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WEIERSTRASS POINTS WITH TWO PRESCRIBED
NON-GAPS

M. COPPENS

In this paper, we study Weierstrass points P on smooth curves with
two prescribed non-gaps n and s such that s = en + d with0 < d < n.
Let # be a fine moduli space of smooth curves of genus g (with some
extra structure) and let 4: % — .# be the associated universal family.
Let W, ., = {x € 2 n is the first non-gap of x and dim(|sx|) > e + 1}.
Let Z be an irreducible component of WM and assume that [sx| is a
simple linear system on 47'(4(x)) if x is a general point on Z. We
prove that dim(Z)=n+s+g—4— ¢ and dim(|sx)=e+ 1. We
give an example which shows that we cannot omit the assumption “|sx| is
a simple linear system”. We prove that such a component Z exists if and
only if e(n—-1)+d<g<({(n—-1)(s—-1)+1—(n,s))/2. Finally,
we derive some existence results of Weierstrass points.

Introduction. Let C be a smooth, irreducible curve of genus g > 1
defined over the field C of the complex numbers. Let p be a point on C.
Let n € Z _,. We write h°(np) instead of dim( H°(C, O(np))).

We say that n is a gap of p if h°((n — 1) p) = h%(np). Otherwise, n is
a non-gap of p.

Using the Theorem of Riemann-Roch, one can prove that the number
of gaps of p is equal to g and each one of them is at most equal to
2g - 1.

We say that (ny, n,, ..., n,) is the gap sequence of p if 1 < n; <n, <

- <n,<2gandn, isagapof p foreachl <i < g. We say that p is
a Weierstrass point of C if n, # g. One can prove that C has only a finite
number of Weierstrass points. (For a detailed study of Weierstrass points
see e.g. [14], §7d.)

Let S C Z_, be a sub-semigroup of Z _ ,. Assume that there exists
c € S such that c+Z,,C S Let 1 <n; <n, < --- <nyg be such
that m € Z_,\ S if and only if m = n, for some 1 < i < g(S). We call
(ny,...,n,s) a gap sequence of genus g(S). If there exists a smooth curve
C (of genus g(S)) and a point p on C such that (ny, n,,..., n,g)) is the
gap sequence of p, then we say that (ny, n,, ..., n ) is a Weierstrass gap
sequence. It is an open problem in the theory of Weierstrass points to
decide which gap sequences are Weierstrass gap sequences. There exist
gap sequences which are not Weierstrass gap sequences (see [4]).
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Throughout this paper, ./ is the fine moduli space of the smooth
curves of genus g with a level-»-structure for some fixed » € Z_;; 4:
% — M is the associated smooth family of curves and p: & — A, is the
natural morphism to the coarse moduli space #, of the smooth curves of
genus g. Let k, r € Z _; and define

W= {xeZ: hkx)>r+1}
(here, and throughout this paper, h°(kx) has to be considered with
respect to the fibre 4#7'( 4(x))). Hence x € W/ if and only if x has at
least r non-gaps which are at most equal to k.

One has that W/ is a closed subset of X and if Z is a non-empty
irreducible component of it, then

(0.1) dm(Z)>3g—-2-r(g+r—k).
The proof of this statement is the same as the proof of Proposition 1 in
[21].

The case r = 1 has been studied intensively. Let us mention some
results. We assume that k < g — 1. In [8] and [10], it is proved that £|
W/} — A is generically injective. From the results in [1], it follows that
W} is not empty, equidimensional of dimension 2g — 3 + k (hence, we
have equality in (0.1)) and p(4(W)})) is irreducible. In particular, it
follows that, for a general point x on W}, we have that

k is the first non-gap of x.

Moreover, the gap sequence of x is the hyperordinary gap sequence of
genus g with its first non-gap equal to k. This means

let g = a(n — 1) + b with0 < b < n — 1. The non-gaps

of x are the multiples of » and the integers s > g + a

+ 1.

This follows from [27] using the already mentioned results of [1]. It is also
proved in [8] and in [11].

This paper is an attempt to prove similar results for the Weierstrass
points with two prescribed non-gaps. A starting point could be the
following set. Let n, s€Z_, with n<s, g=a(n—-1)+bwith0<b
<n—1 and such that s < g+ a and s is not a multiple of n. Let
s = en + d with 0 < d < n. Consider

W, ,={xeZ: h’(nx)>2and h%(sx) > e + 2}.

