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APPROXIMATION OF PRIME ELEMENTS

IN DIVISION ALGEBRAS OVER LOCAL FIELDS AND

UNITARY REPRESENTATIONS OF THE

MULTIPLICATIVE GROUP

LAWRENCE CORWIN

Let K be a locally compact, non-Archimedean field of residual
characteristic p, and let D be a central division algebra of dimension n2

over K. In constructing the irreducible unitary representations of D x , a
technical question repeatedly arises. Let J C G D , and let xλ be "close" to
x (in the sense that, for the usual absolute value on D, \x - xλ\ < \x\).
Let Dx, DXι be the subalgebras of elements commuting with x, xλ

respectively. Is it possible to pick a prime element η1 e DXι and an
element η0 e Dx that are also close, and how close can η, ηγ be to one
another? The first part of this paper analyzes this problem. It turns out
that η, ηx can be chosen close enough to one another so that Gifford-
Mackey theory easily permits the construction of (DX)A only if p2 = n
or p2\n. The construction has been given in earlier papers except for the
case where p\n, p Φ n, and p2\n; the second part of the paper is a
construction of (Dx)A in this remaining case.

We recall some details of the construction of (Dx) Λ. Let π be a prime
of K, and let Kn be an unramified extension of K of degree n, embedded
in D. One can choose a prime η e D such that ηn = π and conjugation
by P is an automorphism of Kn generating Gdλ{Kn/K). We write
ηaη'1 = aσ, a e Kn\ σ G Ga\(Kn/K) is the Hasse invariant of D up to
isomorphism. (See [11] for these and other unreferenced facts about
division algebras.) Let R be the group of roots of unity in Kn of order
prime to p\ let O = OD be the ring of integers in D, and let P = ηO be
the prime ideal in O. Then one has

Dx= U(η), U= (1 + P)#,

where U is the group of units of 0, the products are semidirect products,
and the first subgroup is normal. The main step in computing the
irreducible representations of Dx is that of computing the irreducibles of
G = 1 + P, and it is on this step that we concentrate. The general idea is
this: a representation π0 of G will be trivial on some normal subgroup
(1 + p m + 1 ) of G. Choose m as small as possible; for convenience of
exposition, assume m odd, and let 2m' = m 4- 1. Then 7r0 is a representa-
tion of G/(l + P m + 1 ) , and (1 + P m V ( l + Pm+l) is an Abelian sub-
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group. Furthermore, (1 + Pm')/(l + Pm+1) = Pm'/P>"+1 via the map
1 + y ~* y- I n this way, 7ro|(l + Pm') can be regarded as a direct sum of
(1-dimensional) characters of P m , all trivial on p m + 1 . To describe these
characters, let χ be an additive character of K that is trivial on P Π K
but nontrivial on O Π K\ for x G ΰ , let χx(y) = χ(^D/κ(χy))- Then
every character on D is of the form χx for some x G Z>; ( p m + 1 ) x = {χx:
Λ: G P~m), and restricting to P w means that x is determined only
mod p - m ' + 1. Given ττ0, we thus get x (mod p-™/ + 1

? and up to conjugation
by G) by the condition that χx occurs in πo | 1 + /»». Determining π0 then
becomes a problem in Mackey (or Clifford) theory.

It is here that the relation between n and p becomes important. One
needs to determine the w G G for which χx(wyw~ι) = χx{y) for all
y G 1 4- P m . It is easy to see that w satisfies this condition iff w
commutes with x mod some sufficiently high power of P. In the tamely
ramified case and in the case n = p, one can arrange to have w and x
commute; this simplifies matters. (See [1], [5], [4], [3], and [10] for details
and further results.) For n = p2, however, matters are less simple. The
problem is that one can pick elements x G D such that [K(x) :K] = p2,
but such that K(x) contains no extension of degree p over K. However, it
may be possible to choose xx such that [K(xλ) \K] = p, and JC and xλ

agree modulo some moderately high power of P. Certain elements com-
muting with xλ commute with χx and not with any element in K(x) - K.
In [2], this problem was handled by showing that in the division algebras
DXι, Dx of elements commuting with xl9 x respectively, one could find
prime elements %, η0 respectively that were congruent mod some mod-
erately high power of P; thereafter, the analysis could proceed roughly as
before.

It is therefore useful to consider the following type of approximation
question: suppose that x G PJO - P 7 o + 1 , and suppose that xλ = x mod Pj\
j \ > j 0 . Let Dx, Dx be the division algebras of elements in D commuting
with x, xλ respectively. How close to one another can one choose an
element i ) 0 G j ) x and a prime element ηx G DXΊ This is the topic of the
first half of this paper. It turns out, unsurprisingly, that the difficulties
arise primarily with wild ramification; much of the analysis, therefore,
deals with the case of totally wildly ramified extensions, and the notation
for this part (§§2, 3) is somewhat different from the notation in other
sections.

The results are rather negative; they show that the methods of [2]
apply directly only to the cases p2\n and p2 = n. (One needs to replace
psj+i-Sj j n Theorem 4.2 by P^+1~51 to use these methods, and in general
that is impossible.) In the second part of this paper, we construct the
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irreducible representations for the case n = pn0, with n0 prime to p. The

cases (n,p) = 1 and n = p2 have previously been treated, as noted

earlier.

PART I. APPROXIMATION THEOREMS

2. Some results on finite fields. Let A: be a finite field of characteristic

p; for each integer r > 0, denote by kr the extension field with \kr: k] = pr.

In particular, kQ = k. Fix n > 1; we shall be interested primarily in the kr

with r < n. Let σ generate Gal(k n /k). Write Tr / / y for Tτkι/k (if / >y),

and write Try for Tr z / 0; write Ni/J9 Nt for the corresponding norm maps.

P R O P O S I T I O N 2.1. (a) There exist elements a1,...,an^kn such that

r - l

(2.1) aσ

r-ar=I\<*Γ\ I <r <n (and a?-<*, = !);

moreover, kr = k(al9...9ar) = k(ar).

(b) F(?r 0 < j < p\ define βj = β(j) by

βj=Π<', where tm^-^j; βo = l.

Then the βf withj < pr give a vector space basis for kr/k.

(c) Let Vj be the vector space spanned by the β, with i < j \ in

particular, Vo = {0}. Then for all j > 1, there is a nonzero c e F p (the

prime field) such that

(d) T r J / V ' - i ) = ( " ! ) " ' fo'J < Pm~l> Ίΐm(βj) = 0.

Proof. We proceed by induction on n.

(1) Let n = 1. As Tr x l = 0, there exists aλ G fcx with αx

σ - αx = 1.

Then aλ £ k0, the fixed field of σ, and we must have ko(ax) = kv Now

(a) and (b) follow. For (c) and (d), we use the formula

(2.2) («/)" = K + 1)' = a{ +jar + Σ ( 7)«Γ'Σ (

Now (c) follows immediately; just let y = 1,2,.. .,/?- 1. As

1 = ( α / ) σ - α/modF;. ! , j <p - 1,
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the second part of (d) is also immediate. Finally, the case j = p gives

Hence σ fixes aζ — al9 or 3δ e k with a[ — aλ — δ = 0. The roots of
Xp — X — 8 = 0 are therefore α2 and its conjugates. Write the coefficient
of X as a symmetric function of the roots:

-1 = (-I)'"' I ' M«i)/«? = (-lJ^'Tr^JVίαOAi),
7-0

JV = norm in kλ/k.

But the conjugates of ax are αx + 1,..., aλ 4- p — 1, and thus N(aι)/aι

= αf ~xmod J^_x. Now the first part of (d) is obvious, since {-l)p~ι Ξ 1
mod p for all p.

