ¥ o Tr, 4 (xw,) for all w, € P iff

x — y-lxy c P—m’+1,
and this congruence holds iff y € H’ by Satz 2 of [8]. Half of part (c) is
easy; y,w € H = x, (ywy™!) = x (w) from Theorem 7.1. For the rest of
(c) and for (a), we need to do some more work.
The field k, is the compositum of k, and k, . Define o, B, € k,, as
in §2.

LEMMA 8.5. Let x — x; = {;n mod P**', with j > 1. Then by con-
Jugating, we may assume that {, = B{/, {| € Ss,( J) and {] # 0.

Proof. We have seen that x — x, = y_,n "mod P~""! withy_, € k
and y_,, # 0. Since x,, is totally wildly ramified, we have (m, p) = m,,.
Assume the lemma for j — 1. We certainly have
p—1
;= Y o8, ; for appropriate§, ; € k,, .
i=0
We describe anything of the form
p—2
Z ah’p Y, € knoa
i=0
as “small”. Note that if we conjugate x with 1 4+ y9¥*" we get x +
Yo(¥® " — y)n¥(mod P*1), and y,(y° " — y) can be any element a of
k, such that Tr, k&= 0; that is, we can always get rid of any small
element by conjugating.
Thus we have §; = of 7'{], {/ € k, = S, (1). Now conjugate x with
1 + yny ™, where y € k,, = [;; we get (mod P5*1 as all future compu-
tations are made)

x +(8§1"f_” - 8"51{1)11’1, & any element of k,, .
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Now ¢, = af 7’{] with {] € k, . Moreover, Satz 8 of [7] shows that
the largest tamely ramified extension of K({;n%) is (conjugate to) the
largest tamely ramified extension of x;; this implies that § € S,(2) « 87"
and {/n" commute. So set

Fl(8) — aglms;—n _ 80:I§/, e k"o = Ssj—sl(l)‘

This is a k-linear map, and it is 0  § € S, —s,(2). For d€ T (2,
Lemma 8.1 implies that F)(8) € Tsj(2). Hence counting implies that F)
maps k, into TSI(Z). Moreover,

8¢ — 8¢, = a?7F,(8) + a small term.

Thus we can change Y, (the coefficient of 7% in the expansion of x) by
any element of the form a?~le, ¢ € T%(2). It follows that we can arrange
to have {, = a?7'¢,,, with { , € §,(2).

We continue inductively. Conjugate x with 1 + yn3™", vy € 1,; we
get x + (8§37 — 8°°f,)n", where & is any element of S, _ (2). The
same argument as before shows that § € S,(2) & 87’ commutes with ${n™
and {}n*. So define F,(8) = 8¢,°" 7 — 8°7¢}, § € $%7°2(2); by the same
argument as above, F, maps S °2(2) onto T(3). It follows that we can
have { = af -1 3 $,;3 € T)(3), and the same inductive procedure gives
the result.

COROLLARY. In the above setup, let L; be the maximal tamely ramified
extension in K(x,). Choose §,, such that § j’()?]j// h=¢ 'n> mod n*+1. Then
L, ., is conjugate (mod an element of G) to the maximal tamely ramified
extension in L (§;,n%"). (This follows from Satz 8 of [7], as we observed
in the course of the proof of Lemma 8.5.)

ReMARK 1. The corollary shows the following useful fact: suppose
that 8§ € S,(j). Then § € §,(j + 1) if &1 and {/n* commute, or, equiva-
lently, if 87" and {§/” commute mod P**"*". The reason is that 87" then
commutes with the largest tamely ramified extension in K({/1*). Another
way of stating the condition is that 6’y is congruent mod P"/*! to an
element of K(x,,,)if 8" € Sy(;) and [87], . 1%/%] = 0.

REMARK 2. While the process of Lemma 8.5 may mean that the
tamely ramified extensions in K(x;) are no longer contained in the
algebra generated by k, and n”, conjugating by elements of G does not
change the membership of the S,( ) or T,(j).
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We now return to the proof of Proposition 8.3. Part (a) is a matter of
counting. For each r < m’, we compute card(H N G,)/(H N G, ;). If
s] < r<s/_,, this number is 1 if f; + » and card/, = ¢"/% if J/;/r. Since
fi1(2s; —1,2s;_; — 1), we see that for j < ¢,

n [H N Gr:H N Gr+l] = ql(n/elfj)(s/,‘l_%/)'

’ ’
<
§;Sr<s;_;

A similar calculation for r < s, gives

[T [HN G :HNG, | =qn/eia=n 25/ —1=—5,=f,
r+1 t t

l<r<y/
So
t
n ’ ’
log,[H:HNG,|= 2 ;(sj,l—sj), nj=[Kj:K].
j=1"
Similarly,
log,[6ND,.:G,ND]= %(s{) ~ /)
t
and
-1
!’ !’ n !’ n
log,, [H:H' nG,|= ;1—( 6= (51— 80) —s,)+ X 7(—sj +5,.1)-
j=1 "

It is now easy to verify that
2log,[H:H N G,] =log,[GND,:G, nD*] +log [H':H' N G,],

which proves (a).