However, this set seems too nasty to me to obtain nice (and valuable)
results. I think it is better to study

W, .= {x € Z: n is the first non-gap of x and h°(sx) > e + 2}.

n,s

In this paper, a satisfactory result is obtained concerning dim( WM).
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At first, let me mention a “classical” work. A very general dimension
formula is given in [16, p. 540-550]. However, the proof of this formula is
very incomplete and, moreover, the formula does not always hold. A
discussion of it can be found in [26], §4 and a counterexample can be
found in [22], p. 73. However, the key computations in §1 of this paper are
very close to the computations made in [16]. The key result in §2, which
follows from those computations is the following.

Let Z be an irreducible component of V°V,,’S and let x be a general
point on Z. Assume that |sx| is a simple linear system. Then

(0.2) dm(Z)=n+s+g—4—e and
(0.3) h(sx) =e + 2
(in particular, s is the first non-gap of x which is not a multiple of n).
If |sx| is not a simple linear system, then the proof does not work.
Even worse, formula (0.2) does not always hold. An example of this

phenomenon is given in §2.
Hence, it is reasonable to look at

W, , = {x € % nis the first non-gap of x;
s is the first non-gap which is not a multiple of n

and |sx| is a simple linear system}.

In §3 it is proved that ¥/, | is not empty (whenever this makes sense).

Let G, , = (ny,n,y,...,n)withl <n; <n, < --- <n withn, &
{an + Bs: a,BE€ZL .} and if mE€ Z\ {an + Bs: a,B € Z_,} with
m & {ny,...,n,}, then m>n, (ie. G, is the gap sequence with the

smallest weight having »n and s as non-gaps).
Let x be a general point on ¥, . It is natural to expect that G, , , is

n,s* g.n,s

the Weierstrass gap sequence of x. I am not able to prove this statement.
Therefore, this is the first of a series of questions concerning this paper.

Question 1. What is the gap sequence of a general point of #/, ?
In §4, it is proved in some cases, that G is a Weierstrass gap

g.n,s

sequence, but this result is far from being complete.
Question 2.1s 4|y = #, , — M generically injective?
Question 3. Is p( £( ¥, ,)) irreducible?

n,s

If Questions 2 and 3 are answered affirmatively, then Question 1 is
solved if one proves that G is a Weierstrass gap sequence (with the

8.n,8
extra condition that |sx| is a simple linear system).
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Question 4. If s + 1 is not a multiple of n, then, does #/, . belong to
the closure of #, ., 7 If s + 1 is a multiple of n, then, does #, ; belong
to the closure of %, ., ,?

This does not follow immediately from formula (0.2). Let x be a
general point of some irreducible component Z of #, (assume that
s + 1 is not a multiple of n). Let Z’ be an irreducible component of
WM ., containing Z. Then x € Z’ where the first non-gap of a general
point y of Z’ is n and its first non-gap which is not a multiple of » is
s + 1. If |(s + 1) y| would be a simple linear system then the answer to
Question 4 would be yes. If |(s + 1) y| is not simple then specialization to
x would give rise to an (e + 2)-dimensional linear subsystem of |(s + 1)x]|
which is not simple. If s + 1 is a gap of x, then |(s + 1)x| = |sx| + x and
|sx]| is a simple (e + 2)-dimensional linear system, hence we would have a
contradiction. But, if s + 1 is not a gap of x, then dim(|(s + 1)x|) > e + 2
and, although |(s + 1)x|is simple, it can contain a linear subsystem which
is not simple. It follows that, if the answer to Question 1 is G, , ., then
Question 4 is answered affirmatively.

Question 5. If s > n + 1 and if 5 is not a multiple of »n + 1, then does
W, , belong to the closure of #/,,, = (if s is a multiple of n + 1 then we
take n + 1 instead of n)?

This Question can be answered affirmatively — using the dimension
results of this paper — if (e + 1)(n + 1) > s. In general, the author thinks
that this is a more difficult question then Question 4 (an answer to

Question 1 seems not to give an answer to this one).

I thank H. C. Pinkham for the correspondence we had concerning this
subject. In particular he drew by attention to the already mentioned
results of [16].