(2) Now assume the result for n — 1. Then

T r , ^ - 1 - 1) =pΎτn_ιβ(p-1 - 1) = 0,

so that we can find an e /:„ with <x"n - an = β{p"~ι - 1). As
T^-xiSίp""1 - 1) # 0, «„ <£ A;n_!. Just as in (1), we get all of (a) and (b)
except for the claim that kn = k{an). We do have kn = kn_ι(an). Also,
β(p"~ι - 1) e A:(αn), and (b) and (c), applied to A;n_1} show that
k(β(p"-ι-l)) = kn_1. Hence

/:(«„) - ^ ( α n , J 8 ( ^ - 1 - 1)) = *,_!(«„) = *„,

as required.
We need to prove (c) only for those β(j) with j > pm~ι. We first

prove it for a'n91 < i < p - 1. For / = 1, the result is immediate from the
definition of an\ in general, it follows from the formula

( < ) • « ( « „ + /*(/>"-i)) ' .

Now we deal with the remaining case: βj = a'nβ(l), 1 < / < p""1 and
/ > 0. Then

γ e Vip.-i,δ(= F ^

j 1) + <S + ε, ε e ^ - , ,

which is (c) for j8y. The same argument as in (1) now shows that Tr,,/^ = 0
if j <p"'~ \
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We need more calculation to get Ύrnβ(pn — 1). For γ e kn, define
γ{0},γ{l},... inductively by

An easy induction gives

(2.3) y°° = t (%{]};

in particular,

(2.4) ya" = y + y{^} if s is a power of p.

Now let γ = βr. Applying (c) p times and using (2.4), we get

βf - βr = c'βr_p mod Vr_p for some c' e F,,

and an easy induction shows that if s is a power of /?, then there is a
c G F̂  such that

βr{s}=βf - βr = cβr_

For r = p"~ι, we get

But σ^"'1 generates Gdλ{kn/krι__ι), and fcΛ = /cw_1(α/2). Thus, from (d) in
the case n = 1,

As cp ι = 1, we have

Tr n/P~ι — Ί
iτn/n-ian

or

The inductive hypothesis on β(pn~ι — 1) now gives the first part of (d).
We note two corollaries. The first was essentially proved in the course

of the above proof.

COROLLARY 1. If s = apr with p \ a, then for eachj there is a nonzero
c e F̂  with

βf -βj- c / W e Vj-f

(Ifj-pr< 0, then βj_pr is taken to be 0.)
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Proof. This is an easy calculation from (c) and (2.3).

COROLLARY 2. If r < n, and if γ e kn satisfies T r n / r γ e A:, then

y

Proof. This follows from (d) (applied to kn/kr) and the linearity of

the trace.

We now prove a result about "partial traces".

L E M M A 2 . 2 . Let r < s\ suppose that p \ a. Then 5 a nonzero C E F

such that

aps~r — λ

Σ βf

Proof. For γ e fcΛ, define γ{y} as in the proof of Lemma 2.1. Then

(2.4) and induction give

7 = 0

Hence

aps r - l

Σ γ σ " = Σ Σ !•
/=0 7=0

7 s - ' - l aps ' - 1 i .

Σ Σ ;
7 = 0 z=y W

' } - Σ
7 = 0

f
As

and

we have

aps

= Omodp if ps~r \ j - 1

ns~r

~s — r

where γ ' is a A:-linear combination of terms of the form γ{ pr(ips r — 1)},
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i > 1. Now let γ = βJm Since (c) of Proposition 2.1 and an easy induction

shows that for each i there is c G F^ such that γ{/} - cβJ_i ^ VJ_i, the

result follows.

Recall that Nt/j is the norm map from kt to kj (j < i). We shall also

need the following result about norms and traces in km.

PROPOSITION 2.3. Let s < m. Given a G k*, there exists a nonzero

λ^kn with Nn/Sλ G k and Ίτn{aλ) = 0.

Proof. We use the following lemma:

LEMMA 2.4. Let q be a power of p; let qf = (qpS - l)/(q - 1). Then

for all n > s, q' and (qp" — l)/q' are relatively prime.

Proof of the Lemma. Since

and qjpS = 1 mod qpS — 1, we see that

(qp" - l)/(qpS - 1) =p"-smodqpS - 1.

Hence q\q - 1) and (qp" - \)/q\q - 1) are relatively prime. Similarly,

q' and q — 1 are relatively prime, and this proves the lemma.

Proof of Proposition 3.3. Let \k\ = q, (qp" - l)/(qpS - 1) = r. As

Nn/sλ = λr, we need to pick λ so that its order divides (q — \)r =

(qptl — V)/q'. Now let β generate k% as a cyclic group, and let a = β*.

From Lemma 3.4, we can find an integer a such that

(q-l)r\t + aqf.

Let λ = βaq\ Then the order of λ divides (q — l)r, and αλ has order

dividing q'. But then αλ G ks, so that Tr^αλ = 0.

3. Prime elements in sub-division algebras: Totally wildly ramified
case. We begin by describing the notational conventions in this section,

since they are somewhat different from those for other sections. We

assume that the index of D over K is pn (so that d i m ^ D = pln)\ we

choose x G i ) , and assume that K(x) is totally ramified over K. We

assume further that x is in general position, or that |JC| < \x + z\ for all

z G K. Define n by |JC| = pm.
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We recall some results from [7]. For each j e Z, let x(J) be an

element such that x(J) = xmodP~m+J+1 and [K(Xj):K] is minimal

(subject to the above condition). For j < 0, we have jc(y) e K, and we

take X(j) = 0 there; for sufficiently large 7, we may take x{j) = x. The

fields K(x(J)) are all totally ramified over K. There are integers s0 = 0,

sl9...9st_1 such that for each r, [K(x(s)):K] > [K(x(s _1 }) :K]. These

integers are the jump points of x. Set ^ = -00, st = 00, and define

jtΓ = ^( 5 r_i), with xt = x. We may (and henceforth do) assume that
X(J) = xr ^ sr-i ^ 7 < sr- We c a ^ ^ e Xj ^e approximating elements for

x. Let /),. = algebra of elements commuting with xr. We shall be inter-

ested in how closely we can approximate a prime element in Dr by one in

Write Kn for the unramified extension of degree pn that is normal-

ized by η, and let Kb be the subfield of Kn of degree pb over K. (Note:

Kn is what was called Kp* in the introduction.) We write kn for the

residue class field of Kn (and of D)\ this corresponds to the notation in

§2. The residue class map 0 -> 0/P = kn is bijective on R U {0}, and we

generally identify Λ U {0} with kn, for notational ease. Thus we write a

typical element / e ΰ a s Σ ^ δ ^ V , δ/ G kn. We use α7 (1 <j < n) and

iβy = β(j) (0 <j <pn - 1) for the elements of kn so denoted in §2, and

write
00

(3.1) x= Σ JjVJ.
j = -m

Let [K{Xj) :K]= paj = ej9 and let a} + bj = n. Since x is in general

position, m is divisible by phι but not by pbl + ι. Furthermore, (y_mη~m)p°ι

e AT. It follows that we may assume y_m e AT, possibly by replacing η

with some εη, η G /:w. (Every element of the form cη~mpύ\ c e /c, can be

written as (c'r/"'^)^1 with c' e /c, essentially because c' •-> (c') 7 1 ^s a n

automorphism of k. See p. 55 of [2].) It also follows from p. 55 of [2] that

we may assume (after conjugating x by an element of G) that

(3.2) Khj c Dj.

Note, incidentally, that ay increases with j 9 while bj decreases.