As for the second half of (c), assume that x (ywy™') = x (w) for all
w € H such that ywy~! € H, but that y & H. Since y € H’ (from (b)),
we may assume (after multiplying by an element of H) that

y =1+ en; + higher order terms,

where 1 + enjcG_, N D, and 1 + enjeé G, N D;. We have e, € P~
P! and we may assume that e’ is not congruent mod P’f/“ to an
element of D, _

Let wy = 1 + 887) where (r +r')f, = -s,, § €/ is fixed, and §
runs over /. The w; are all in D, and (with wy = 1 + wspand y =1 + y;)

w F — P .
1+ ) (-1) 1()’owzs,o)’é b Wa,o)’(l))
i=1

-1, -1
YWsyY Ws

[o0]
+ Y (1) Y wsoyomwin! — yowh,) mod P71,
i=2
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Each term in the sums is in P”, and each term with an index i > 2 is in
P~9*1. We have

Xx(owsytwst) = x, (1 + yows o — Ws020)

: 1:[2 Xx(l +("1)i_1()’owa,o)’é_l - Ws,o)’é))

: l:lz Xx(l +(-1)" (s o yomis' — )’0W§,0)>’

and (b) of the proof of Theorem 7.1 shows that every term in the two
infinite products is 1, since we can replace x, with X x,- Similarly,
Xx (1 + yoWso — Wso¥p) = 1, since x; commutes with y and w,. This
7. N ’
implies that
fosa’/ _ {U’FJS — O,

since §,, € € [, and [k, :1;] is prime to p. But then {on;"*" and e
commute. As noted in the Remark after Lemma 8.5, this means that en’; is
congruent (mod P”%*') to an element of D, ,, which contradicts our

assumption on y. This finishes the proof of Proposition 8.3 and of
Theorem 8.4.

9. Extending to D*; removing hypotheses. In this section, we deal with
two issues: extending the representations of G to representations of D™,
and removing the assumption that the s, are odd. The procedures are
essentially those of [1], [2] and [6], and our discussion will be brief.

The elements of k,° that commute with 7, (obtained from x ) are
those in D,. Indeed, if 8 € k) N D,, then § commutes with x , and we
could simply extend x, to H(k, N D,). If § € k) but § € D,, then the
argument of Theorem 8.4 is easily adapted to show that # and the
representation 7° defined by 7%(y) = #(8y8~!) are disjoint. Hence we
can extend 7, to G(k, N D) and induce to get the irreducibles of G - k.

The situation for extending to D> is similar; arguing as in §5 of [2],
one can show that the elements of D* commuting with a representation 7,
of G - k) that comes from x , are precisely the elements of D*(G N k).
Thus we need to extend 7, to G - kS - (n,) (since n, is a prime in D,).
Since (7,) = Z, there is no Mackey obstruction; however, we have no
good way of describing ,(7,). Inducing to D> then gives an irreducible
T.

To see how to deal with even s » consider the case where m is even.
Define m” by 2m’ = —m. Now ¥, is initially defined on G,,,,. We want
to define an extension of x , to

H:G,D,NnG,)---(D,_ NG, )(D NG).
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The argument of §7 lets us extend x, to G, (D, N G;) -+ (D, N G)
= H,. To go to H from H,, note that a set of coset representatives for
G,./G,, ., consists of the elements y; =1 + 87", § € k,. The map u:
(81,8,) = X (V55,5 s, 1) is an antisymmetric blhnear form on k,, and
8 is in the radial of p < y; € H. There is a unique irreducible pI'Q]CCtiVC
representation of H/H, with the above form p as multiplier; when p is
odd, it corresponds to a Heisenberg-type representation on the k-vector
space k,/Radpu. Tensor this representation with x  to get a represen-
tation which might be called x’; on H,, x’ is a multiple of x . The
reasoning in §8 applies to show that Ind% x’, ® o is irreducible and that
these irreducibles exhaust IndGmxx, even the changes in the counting
arguments are not difficult. If some other s, is even, we again get a
Heisenberg-type representation on G, . where 2s; = —s;; the details are
similar to those sketched above. Extendmg to those elements of k, that
commute with x now involves the Weil representation; see, e.g., [4].
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