1. Models on rational surfaces and consequences.

Construction 1. Let g€ Z_, andlet n € Z_, with n < g. Let g =
a(n—1)+rwithO<tr<n—-1LetseZ_ \nZ, ,withs<an+1t
Let C be a smooth curve of genus g and assume that p is a point on C
such that both n and s are non-gaps of p. Moreover, assume that |sp|is a
simple linear system on C. Let /" be a line in |np| such that /" has no fixed
points and np € /’. Because |sp| is simple, we can find p’ € C\ { p} such
that there exists D € |sp| such that, if D’ € [” with D’ — p’ > 0, then
inf(D’ + (s — n)p,D)=p’ 't D, and D, are two effective divisors on C
then £ = inf(D,, D,) if and only if D, — E > 0 and D, — E > 0 and for
eachge C, D, — E — qgor D, — E — g is not an effective divisor on C].
Let /=1 + (s — n)p, aline in |sp|, and let gZ = (I, D), the linear span
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of the line / and the point D in the projective space |sp|. Then g2 is a
simple linear system on C which gives rise to a morphism

¢: C - P2,
Let I' = ®(C) and g = ¢( p). Consider the surjective morphism

¢: C—-T.
Because I’ + (s — n)p C g2, one has, for each line L on P? through ¢,
that

o*(L)—(s—n)pel.
Hence
(9)*(g) 2 (s —n)p
and, because /’ has no fixed points, one has that
(¢)*(q) = (s — n)p.
Moreover ¢’ is birational because g2 is simple, hence T is a plane model
of C and ¢ is a singular point on I' of multiplicity s — n. Because

¢ '(q) = { p), the tangent cone of T at ¢ is a multiple of a line T on P~
Because sp € g2, one has that

¢*(T) = sp.
We are going to consider a composition of blowing-ups

Ty Ty —1 m M 2
M-M _,-M _,—> - >M,>M —>P

which is determined by the singularity of I' at ¢. Hence, the strict
transform I' of T on M belongs to some definite linear system P on M.
Therefore, we use the following construction.

Construction 2. Let X be a smooth surface, s, € X and let 4 and B
be reduced curves on X such that s, is a smooth point of both A and B
and assume that 4 and B intersect transversally at s,. Let D be a
reduced curve on X. Assume that D has a cusp in s, (i.e. the tangent cone
of D at s, is a multiple of a line) and assume that

(D.A), =(D.4)=s, (D.B),=(D.B)=n

with s < n. [If X is a smooth surface and D,, D, are two divisors on X
and s € X, then D,. D, is the intersection cycle (D, . D,), is the order of
D,.D, at s and (D,.D,) = deg(D,.D,).] Let n = as + t with0 < ¢ <.
Let 7: X; = X be the blowing-up of X at s,. Let E; be the exceptional
divisor on X; such that 7,(E,) = {s,}. Let D, (resp. B, 4;) be the strict
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transforms of D (resp. B, A) on X,;. We know that
D, €|(n)*(D) —sE|, 4, €|(n)*(4)— E,| and
B, €|(m)*(B) - El['
Let {s,} = D, N E,. We know that
(D1~E1)s, = (D1-E1) =5 (Dl-Al)s1 = (D1-A1) =0,
(D,.B)),,=(D;.B))=(a—1)s+1.
Continuing this construction, we obtain a composition of blowing-ups

Tu Ta—1
Xa.‘)Xa—l_)Xa—Z_) tr _)XZ—_)XI_)X

such that the following properties hold.

For a>i> 0, let s, be the point on X, blowing-up by 7. For
a+1>1i>0,let E, be the exceptional divisor on X, such that 7,(E;) =
{s,_,}. Fora+1>i>0,let D, be the strict transform of D on X,. For
a > i> 0,onehasthat D,N E, = {s,}.

Let B, be the strict transform of B on X,. Let D, N B, = {s,}. One
has that

(D,.E,),,=(D,.E,)=s, (D,.B,), =(D,.B,)=1.
Hence, if ¢ # 0, then s, is a cusp of D, of multiplicity .

Construction 3. (This is a continuation of Construction 1.) Define
melZ,, and {ay,...,a, ,5,....,5,,",....,n, 1} CZ as follows
s, =s—nand n; =s; for 0 <i < m, one has that n, = a;s, + s5,,, with
0<s,,,<s;forl<i<m,onehasn,=s,_,;5,€{0,1} and s, _, &
(0,1}. Let My =P~ Forl <i<a, + --- +a,_ ,=¢letm: M;> M,_,
be the blowing-up of M,_, such that the following properties hold.