Our first job is to find a "normal form" for the xy.

PROPOSITION 3.1. By possibly conjugating x in D, we may assume that
00

*/ ~ Xi-l = Σ Ύ,;^Λ
j = -m + s,_ι

with Ύi._m+S = cβ(pm — pb'~ι) for some nonzero c e k.
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Proof. Induction on i. For / = 1, this is just our assumption that
γ_n G k\ thus assume / > 2. Apply Satz 8 of [7] with υ = x^ly ω a prime
element in D{ such that ω = η mod P 2 , and β = yr-n+sω~n+sΊ if ψ, is the
irreducible polynomial satisfied by x(__v then

Ψ.U) Ξ (Tr m / f c i _ i γ , ; _ m + i i i )η & modP 6 + 1 ,

where ft is an integer divisible by phι but not by ph'-1. Set

Then δ e /:/, . Furthermore,

otherwise, Nn/h8 e kn\k and HenseΓs lemma implies that ^(x,) is not
totally ramified over K. But since 8 e /ĉ

Hence N^^fi G A:, and there exists U(G/: with N^^^d/8) = 1.
Suppose that 8 £ k. Set h = bi_ι - bt\ let -m + s, = g. Then

but pb'~ι \ g. Hence

and so δη g and ί/ηg satisfy the same equation over K. Therefore, they are
conjugate in D (and, in fact, by an element of Km). That is, there is a
prime η' such that

8ηg = d(η')8.

Hence (η')gph = d-ph(dr)'8)ph = d-p\8η8)ph = d-p\dη8)p» = ^p\ or
(j)f)Ph'~l = ηph'~\ But xt_λ commutes with Kh hence in the expansion

Of * , _ ! ,

oo

-i = Σ γj'^V, say,
j = -m

we must have yj'~l) = 0 unless pb'~ι\j. It follows that the expansion of
xi_1 is the same if we use powers of η' instead of powers of η. On the
other hand, we have

00

so that
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As 77, η' are related by a conjugation in 2), this all means that we may

assume that δ G k. Now Corollary 2 of Proposition 2.1 says that

p"~p

To limit γι;_w+s._ more, we conjugate. Write

The inductive hypothesis gives 7,-1^+^ 2 = <:(/?" - ph ~2), c Φ 0. Write

β = β(/?m - Ĵ "7' 2 ) ; conjugate JC with 1 + 6^" J ' - s δ G kqt 2. Then 1 4-

STJ5 '"5 ' '-1 commutes with the γ yV such that j < -m 4- st_l9 and the effect

of the conjugation (mod P~m+Sιl)isto change γ to

y - c(βδσ~m+"-1 - βσ""-ιδ).

Let σ' = σs'~s'~ι, so that σ' generates Gal(kn/kh); set σ-
m+s"1 = σr/.

Then σr/ = (σ ' )^ ' " 1 "* ' , /? + Λ, and, in the notation of §2,

βδ°" - δβ°' = β(δ + coδ{ph-} + δθ -(/? + ^ { A 1 } + ̂ ) δ

(where cθJdo<Ξko; δ' e span(δ{^^ + 1},. . . , δ{ pn})\ and β̂7 e

But δ G J^Λ,_I, and it is not hard to verify that βδ{pb'} can be any linear

combination of β{pm - ph'"2},...,β{pm — ph'-ι~1}, while the remaining

terms are in V m_ Λ,_2. Hence we can choose δ so that

and we may therefore assume that γ G ^ w _^ f _ 2 . Continue inductively;

the next step is to conjugate with 1 4- δηSi~s-2, where δ G kh , and thus

to move γ into V m_ A,_3. Since /?0 = m, we eventually move γ to 0. Hence

we may assume that

If a = 0, then JC ( J ) = JC ( J _ I ) . This is impossible, since sι is a jump point.

Hence a Φ 0, and the proof is complete.

LEMMA 3.2. (a) L^/ η 1 = η 4- δ2rz
2 -f- δ3τj3 4- be a prime element of

D; suppose that y G P r commutes with ηιmodPs+2, with s > t (i.e.,

[y,ηλ] G P 5 + 2 ) . Γ/ze« //*ere exists yx G ^(iji) ŵcΛ ί/wtf j ^ Ξ ^ m o d

(Note that K(ηλ) is the algebra of elements commuting with η 1,

(b) // 17 x w such that δy = 0 unless j = 1 modpr (where r < m), and if

y = Σy^tSjηJ, with Ej = 0 unlesspr\j\ then one can picky\ as above so that

K(yx) is totally ramified of degree < pn~r.
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Proof. Let y = Σ^ = r ε y η /; let εX be the first nonzero term. If

1 > s + 1, there is nothing to prove. If / < Λ , then εrf commutes with η

(as one sees by computing [y9 ij1]); thus ε, e /:. Now j> — εf η'j commutes

with ηx mod Ps+2, and \y — εf iji| < jμ. Proceed inductively to produce j x .

(b) Continue with the notation of (a). We must have ρr\i9 and our

construction gives yx = ΣyLrεJτj/, where ε7- e /: and εj = 0 unless /? r | j .

Hence # ( y x ) c ΛΓ(ηfr) c A:(ηx), so that AΓί^) is totally ramified. As ηf

commutes with kr, the division algebra Dyι of elements commuting with

yx has index > pr over K(yx)9 and this implies that [K(yx) :K] < pn~\

We are now ready for the main result of this section.

THEOREM 3.3. {Approximation Theorem.) Let notation be as mentioned

previously.

(a) There exist ηv...,ηt for Dl9...,Dt respectively, such that for

2 < i < t,
00

η, = Σ Σ

where δ<i>1;/ = 1; δ//) e kb/ χ; δfβ = 0 /or j < si__ι - Λ ̂ ! αnJ / < i - 1;

and δ/l>1;y e /c^ χ /orj < s^.

(b) W^ Λέii e η = Σj.iδr jηJ, with δ,r. = 0 unlesspb'\j - 1.

REMARK. From (a), η,. is congruent modP i | ~ 1 "" i ' - 2 + 2 to the prime

element Σfl\1~Sl~28^Vjη^_ι of Di_ι. As the proof will show, we cannot

generally do better.

Proof. We use induction on t. For / = 1, the first statement is

vacuous, while the second simply states that Dλ has a prime ηλ such that

conjugation by ηx generates Gal(i^ i/jK').

Assume the theorem for t - 1. From Proposition 3.1,

xt- xt_x s c i β(/7 m -/7^- 1 )η- m + 5 ' - 1 modP- m + 5 - i + 1, c e i c - {0}.

We first find a prime r\\ in D such that ηl9..., η ^ ! (from the inductive

hypothesis), and η't satisfy (a), (b) and

(c) Ί\'t commutes with xt modP'm+Stl + 2,

We do this by following the procedure in the proof of Proposition 3.1.

Modulo p-*+Si-i + \ we have
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say , w h e r e γ e Vn_pb,.x. N o w c o n s i d e r -η,_ι + δηs

t i\~s<-2+1, δ e khι2.
Modulo p-M+s.-1 + i^ we have

(since xt - xt_x e p 5'-

But JC,_X = jt,_2 4- β m_ bt-2 + higher order terms (which disappear in the

commutator once we work m o d P ~ m + ^ 1 + 2 ) , and xt_2 commutes with δ.

Thus (mod P " m + * ' 1 + 2)

Also, 8 σ ί " 1 - / I = δ + c /δ{^'- 1}, c ' e £ \ { 0 } ; as δ runs through £ ^ ,

δl/7^ 1 } runs through the elements of Vbt..2_pbΐ_1. By choosing δ ap-

propriate, we may arrange to have

γ ( / _ 2 ) e Vp._p>,

Continue inductively; the next step involves adding δ'ηs

t'^~~St-3 to ηt_x

βrj^l" 5 '- 2 and showing in the same way that for an appropriate δ' e fcΛ

we get the commutator to be

, T(/-2) yp"-pb'-3

After (ί — 1) steps, we get η r.

Now let x[ be an element in K(η't) with x^ = xtmodP~m+s<ι + 2 and

[JRΓ(Λ:̂ ) : JRΓ] = [K(xt):K]; this is possible because of Lemma 3.2 and the

minimality of [K(xt) :K]. If xt = x'n then we are done. If not, then for

some r > -m + st__x + 2 with /?V r a n ^ some γ e ί̂ «_/,Af + 1,

x ? - x ; = yηrmodPr+ι.

The argument to prove this is like the one at the start of the proof for

Proposition 3.1. Let F be the minimal polynomials satisfied by xn and

suppose that xt — xf

t e P r l \ Pr. Then we have xt - x't = γη^mod Pr+ι,

with γ Φ 0; moreover, F(x't) = (Tr/w/i!,γ)τ}Λmodη/l + 1, where /7fe'|Λ — r.

But K{F{xt))QK{xt\ which shows that ^^|/z. Hence ph<\r. Next,

F(JC^) (η')~h commutes with TJ7; hence Ύτm/hy commutes with η', and this

shows that Tτm/by = 1. Now apply Corollary 2 of Proposition 2.1.

Modulo P r + 2 (as the next calculations are also to be understood), we

have
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We now argue as in the first part of the proof to remove yv For δ e kbt_χ9

we get

[*Ci'-l + 1>*J = c(δβ{p" ~ A 1 ) ' "** 1 - β(pn-Pbt-ι)δσS')vr+\

0 Φ c <Ξ k.

Since

δβ(p» - p»-γ-+l

-β(p"- ph-ήδ°" e -δ{ /<}/*(/>" - A 1 ) + W < -

and since δ{ /?*'} can be arbitrary in Vpbt^1_pbt+l9 we can find δ so that

Now iterate, next adding 8^_2)η
r

ίZ
s

2

t-2 + 1 to put the commutator in

(Vpm_pb(-2)ηr+ι. The same inductive argument as earlier shows that we can

find η" commuting with xtmodPt+2 and satisfying (a) and (b). The

theorem follows by using induction on r and then taking limits.

4. The general approximation theorem. We now remove the restric-

tions on D that were imposed for §3; thus [D:K] = n2 and n is

arbitrary. Let x e D and write x = Σ ^ γ ^ η 7 ; we assume for notational

convenience that x is in general position. Let s09.. . , ^ _ i be the jump

points of x, and let xv..., xt = x be approximating elements for x; note

that 5 0 = 7 O . Write Ly = L(Xj), and let ey.,^. be the ramification index

and residue class degree respectively of K(xj)/K; let e'j = ej/ej_l9 fj =

fj/fj_v (We define e0 = / 0 = 1.) Finally, set ΰy = algebra of elements

commuting with JC ..

LEMMA 4.1. Lei i?y Z?e /Λe maximal tamely ramified extension in Lj. By

conjugating x in G, we may arrange to have Eλ c E2 Q £ Er

Proof. Let JC0 = «yoτr̂ °, and let («, 70) = m 0 , « = nomQ. Then ^T(xS°)

is unramified over K. Let w0 = n1p"2, where (^x/?) = 1, then ^ =

K(xξ"2) is the maximal tamely ramified extension in AΓ(JC0). Let y = xξ"2,

and let Dy be the algebra of all elements commuting with y.

Let / be the residue class field of D v , kn the residue class field of D.

Then [kn: /] = e(E0/K) is prime to p. Define

7) = (ε e A:n : Ύτkn/Iδ~ιε = 0 for all nonzero δ e
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It is easy to verify the following facts (proved as Lemma 2 of [3]):

(a) SO = ijSj is a vector space over / of dimension 1 if f(E0/K) \j

and of dimension 0 otherwise.

(b) T} is also a vector space over /, and Sj ® Tj = kn. (This uses the

fact that [kn:l]is prime to p.)

(c) If 0 Φ 8 €= SJ9 then SJ+J, = δ S / = Srδ
σJ' and

7 ) + / = 8TβJ = Trδ
σJ'.

Furthermore, yJo G Sy0.
We show first that we can conjugate x by an element of G so that

x G Z)y. The proof is by induction (plus an easy convergence argument).
Suppose that (by conjugating if necessary) every term in the expansion of
x through y^J commutes with y (i.e., γ, G S, if / <j). For ε G 7) + I_/O,
consider

(1 + ε' + 1 - Λ>)*(l 4- ε i j^ 1 -^)" 1 = x

ΞΞ x + f (ε)η J + 1, say.

From (c), f(ε) G 7̂  + 1. On the other hand,

f ( ε ) = 0 «* [ετ]7 + 1~70, γτ?̂ °] = 0 <=* [εη/ + 1^°, j;] - 0

Hence f is injective from TJ+ι_Jo to TJ+1, and (a)-(c) imply now that ξ is
bijective. Hence we can choose ε so that the coefficient of ηJ + ι after
conjugation lies in SJ + V and this is the inductive step.

Thus we have x G Dr A simple application of HenseΓs lemma shows
that every K(xr) contains a tamely ramified extension conjugate to Ev As
this extension is in Dy and the center of y is El9 the extension must be Ev

Now the lemma follows by induction on /, since henceforth we can

work inside Dv.

THEOREM 4.2. With notation as above, DJ+ι has a prime congruent
mod p v i ~ J ; + 1 to an element of Dy

Proof. We work by induction on j . In view of Lemma 4.1, Zλ and
DJ+ι both contain the tamely ramified extension Ep thus (by passing, if
necessary, to the algebra of elements commuting with E) we may assume
that K(xJ) is totally wildly ramified over K. Similarly, we may assume
that K(x/ + 1) is totally ramified over K.
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Let EJ+1 be the tamely ramified piece of the extension for K(x +ι)9

and let L be a totally ramified extension of Ly in D. We may assume

further that xJ+v Xj commute with L. Let DL be the algebra of elements

commuting with L, and let, e.g., DL x be the subalgebra of elements in

DL commuting with JC .. From Theorem 3.3, we can choose primes ή ., ηJ+ι

in DLx and DLx + i respectively with τ)y = η y + 1 m o d P ^ + 1 ~ ^ ~ 1 . Then τj y + 1

is also a prime in Dx+i, because L is totally ramified over Ej+V while

REMARK 1. It is natural to ask whether the result of the theorem is

best possible. If (n, p) = 1, the answer is certainly " n o " ; in fact, Lemma

4.1 says that in that case, we can find primes ηy for Dx such that τjy e Dx

for i < j . If n is a power of p, the answer (for totally ramified extensions)

is "yes" in general; it is easy to construct examples by paralleling the

constructions in the proof of Theorem 3.3. In the general case it appears

that one cannot do better than Theorem 4.2, but I have not checked an

example in detail.

REMARK 2. The proof of Theorem 4.2 actually proves a bit more than

what is stated. Since the stronger result will be useful in what follows, we

state it here as a corollary.

COROLLARY 4.3. In the situation of Theorem 4.2,

(a) Ifj0 is the largest index < j x such that sJo is a jump point with wild

ramification, then there is a prime in Dh congruent modPsn~sJo+ι to an

element of Dj^,

(b) // there is no index < j x where wild ramification occurs, then for

every j < j l 9 Djχ c D}.