Let E, be the exceptional divisor on M, blowing-down by =; and let
I’ be the strict transform of I' on M,. One has that E,N I, = {g,} and
(w0 --- om)(q,) = q. (This is a repetition of m — 1 times Construction

2)
Let p, = 7 o -+ om,. One finds that
L€ [(r)*(5L) = R )*(c,E): 0 < i < &) = 5,1,

with, forl +a, + --- +a,<i<a; + -+ +a,,,onehasthat ¢c, = s,
(here, L is an arbitrary line on P?).

Case A. Assume that s, = 1 (i.e. n and s are relatively prime).
Let E’ be the strict transform of E,_,  on M,. One has that

E.NE =T,NE = {q,) and moreover (E'.T,), = (E’'.T,) = 1 and
(Es're)(h = (Ee‘ re) = sm—l'
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Consider the composition of blowing-ups

Tet Sm—1 Te+1

- Ms+sm 1-)'.._>Ms+1-)

-1

M = Me+sm

-1

defined as follows.
The morphism 7, , is the blowing-up of M, at g,. For ¢ +s,,_; > i
> g, let g, be the point on M, blowing-up by =, ;. Then

(mo - om)(q)= {q.}.

For ¢ +s5,,_, > i > ¢, let E; be the exceptional divisor on M, blowing-
down by 7, and let (E,); be the strict transform of E, on M,. Then, for
e+s > i > g onehasthat E, N (E,), = {gq,)}.

m—1

Let I' be the strict transform of T on M. For 0 <j <, _,, let
Y/' = '”e+j+1 AR '”e+s,,,_l' Then

r e,(Yo)*(re) - Z((Yj~1)*(Ee+j—l): 2<j< sm—l) - Es+&,,,_1 .

Case B. Assume that s,, = 0 (i.e. n and s are not relatively prime).

Let E' be asbeforeandlet {g,} = E, N I,.Onehasthat E' N T, =
and (E,.T), = s,_;. Assume that g, is a point of multiplicity k on T..

Case Bl. Assume that k=35, ;. Let =, ;1 M, , > M, be the

blowing-up of M, at g,. Let T, ; be the strict transform of T, on M,
Let E,,, be the exceptional divisor on M, ; blowing-down by 7, ;. One
has that

£+1 ‘( +1) (F sm—lEe+1"
LetI,.; N = {¢,+1}- One has that
(Pe+l'Ee+1)qe+1 = (re+l‘Ee+1) = Sm-1-

Case B1A. g, is a smooth pointon I, ,

Let 7., ,: M_,, > M, , be the blowing-up of M, , at g,,, and let
E, ., be the exceptional divisor on M, , blowing-down by =_,. Let T,
(resp. (E,. )., be the strict transform of T, , (resp. E, ) on M€+2
One has that

I1e+2 E'( e+2)*(rs+1) - Es+2"

Because s,,_, > 1, one has that
I‘e+2mE5+2— +Zm(Ee+l)e+2 {q€+2}
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Let 7,,3: M — M,,, be the blowing-up of M., at g,,,. Let E, 5 be
the exceptional divisor on M blowing-down by 7., and let T' be the
strict transform of T, , on M. One has that

F &€ |(7Te+3)*(rs+2) _(Fe+3) "
Case B1B. g, ., is not a smooth pointon I, ;

Let m,.,: M — M, , be the blowing-up of M, , at q,,,. Let E_,,
be the exceptional divisor on M blowing-down by 7., and let T' be the
strict transform of I',,; on M. One has that

I €l(7,.2)*(T.11) = PE..]
withp € Z ;.
Case B2. x < Sp_1

Lets,_, =ka+ B with0 < 8 < k. Let

Mo+ e+1

M, M, - =M,

e+a et+a—1 3

be the composition of blowing-ups similar to Construction 2. Let T, , be
the strict transform of I, on M, , . For 1 <i<a, let E_, be the
exceptional divisor on M, ; blowing-down by 7, ; and for 0 < i < a, let
Y, =T, ,41° " °7,,, One has that

rs+a € |(YO)*(F9) - Z(K(Yi)*(Ee+i): 0 < l < a) - KE6+¢1|'
Case B2A. k = 1.
Then,let M = M,,  andlet ' =T,

Case B2B. k > 1and 8 = 0.
Let E” be the strict transform of E, on M, ,. One has that

E'NnT,,=@ and T, ,NE_ ., ={4q.,,  with
= (Fa+e' a+e) = k.