5. Commutators in division algebras. We shall later need a result about

commutators, which we prove now. Let Gy = 1 + PJ, G = Gλ.

PROPOSITION 5.1. Lety e [G,G] Π Gh, h > 2; let r be any integer > h.

Then we can write y mod Gr as a product of commutators,

y = ( u ^ ϋ J ί i i ί , ^ ) ••• {ur_h, υr_h)(u'r_h, v'r_h),

where each ut, u\ is of the form 1 4- fi.τj (δy e kn) and the Vj, v' are of the

form I + εjηh+J~2.

Proof. By an obvious induction argument, it suffices to consider the

case r = h + 1. In what follows, all calculations on G are performed

modulo Gr. Write y = 1 + Σy=hYjηJ. If χ is any character of Dx that
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factors through the norm map, then χ(y) = 1. This implies in particular

that if w G K Π (1 + Pι~2h), then ΎτD/κw(y - 1) = 0; see, e.g. Theorem

1 of [2]. Thus Tτkn/kyh = 0 if n \ h.

In general, we have

If n I h, let δ t = 1. Then

as yh has trace 0, we can choose ε1 so that (uvvλ) = ymodGr. In this

case, we can let u[ = v[ = 1.

If n \ h, write

where t is the smallest integer such that n = h + /; let λ = δf+tλ0. Then

So for fixed 8V

yh = 8λεl - εxδf'1 for some ex e kn <* Ύτkn/k(λoγh) = 0.

Let δ = S^7, so that λ 0 - δδ σ δ σ " \ From Hilfsatz 4 of [7], we can (by

choosing δx appropriately) make λ 0 any element such that

Write n = pnonλ, where (/?, ^i) = 1. Suppose first that /?"° I h\ let ^ =

ps*sγ, and set s r = ps°nι. From Proposition 2.3, we know that there exists

λ'o such that Nk /k , λ^ e /c^, Tr^ /k>λ'oyh = 0. Since w/j' is a power of

/?, 7V̂  /A/ is an automorphism on k*>. Thus we can multiply λr

0 by an

element of k*> to get λ 0 with Nk /k>λ0 G k, Ύτk /k>λoyh = 0. Thus we can

find δ l 9 ex to prove the lemma. Here, too, we have u{ = v[ = 1.

Therefore we may suppose that pn°\h. Restrict attention to elements

δλ G k it is not hard to see that it suffices to consider the case nQ = 0.

We are now in the tamely ramified situation. Note that

(uι,v1){u[,υ'ι) = 1

We need to show that the sum in brackets can be made equal to any

element of kn. It suffices, since Tr^ / A : is faithful on k, to show that then

(a) there exists εl5 8λ such that Tr^ /k{8xel — εjif ) = 1; and

(b) if Ύτkn/kκ = 0, then 3δ(, e[ with K = 8[e[ - ε ^ Λ
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Part (b) is easy; in fact, we can take δλ = 1. As for (a), fix δx and
suppose that Trkn/k(S^ - ελδf'1) = 0 for all ev Then Tϊ^βflδf* - δλ)
= 0 for all εx; hence δf - δλ = 0, or oh fixes δv We need only choose δλ

to be outside the fixed field of σh to complete the proof.

PART II. REPRESENTATIONS OF DIVISION ALGEBRAS

OF INDEX pn0, p \ n0.

6. Some simpler cases. Let D be a division algebra of index pn0 over
its center K, where K has residual characteristic p and (p,n0) = 1. We
use the notation of §§1 and 4.

We wish to determine the irreducible unitary representations of Dx.
In general, we work by determining those of G. Any such representation
has a kernel containing some (1 + P m + 1 ) = Gm+ι for an m > 0; choose
m to be as small as possible. In this and the next few sections, we assume
that m is odd; we remove this assumption in §9. Let m = 2m' — 1, and
let χ be a character on the Abelian group Gm*/Gm+ι that is nontrivial on
Gm. As noted in §1, one can write χ = χx for some x e p - ^ \ p - ^ + i
Let s0,..., st_x be the jump points for x. We shall assume until §9 that
the Sj are all odd.

The construction of the representations of G is done by (mathemati-
cal) induction. We assume that the representations of the corresponding
group G\ and of 2)'x, are known if Df is a division algebra whose index
over its center K' is a proper divisor of n (of course, K' also has residual
characteristic p). We also assume that all irreducibles of G containing χx,
are known when xr e p ~ w + 1 . i n this section we deal with some relatively
easy cases, leaving the hard work for §§7 and 8.

Case I. x is not in general position. Then there is a central element
xQ G Pm such that x - x0 e p ~ w + 1 . We may let x0 = γ_mη"m, in fact.
If x is any character of KXΠ G satisfying χ( l 4- δηm) = ψ(γ_mδ), then

x ° V a § r e e s w i t h x*o o n pm τ h e r e f o r e x ^ x . ί x 0 ^ ) " 1 i s a

character on pm~ι. Moreover, π0 contains χ J <=» 770 0 (χ°ND/κ) con-
tains χ^, and the representations containing χ ~ are assumed known.

Henceforth we assume that x is in general position. Write
(X)

Case II. ί = 1. Then K(x0) and AΓ(x) have the same ramification
index and residue class degree. The following argument is like that in [6];
indeed, it applies whenever / = 1 (regardless of n). It is also not strictly
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necessary for the construction in our case, but I think that it may be

useful to have the following result stated explicitly.

THEOREM 6.1. Suppose that x is in general position and that t = 1.

Then y e Dx commutes with χx on Gm> <=> y e Gm> Dx. Moreover, χx

extends to a character on Gm>Dx. Let χ be any such extension. For each

representation τr0 of Dx trivial on Gm> Π D* extend π0 to Gm Dx by

making it trivial on Gm,. Then χ<8> π0 induces to an irreducible representa-

tion of Dx; moreover, every representation of Dx containing χx is obtained

in this way.

Proof. Satz 2 of [8] gives the result about elements commuting with

χx. If w e Gm' and y e Gm* Dx, then χx((w, y)) = 1 because y com-

mutes with χ x , while χ^ is 1 on (DX,DX Π Gm>) because χx factors

through the norm map on Dx. Hence χ^ extends to Gm, - Dx. χx 0 τr0 is

a multiple of χx on Gm,, and Theorem 6 of [9] implies that it induces to an

irreducible representation of D*. Finally, we show that we obtain all

representations of Dx containing χ^ which are trivial on ηn. We may

assume that χ(τjw) = 1. The set S = {π0 e (Dx) Λ : π0 is trivial on Gm, Π

Dx and on η"} satisfies

2 = [ G Π Dx:Gm, Π Dx] • ex{q^ - l ) ,

τr0e5

since the left-hand side is [Dx : (ηn) Gm\ On the other hand,

Gm] = [G:GJ([G n Dx:Gm, Π D^n/e,) \ q

Since χλ. appears in π = Ind^m,Dχ-+ DX(XX ® ^o) exactly (dim7r0) times, we

see that the τr-primary subspace in I n d ^ ^ ^ ^ χ ^ has dimension

(dimπo)
2[Dx :DX Gm}. Hence, by Frobenius reciprocity, these sub-

spaces account for a subspace of dimension

Σ {dim<πi)[D*:Dx*-Gm] = [G:Gjn(q" - 1) = [£>* : Gm,<τ,">],

or for all of IndG, ^ ^ D*χx This proves the theorem.

REMARKS. 1. We have dealt with Dx rather than G in this theorem;

obviously, there is a similar theorem for G. When we come to deal with

the case m even, the representation χx will not extend to Gm,Dx, and we

need to use a Weil representation; see, e.g., [4].
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2. In general, K(x) is not determined up to conjugacy by x mod p~m';
this is most evident in the case where K(x) is inseparable. This fact makes
it more difficult to arrange for a good parametrization of (Dx) A.

III. The first jump point involves only tame ramification. From
Lemma 4.1, we may assume that the y^J all commute. Now the construc-
tion of [5] (or [1]) yields all irreducible representations of Dx that agree
with χx on Gm, and hence all such representations agreeing with χx on
Gm/. The proofs are exactly as in [1]; we omit details.

Case IV. The first jump point is not totally wildly ramified. Let Ko

be the largest tamely ramified field in K(xQ); we may assume again
(Lemma 4.1) that every γ^η7 commutes with Ko. Let Do be the algebra of
elements commuting with Kθ9 and construct all representations σ of
D£ Π G containing χx\D^C\ Gm>. The same construction as in [1] shows
that there is a subgroup No of Gm> on which χx is trivial, which is
normalized by D^Π G, and which satisfies

NO{DXΠ G) = Gm,{Do

xΠ G), No π(DxΠ G) C Gm+ι.

Then we can extend σ to Gm/(Z)O

X Π G) by making it trivial on NQ. Induce
σ to G to get an irreducible π containing χx. That π is irreducible and
that every π containing χx is obtained in this way can be proved
essentially as in Case III, by following the corresponding proofs in [1].

7. Extending χx. We henceforth assume that
(a) the element x is in general position;
(b) the first jump point of JC, s0 = -m, is totally wildly ramified.

Let -Sj = 2sj — 1 (recall that we are assuming that the sy- are all odd), and
define H = Hx to be the group

Gs,{Gs,nDXι)---{Gs^nDxJ{GnDXι).

We wish to show that χx extends to a character of H. This is equivalent
to:

THEOREM 7.1. Ify e [H, H] n G ,̂ then χx(y) = 1.

Proof. This follows the lines of the proof of Lemma 8 of [2]. We write
y as a product of commutators. We note that

(7.1) (vιv29w) = (^i^Γ1* v^v^iv^w)
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and

(7.2) (v, wλw2) = (v, wλ) (w^wf1, w ^ w f 1 ) .

In this way, we can let y be a product of commutators of the form (v, w),

where v = 1 + γηr

09 w = 1 + yrf9 and η0, η are specified primes, while

γ,δ e fcw. Similarly, we can commute commutators by using

u2uλ = uι{u{ιu2uι),

where, if u2 = (u,w), then u{ιu2ux = (uϊιvuv u{ιwux).

We proceed by a lengthy sequence of steps.

(a) If υ9w G H and iwίΓ1 e G5> = Gm,, then w e Gm/ (since Gm> is

normal in G), and χx(vwυ"1) = χ x (w), since x^-ί^wt;"1) = χυ-ixϋ(w) and

elements of H preserve χx. In particular, χx((υ, w)) = 1.

(b) The following computation will arise repeatedly in the proof: if x

and v commute, then

TτD/κx(υuυr~ι — uυr) = ΎτD/κ(vxuvr~1 — xuυr) = 0,

since ΎvD/κ(ab) = ΊτD/κ{ba).

(c) Let W = H'x = G^(G5ί n ^ ) ( G ^ Π ^ χ). If w , v e Jϊ ' ,

then (w, f) G G5̂  and χx((w, ϋ)) = 1. To prove this, it suffices to consider

the case where u e G5/ Π D x and v ^ Gs Π D^, as repeated use of (7.1)

and (7.2) shows. Assume i <j\ for definiteness; write u = 1 + u0, v =

1 + ϋ0. Then modulo P m + 1 ,

= (1 + uovo - υouo)(l + voul - uovouo)(l 4- vouovo -

Since woί;o - vouo e p w - j y + 1

9 w e have

χx(l + uovo - vouo) = χx(l + uovo - vouo) = 1,

from (b) (note that Xj and υ0 commute). The other terms are taken care of

similarly.

(d) Now (a) and (c) reduce us to considering

(7.3) w = ( U ^ Ό J ••• (ur9ϋr),

where one of each uj9 Vj is in G Π Dx. We shall assume for notational

convenience that Uj e G Π Z)̂  for all y; this will not affect the proof. We

may also assume that wy = 1 + uJ0, υj•, = 1 -h y7 0 , where the wy 0 , t>7 0 are

"monomials":

(7.4) wy0 = δη?; ^ 0 = εηf, a = aj9 b = bj
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where δ, ε G kn, vJo e Gs, Π DX/, and ηh ηt are primes for Dxr Dx

respectively. We fix these primes so that η, is congruent mod Ps'~s^ to an
element ηΊ of Dx .

We may assume also that for the first r0 commutators, and only for
these, we have Vj e Dx. Then the product of these commutators is in
Gs> + 1 (since every other commutator is in Gs> +1), and we may, there-
fore, assume from Proposition 5.1 that cij + bj > s[_λ for all j . (In fact,
we can have #y = the order of a prime in Dx, for j < r0).

Write uj = 1 + u'jfl, Uj = 1 + ϋjt0, where

(7.5) w;o = δ(η't)\ v^0 = εηf (η't, ηj primes in DXi related to ij,, η x

as in Theorem 4.2 and Corollary 4.3)

the α, Z>, 8, ε in (7.5) agree with those in (7.4). Let

/ = (*«) •.•(*>;).

Then yf is a commutator in D x , so that

χXl(y') =ι-

The proof consists of showing that χx(y) = χXl(y)
(e) Write (wy, yy) = 1 + wy 0 + wJΛ, where

I — ±

write y = 1 + w0 + wv where w0 = Σr

J=1 wJ0. If one multiplies out all the
commutators, wλ consists of all terms of degree > 2 in the υ . For
instance, we have (mod G m + 1 )

and vvx is a sum of the >v7l, plus products of the wJ0 and wJV Thus
wx G P m ' ; a s w G Gm>, we have w0 G Pm\ and

X j t ( l 4- w0 + wx) = χx{l + wo)χx(l + W l ) .

Similarly, we write (wj, ι>p = 1 + w£0 + wy'fl and

the same argument as above shows that

X,,(/) = x j l + <)x,1(
1 + wί)> <
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(f) We have

X*(l + w0) = 1

from (b), since each Uj commutes with x. Similarly, χXι(l + w^) = 1.

Moreover, wλ and w{ are congruent m o d P " 5 1 + 1. The reason is that

each term of wx is at least quadratic in the uJ0; moreover, if u 0 appears,

so does vj0. By Corollary 4.3 (applied to j 0 = 0), uJ0vj0 = UjOv'JO

mod p jr-*o + <-i9 where UJ G Z)λ and c is the order of u'jOυ'/O. This order is

at least P 5 - + 1 . Thus uhOvjJQ = u'j0Vj0 modP m ~ 5 ' . Now suppose that the

term of wx contains a product uJ0vj0uι0vι0, where vi0 G />x/y 0 and

r' > r. Then w/Oί;/O and u'ιOυ'ιO are in P 5 - + 1 (and congruent m o d P m ~ ^ ) ;

hence the products are congruent m o d P W I " 5 ' + s ' ' + I, and therefore con-

gruent m o d P m + 1 . The remaining terms in wjλ are of the form ujOvjo or
vjs>uj\ovjfi B u t > e §" v l o Ξ « X o m o d / ) m " ί ; + 5 ί = r » a n d X*> XΛl

agree on Gw .

(g) It follows that χXι(l + w[) = χx(l + n^); (e) and (f) give

since (1 4- WQ)(1 + w[) is congruent m o d P m + 1 to a commutant in Z)^.

This proves the theorem.