Case B2B1. Assume that g, , is a singular pointon T, |
Let #,,..,: M —> M,  be the blowing-up of M, at q,.. Let

a+e

E ..., be the exceptional divisor on M blowing-down by =, . ;. Let I
be the strict transform of I, , on M. One has that

F E‘( a+e+l)*(ra+e) - pEa+e+1|

( a+te* 014»9)(],“s

withp € Z _,.

Case B2B2. Assume that g, ., is not a singular pointon I, ,
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Letm, ...t M,,.,1 @ M,,, betheblowing-upof M, atgq,,,. Let

E_ ..., be the exceptional divisor on M, ., blowing-down by =, ..
Let (E,..)" be the strict transformof E,,,on M, ... Let I, ., be the
strict transform of T',,,on M_, .. ,. One has that, because k > 1,

(Ea+e)l NEyier1=Egie N Fa+e+1

= (Ea+e)/ N Pa+e+1 = {qa+s+1}'

Let m,, .42t M > M,,,,, be the blowing-up of M, ., at q,,.,,. Let
E,. .., be the exceptional divisor on M blowing-down by 7,,,.,. Let I'
be the strict transform of I',, ., on M. One has that

re (o i1 ® Tasen2) *(Tae) = (Tos s 2) *(Earov1) = Eaveral:

Case B2C. B > 1.

Let E’ be the strict transform of E, on M . One has that

EpoeNTyr o =E' NE, . = {4} and

(Ease-Tard) g, = (Base-Tasd) =
(E".Toidq.. = (E'.Ty) = B,

hence ¢, . is a cusp of multiplicity 8 on I, .. Let 7,,, . ;: M, .., —
M, .. be the blowing-up of M, . at ¢q,.,. Let I, .., be the strict

a+te

transform of I, on M,,,,,. Let E_, ., be the exceptional divisor on
M blowing-down by 7, .. Then

Pa+e+l = K'”a+e+1)*(ra+e) - BEcx+s+1l‘
Case B2Cl. k — B < B.

Let (E, . ,) 4+.4+1 b€ the strict transform of E,, ., on M, . Because
k — B = 1, one has that

(Ea+a)a+e+1 N Ea+e+1 = ra+e+1 N Ea+e+1 = {qa+e+1}‘

Let m,, ., M—> M, .., be the blowing-up of M_,,., at q,,,.,. Let
E,. .., be the exceptional divisor on M blowing-down by 7,,,.,. Let I’
be the strict transform of I, ; on M. One has that

T €|(7a+e+2)*(ra+e+1) _(’C - IB)Ea+e+2|‘
Case B2C2. B <« — B.

Let (E,,,) ...+ be the strict transform of E, ., on M, . Because
k > f3, one has that

(Ea+e)a+£+1 NE, 1= Fa+e+1 NE, e = {qa+e+1}'
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Let m, ... M > M, ., be the blowing-up of M., at q,,,,;- Let
E,. .., be the exceptional divisor on M blowing-down by 7, .,,. Let I
be the strict transform of T', ., ; on M. One has that

e I(Wa+e+2)*(ra+s+1) - BEa+e+2l'

REMARK 4. In Construction 3, the points g, which are blown-up, are
completely determined by the exceptional divisors and their strict trans-
forms, except in the following cases:

g, in Case B,
.., in Case B1,
q. .. 1n Case B2B.

THEOREM 5. Let (n,s) be the greatest common divisor of n and s. If
g>((n—1(s—-1)+1-(n,s))/2, then ¥, , = 2.