8. Construction of the representations. In this section, we construct

"enough" representations of H = Hx so that inducing to G produces all

the desired irreducibles. This is not too difficult, but takes some time.

Recall that K{xλ) is totally wildly ramified. Hence we may (and do)

assume that γ_m e k. This implies that the residue class fields of Dl9 ...,Dt

are all extensions of degree prime to p. The residue class field of DXι is

k ] let /. be the residue class field of Dp and let k{Xj) have ramification

index and residue class degree ej9 fj respectively.

We know that Hx is generated by Gm, and elements 1 + δηr

p where ηy

is a prime of Dy that is close to an element of Dl9 δ e / ^ and r > sf .

Moreover, η- = 8fif> mod Pfj + 1 for some δ' G knQ. For each integer r, let

Sr(j) = {δ G kno) there is an element of Dj congruent mod Pr+1 to 8ηr j ,

TrU) = [e G ιi:ττkao/ij(*s~ι) = ° f o r a 1 1 nonzero δ e 5r(y)}-

We sometimes write Sr9 Tr for 5 r(/), Γ r (0

LEMMA 8.1. (a) S0(j) = 1J9

(b) // δ G SΓ(y) w nonzero, then
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and

(c) Both Sr(j) and Tr(j) are vector spaces over lj9 and Sr(j) Θ Tr( j)

(d) D i m r Sr( j) = 1 if Fj\r and 0 otherwise.

Proof. This is essentially done as Lemma 2 of [3].

Now let N be the subgroup of H generated by Gm> and the elements

1 + εηrj G DjΠ H with ε e Tr.

LEMMA 8.2. (a) N is normal in H,

(b) H/N = (GΠ Dx)/(Gm, Π Dx).

Proof, (a) Since

(l + ε ^ X l + e2η%) ̂  1 + ε^ + e2η*modP*

if the 1 + e#.Ίf|̂ « are generators of iV, and since ηrj is congruent to an

element of Dx modulo Pm\ it is not hard to see that N is composed

entirely of elements of the form

00

(8.1) w = 1 + Σ e,-τ|/, 2y0 > m' and zj e Γy if 7 < m7,
y=7o

while .fί is composed of elements of the form

(8.2) y = 1 + Σ W> «/ e 57 if 2y < ™'.
y=i

To prove (a), it suffices to show that every element of the form (8.2)

normalizes the elements of the form (8.1).

Write

w = % + ! ' ' ' w ^ ' wy = ! + ε X f o r J < m'>

then wm, G 1 + P m ' . Similarly, one can write

y=yιm-yS' yj = 1 + 8jnί w i t h 8 j G 5 7 f o r 2 i < m''>

ys G 1 + P 5 and 2^ > m'.

Then j 5 commutes with wmodl + Pm and wm, commutes with each

j>7modl + Pm. It thus suffices to show that y^y'1 G TV for i < s and
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j < m\ This is a straightforward calculation:

and repeated application of Lemma 8.1 shows that y^y'1 G N.
As for (b), G Π Dx injects into H and hence maps into H/N\ from

the form of elements in N and H given in (8.1) and (8.2), it is easy to
verify that the map is surjective and has Gm> Π Dx as kernel.

Any representation of G Π Dx that is trivial on Gm» Π Dx can thus be
as a representation of H trivial on N. Take an extension of χx to G
(guaranteed by Theorem 7.1); call the extension χx as well. Then χx ® σ
is also a representation of H, and is a multiple of χx on JV.

Let # ' = G ^ G . ^ Π G^) (G_S(i n ^ ^ ( G n 2)J. The key re-
sults we need about H' and H are contained in the following proposition:

PROPOSITION 8.3. (a) [H'\H] = [H: Gm,{G n Dx)\
(b) If y EL G is such that χx(ywy~ι) = Xx(v^) /or α// w e Gm>, then

y G //"'; conversely, y G i/ r => x^jwy""1) = χ x(w) for all w G Gm/.
(c) //y G //r ώ ̂ wcΛ ίAαί χ ^ F J " 1 ) = χ x(w) /or all w ^ H such that

ywy'1 G //", //ẑ jμ G i/; conversely, χx(ywy~ι) = Xx(
w) tfw> y ^ H

Before proving Proposition 8.3, we show how it solves the problem
of constructing representations of G containing χx. For each σ G
(Dx Π G/Z)x Π Gm,) Λ, let 77σ = ^

THEOREM 8.4. Γ/zβ 7rσ are distinct irreducibles of G, and Ind^ χ x =
θσJi/ ' : i / ] (DίmσK.

Proof. The irreducibility follows from Proposition 8.3 (c) and Theo-
rem 6 of [9]. Proposition 8.3 (c) and Theorem 7 of [9] also imply that the
7rσ are distinct.

Frobenius reciprocity says that πσ appears in Ind^ χ x with a multi-
plicity equal to the multiplicity of χx in πσ | c . But

π σ | G w = θ σ ® χVJCV-i|G#M = (dimσ) φ Xvxv-i,
y^G/H y^G/H

and χ v x v -i = χx ^ y G H'/H from Proposition 8.3(b). Thus the multi-
plicity of 7rσ is [/ί': H] dimσ. Finally,

[///:7/](dimσ)dimτrσ= [H' :H] [G :H] dim2σ

dim2σ
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by Proposition 8.3(a). Summing over σ shows that we have accounted for
a subrepresentation of Ind£ χx of dimension

Σ[G:Gm,(dxnG)]dim2σ=[G:Gm,(DxnG)}[DxnG:DxΓ)Gm,}

and hence for all of ^ χ x

We still need to prove Proposition 8.3. For part (b), write w = 1 + w0,
w0 e Pm\ Then

This is equal to ψ °TrZ)/^(xw0) for all w0 G P W iff

and this congruence holds iff j G i/' by Satz 2 of [8]. Half of part (c) is
easy; y, w G i/ => x^jwy"1) = χx(w) from Theorem 7.1. For the rest of
(c) and for (a), we need to do some more work.

The field kn is the compositum of kp and knQ. Define av βx e kp as
in §2.

LEMMA 8.5. Let x — Xj = ξjrfj mod P^ + 1 , w//A y > 1. Then by con-
jugating, we may assume that ^ = βxζj, ζj e 5 ( 7 ) β«J ζj Φ 0.

Prw/. We have seen that x - JC0 = γ_mη"mmod p - w + 1

9 with γ_m G A:
and γ_m # 0. Since x0 is totally wildly ramified, we have (m,p) = m0.

Assume the lemma for j — 1. We certainly have
p-l

£j = Σ *&j for appropriate ζtJ G /crtQ.

We describe anything of the form

p-2

Σ «lYy, Y, G k n Q ,
as "small". Note that if we conjugate x with 1 + yηsj+m, we get x +
γ o (γ σ m — γ)τf;(modP^+ 1), and γo(yσ"* - γ) can be any element a of
kn such that Ύτkjkn a = 0; that is, we can always get rid of any small
element by conjugating.

Thus we have £7 = <Xi~ιζί, ζj G ^«0

 = Ss (1). Now conjugate x with
1 + yy%~Sl

9 where γ G kno = /x; we get (modP^ + 1, as all future compu-
tations are made)

x + (βftΓ11 - δ ^ ) ^ , δ any element of A:Πo.
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Now ξx = al~'ζ[ with ζ[ G knQ. Moreover, Satz 8 of [7] shows that

the largest tamely ramified extension of K(ξ{ηsj) is (conjugate to) the

largest tamely ramified extension of xλ\ this implies that δ G Sr(2) <=» δηr

and ξ(ηSl commute. So set

*i(β) = Kf'"1 ~ 8σΊ\ 8^kno = SSj_Sι(l).