Proof. Let C, M, and I, be as in Construction 3. We have that
8(C) < p,(I,) where g(C) (resp. p,(I,)) is the genus (resp. arithmetic
genus) of C (resp. I',). Because I, is an irreducible curve on a rational
surface M, we have that

p.(T.) = ((Ky, +T..T,) +2)/2,

where K,, is some canonical divisor on M, (adjunction formula). But

|KMF|=‘(IU‘(¢)*(_3L) +(Z(nu'e—i)*(Ei): 0<i< 8) + E,

hence
|KM,, + Fs| = ‘(M‘e)*((s -3)L) _(Z(p‘e—l)*((ci —1)E):0<i< 8)
"(Sm—l - 1)E5
and

(K, +T.T.) =s(s =3) = X(ci(c; = 1): 0 <i <) =5, 1(8,-1 = 1)
=s(s=3)—Y(as(s;,—1):1<i<m-—1)
=(s>-X(ast1<i<sm-1))-(3s - X(as:1<i<m—1))
= (2= X(si(n;=s;,):1<i<m—1))

—(3s—2(ni—si+1:1 siSm—l))
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= (32 =2 (na(n =nn)l<ism=3)=n, (n, 5= 5,1)
_Sm—l(nm—l - Sm))

—(3s—Z(ni—n,+2:lsiSm—3)

= (Mg = 8,m0) = (0,1 = 5,))

- (3 — n —
=s*—nmn,+ 5,5, —B3s—n —ny,+s,_,+s,)

=sn—s—n+1+(s, 15, Sp1— Sn— 1).

m—1°;m

Lett=s,_:5,—5 s,, — 1. Hence

m—-1 "

(Ky, +T..L)=(s=1)(n—1) +.

If s,=1,thenrt=-1~(s,n)=-2.1f 5,,=0,then 7= -1 —(s,n) =
-1-—= Hence, in both cases, we obtain that

m—1-

(1.1) (Ky, +T,,T.)=(s = 1)(n—1) —(s,n) — 1.

R

Hence, p, (I,)=((s—1)(n—1)+1 - (s,n))/2, which completes the
proof of this Theorem.

2. On a formula of Hensel and Landsberg. In [16, S. 547-548], a
certain statement is claimed which could be interpreted as follows.

Statement 6 (incorrect). Let C be a smooth curve of genus g and let p
be a Weierstrass point on C whose first non-gap is equal to » and whose
first non-gap relatively prime to n is n + r. Let G( p) be the gap sequence
of p and let

Wi = {x € Z: the gap sequence of x on 47*( £(x)) is equal to G(p)}.

Let ¢ € & such that 47'(4(c)) = C and ¢ corresponds to p under this
isomorphism. Let 4 be an irreducible component of G( p) containing c.
Then

dim(A)=g—-3+2n+r—h,

where h + 1 = h%((n + r)p).

A counterexample to this statement can be found in [22, p. 73]
Namely, if g = 4, then W, ,,, is equidimensional of dimension 7 while
the above formula gives 8. Moreover, it is proved in [25], Theorem (14.5)
that W, , 3, is not empty.

However, following the arguments used by Hensel and Landsberg, it
seems to me that they tried to obtain the following result.
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Statement 7 (incorrect). Let(n,r,h) € Z* andlet W, ,, = (x € Z:
the first non-gap of x is equal to n, the first non-gap of x relatively prime
tonisequalton + rand h + 1 = h%(n + r)p)}.

If W,,,+ & then W, ,, is equidimensional of dimension g — 3 +
2n +r — h.

Lax’s example mentioned before does not give a counterexample to
this statement. Indeed, W, ,;7 C W,,,, but W, 5, is contained in the
closure of W, ,;, and it is proved in [22] that W, , ; ¢, is equidimensional
of dimension 8 which is in agreement with Statement 7. Nevertheless, the
arguments used by Hensel and Landsberg are far from rigorous and it
seems to me that they can be modified only to obtain the following
statement.

Statement 8 (correct). Let (n,r)€Z> andlet G,, = {x €Z: n is
the first non-gap of x and n + r is the first non-gap of x relatively prime
ton and A°((n + r)x) =h + 2where n + r = hn + e with 0 < e < n}.

If G,, # 9, then G,, is equidimensional of dimension g — 4 + 2n
+ r — h. This statement follows from Theorem 11.
Statement 7 is indeed false, as it can be seen from the following

example.

EXAMPLE 9. Let g = 8 and consider W, o,. Let x € W, If 6 15 a
gap of x, then 1,2,3,5,6,7,9,11 are gaps of x and therefore 2°(13x) < 6,
a contradiction to #°(13x) = 7. Thus, 6 is not a gap of x. Hence, the only
possible gaps of x are 1,2, 3,5,7,9,11, 15. Because g = 8, we obtain that

Wise = Wanssaeaiis):
This is not empty because of [19, Theorem 4.14]. But, from [19, Proposi-
tion 2.9], it follows that 4~'( 4(x)) is elliptic-hyperelliptic (i.e. a double
covering of an elliptic curve). Hence £(W, ¢¢) is contained in the so-called
elliptic-hyperelliptic locus. Hence, because of [20, Satz IJ,
dim( £(W,96)) < 14.

But dim( £(W,44)) = dim(W,44) [a curve has only a finite number of
Weierstrass points] and Statement 7 would imply that
dim(W,,¢) =8 -3+ 8+ 9 -6 =16,
hence a contradiction.
The following lemma is very important for the sequel of this paper.

LEMMA 10. Let g€ Z_, and let n€ Z_, with n<g. Let g=
a(n—1)+twith0<t<n-1 Letes€Z_ ,\nZ,, withs <an + t.
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Let s = en + dwith 0 < d < n. Assume there exists x € & with
ho(nx)=2 and h°(sx)=e+1+c¢
where € € Z _ . Let Z be an irreducible component of
{zeZ: h%(nz) 22 and h°(sx) 2 e + 2}

containing x, then

(2.1) dm(Z)>n+s+g—4—e.

Proof. Consider the family of smooth curves of genus g
X 4> X

This family has a natural section s such that for z € £ the point s(z) on
%7!(z) corresponds to z on £~'( %(z)). Because h%(nx) = 2, one has that

x € Wi\W2
In particular, x is a smooth point on W} and
(2.2) dim (W})=2g+n - 3.

This is proved in [21] for the universal family of Teichmiiller surfaces. But
this family is étale over our family £ (see [13]), hence it is also valid in our
situation. Let U = Spec(A4) be a smooth affine neighbourhood of x on
W,. We write ¢ for the restriction of % to 27'(U) and we write Y instead
of 27(U). We also write s for the restriction of s to U. Hence we obtain a
family of smooth curves of genus g

.Y > U
where U is smooth of dimension 2g + n — 3 and ¢ has a section s such
that, for each z € U, one has

(2.3) h(ns(z)) = 2.
It is enough to prove that
(2.4) dm(ZNU)=n+s+g—4—e.
Let
D:= s(U),
a divisor on Y. Because of (2.3) we have that, for each z € U
(2.5) h°(474(2), (0y(nD))(2)) = 2

[here (0,(nD))(z):= Oy(nD) ®,, 0, .,]. Because of Grauert’s Theorem
(see [15], Chapter III, Corollary (12.9)), ¢+(Oy(nD)) is a locally free
0,~Module of rank 2 and, because of the Base Change Theorem (see [15],
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Chapter III, Theorem (12.11)), we have that
(2.6) (g4(0y(nD)))(2) = H*(47'(2), (04 (nD))(2))

for each z € U [i.e. there exists a natural morphism

(7*((9Y(nD)))(Z) - H0(7_1(Z)7((9Y(”D))(2))

and this is an isomorphism; here (g4(0y(nD)))(z) means g4(0Oy(nD))
®4, C(z)]. Let 7 be a global section of 0(dD) corresponding to the
divisor dD. Then 7 is also a global section of g4(0(dD)).

Let

M=0,(sD) and F = g,(M).
Let
1=r"(M(x))=e+1+e and i=h'(M(x))=g+e+e—s.

By shrinking Y if necessary, we can find two free 4-modules K ° and K!
of rank resp. 1 and i and an A-module-homomorphism a: K° - K such
that, for each morphism ¢: V' — U between affine sets we have that

HY(Y X, ,V,M,)=ker(a ®,T'(V,0,)).

This follows from [24, Chapter V]. Hence the 4-module-homomorphism «
gives rise to a morphism &: K° — K! between free ¢, -Modules such that
U N Z is an irreducible component of {z € U: A*(a(z)) = 0} [for K°
and K! see [15, p. 110], by &(z) we mean & ®,, C(z)]. Hence, a lower
bound for the dimension of Z can be obtained from this description. But,
for each z € U N Z, one already has that A**!(a(z)) = 0. Hence, the
bound will not be as sharp as possible.
Consider

V' (7al(0,(nD)) > = F

which maps a local section x; ® --- ®x, to x; --- x, - 7. This gives rise
to

Y- (7*(0Y(”D)))®e -~ K.
Let K% = coker(y(U)). Because m(y(U)) C ker(a), this induces
a: K% - K.