This is a A:-linear map, and it is 0 «=> δ G S5 _Si(2). For δ G 7; (2),

Lemma 8.1 implies that /^(δ) G Γ5(2). Hence counting implies that Fλ

maps k into Γs (2). Moreover,

δξfJ~H - δσS1ξλ = α ^ l F ^ δ ) + a small term.

Thus we can change ys (the coefficient of ηsj in the expansion of x) by

any element of the form ap~ιε9 ε G 7^(2). It follows that we can arrange

to have ξj = ar-%,29 with ζJ]2 e 5/2).

We continue inductively. Conjugate x with 1 + yηs^~s\ γ G /2; we

get x + (δffy"52 - δ ^ 2 ^ ) ^ , where δ is any element of 5 , ^ ( 2 ) . The

same argument as before shows that δ G 5r(2) <=> δηr commutes with ξ(ηSι

and ξtfi. So define F2(8) = δ ^ " ' 2 ~ 8σ'2& δ G ^ " ^ ( 2 ) ; by the same

argument as above, F2 maps SSJ~S2(2) onto TSJ(3). It follows that we can

have f = 0Lf~ιξ..39 ξ 3 G 7)(3), and the same inductive procedure gives

the result.

COROLLARY. In the above setup, let Lj be the maximal tamely ramified

extension in K(Xj). Choose ζJ0 such that ζj$rfj/fj = ζj ηSjτnodηsJ+1. Then

L. + ι is conjugate (mod an element of G) to the maximal tamely ramified

extension in L^jOy]sj/fj). (This follows from Satz 8 of [7], as we observed

in the course of the proof of Lemma 8.5.)

REMARK 1. The corollary shows the following useful fact: suppose

that δ G 5r(y'). Then δ G Sr(j + 1) if δηr and £yV
7 commute, or, equiva-

lently, if δηr and ξ^//j commute mod Psj+r+ι. The reason is that δηr then

commutes with the largest tamely ramified extension in K(£J1\SJ). Another

way of stating the condition is that δ'ηrj is congruent mod Prfj + 1 to an

element of K(xJ+ι) if δ' G 50(y) and [δηr

p ζQ.fls'/f>] = 0.

REMARK 2. While the process of Lemma 8.5 may mean that the

tamely ramified extensions in K(xj) are no longer contained in the

algebra generated by k and ηp, conjugating by elements of G does not

change the membership of the Sr(j) or Tr(j).
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We now return to the proof of Proposition 8.3. Part (a) is a matter of
counting. For each r < m', we compute card(/f Π Gr)/(H Π Gr+1). If
Sj < r < Sj_l9 this number is 1 if fj•, \ r and card/y = qn/ej if fj/r. Since
fj \(2sj - 1,2sj_τ - 1), we see that for j < t,

Π [H ΠGr:H Π Gr+ι] = φ»/*jfM-i-*j\
s'J<r<s'J_ι

A similar calculation for r < s't gives

Π [HΓ)Gr:HnGr+ι)=q^'*s''-i-s'\ 2s't - \ =-st= ft.
l<r<s't

So

logjff :HΠ Gm,] = Σ f (<-i - 4 ",

Similarly,

and

logji/-//' n Gw,] = £(*£-(*,_! - 50) - ̂ ) + 'Σ f K + V

It is now easy to verify that

21ogjff : # n Gm,} = logjG Π Dx:Gm, Π Z)*] + logj/f'://' Π G

which proves (a).
As for the second half of (c), assume that χx(ywy~ι) = χ x(w) for all

w e H such that ywy'1 G i/, but that y <£ H. Since y e H' (from (b)),
we may assume (after multiplying by an element of if) that

y = 1 + εηrj + higher order terms,

where 1 + εη'cG., Π Zλ and 1 + εη7; £ G^ Π D,. We have erf, e P r ί -
Prfj~ι, and we may assume that εr^ is not congruent modP^ + 1 to an
element of Dy__v

Let wδ = 1 4- δoδ^ r, where (r + r r)/y = ~5;, δ e / ^ is fixed, and δ
runs over ljm The wδ are all in Dp and (with vvδ = 1 + wδ 0 and j ; = 1 + y0)

+ Σ
ί-2
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Each term in the sums is in Pm, and each term with an index / > 2 is in

P~'J + 1. We have

π
Π X*(l +(- 1 ) '" 1 ( M 's,oJ ; o<o 1 -

and (b) of the proof of Theorem 7.1 shows that every term in the two

infinite products is 1, since we can replace χx with χx. Similarly,

Xx(l +^0^,0 ~ Wa.oJ'o) = 1> s i n c e xj commutes with y and wδ. This

implies that

since ξ09 ε e /y and [knQ\lj\ is prime to p. But then foijy
(Γ+r') and εηrj

commute. As noted in the Remark after Lemma 8.5, this means that εηrj is

congruent ( m o d P r F r + 1 ) to an element of DJ+l9 which contradicts our

assumption on y. This finishes the proof of Proposition 8.3 and of

Theorem 8.4.

9. Extending to D x; removing hypotheses. In this section, we deal with

two issues: extending the representations of G to representations of D x ,

and removing the assumption that the Sj are odd. The procedures are

essentially those of [1], [2] and [6], and our discussion will be brief.

The elements of k* that commute with π0 (obtained from χx) are

those in Dx. Indeed, if δ £ k* Π D x , then δ commutes with χ γ , and we

could simply extend χx to H(k* n Dx)Af δ <= k* but δ e Dx, then the

argument of Theorem 8.4 is easily adapted to show that π and the

representation πδ defined by πδ(y) = ^(δ^δ" 1 ) are disjoint. Hence we

can extend ττ0 to G(kn Π Dx) and induce to get the irreducibles of G k*.

The situation for extending to Dx is similar; arguing as in §5 of [2],

one can show that the elements of Dx commuting with a representation ττσ

of G - k* that comes from χx are precisely the elements of D*(G Π ̂ x ) .

Thus we need to extend πλ to G /cx (ηt) (since ηt is a prime in Dx).

Since (TJ,) = Z, there is no Mackey obstruction; however, we have no

good way of describing πx(ηt). Inducing to Dx then gives an irreducible

To see how to deal with even sj9 consider the case where m is even.

Define m' by 2m' = -m. Now χx is initially defined on (7m/ + 1. We want

to define an extension of χx to

H:GjDXi n Gs,) • • • {DXι, Π GS,_){DXI Π G).
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The argument of §7 lets us extend χx to Gm, + l(DXi Π Gs[) (Dx n G)

= 7/0. To go to H from 7/0, note that a set of coset representatives for

Gm*/Gm' + ι consists of the elements yδ = 1 + δηm ' , δ e kn. The map μ:

( δ 1 ? δ 2 ) >-> X^ίJδ^^^Vδ^ 1) i s a n antisymmetric bilinear form on /:„, and

δ is in the radial of μ <=> yδ G 7/. There is a unique irreducible protective

representation of H/HQ with the above form μ as multiplier; when p is

odd, it corresponds to a Heisenberg-type representation on the λ>vector

space Λ^/Radμ. Tensor this representation with χx to get a represen-

tation which might be called χx\ on Ho, χx is a multiple of χ x . The

reasoning in §8 applies to show that I n d ^ χ ^ ® σ is irreducible and that

these irreducibles exhaust I n d ^ χ x ; even the changes in the counting

arguments are not difficult. If some other Sj is even, we again get a

Heisenberg-type representation on Gs>, where 2sj = -sβ the details are

similar to those sketched above. Extending to those elements of k* that

commute with x now involves the Weil representation; see, e.g., [4].
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