One can prove that K is locally free of rank ¢ and that for each z € U,
one has that

(2.6) RO(M(z)) = (e + 1) = dim(ker(&(2))).
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The proof of those claims is exactly the same as the proof of Proposition
5.7 (namely the continuation) in [9]. Hence U N Z is an irreducible
component of {z € U: A%(&'(z)) = 0}. Because U is smooth and because
s < g + e, we can apply Corollary 11(1) of [18] to obtain that

(2.7) codim (Z)<e+e+g—s—e+1l=e+g+1—s5s.
Hence

dim(Z)>2g+n-3—-e—-g—-1l+s=g+n+s—4—e¢
which gives us (2.4), which was to be proved.

We are now able to prove the main result of this paper.

THEOREM 11. Let Z be an irreducible component of Wn._\, (see the
Introduction). Let 2 + e + ¢ = min{ h°(sz): z € Z)}. Assume that there
exists x € Z such that

ho(sx) =2+ e+ e and |sx|issimple.
Then ¢ = 0 and
dm(Z)=g+n+s—4—e.

Proof. 1t is not difficult to prove that the existence of x implies the
existence of a non-empty Zariski-open subset U of Z such that, for r € U,
one has

h'(st)=2+ e+ e and |st]issimple
(the proof is similar to the proof of Lemma (3.3) in [7]).

Each 7 € U gives rise to models I, on a rational surface M as
described in Construction 3. In order to obtain those models, one has to
use some particular linear system g2 (see Construction 1). For each
t € U, one has an (e + ¢ — 1)-dimensional family of such linear systems.

Because of Lemma 10, we have that
(2.8) dm(U)=g+n+s—e—4+1

with 7 > 0. Hence we obtain a (g+ n+ s — 5 + ¢ + n)-dimensional
family of such linear systems gZ. This gives rise to a family of curves on a
rational surface as obtained in Construction 3, whose dimension depends
on the case obtained by a general such linear system. The result is
summarized in Table 1.
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TABLE 1

a general g2 gives rise to a lower bound for the dimension

of the family of curves is
case A gtn+s+etn
case B1A g+tn+s+e+n—2
case B1B g+tn+s+tet+tn—2
case B2A gtn+s+et+n-—1
case B2B1 gtn+s+et+n—2
case B2B2 g+tn+s+tet+n—2
case B2C1 g+tn+s+et+tn-—1
case B2C2 g+tn+s+et+n—1

In it, we have to take care of the following considerations. Linear
systems g?, as obtained in Construction 1, give rise to 5-dimensional
families of plane curves I' obtained in Construction 1 (choice of the base
of the linear subspace of H%(p~'(1), 0,-,,(st)) corresponding to g7). We
also have to pay attention to Remark 4. In each case, one obtains a family
of curves I"on M of dimension d > g + 1. Because g > 2, it follows that

(2.9) d=(I.-K,,) +g-1.
This is proved in [8, Corollary 4]. The proof can be sketched as follows.
Let I' be a general element of the obtained family of curves of geometric
genus g on M. Let ¢": C — I' be the normalization of I'. This induces a
morphism ¢: C — M such that ¢(C) € P. This morphism gives rise to an
injective morphism of sheaves
do: Tp = ¢*(T),)

(between tangent sheaves). Let N, be the Cokernel sheaf of d¢. It follows
from deformation theory of holomorphic maps (see [17]) that

d < dim( H°(C, N,)).
Let Z be the ramification divisor of ¢ and let N, be the Cokernel sheaf
of the injective morphism

(do): T(Z) - ¢*(T}y).

From [3], Corollario (6.11), it follows that

d < dim( H°(C, N,)).

Hence, dim( H(C, N,)) > g, but N, is invertible, therefore h'(N,) = 0.
Hence hl(N¢) = 0 which means that infinitesimal deformations of ¢ are
unobstructed (see [17] again). Because of this fact N, = N, and

(2.10) h°(N,) = d.
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Because N, is invertible we have that
N, = ¢*(-w,) ® wc.
Hence, because of the Theorem of Riemann-Roch, we have
(2.11) h°(N,) = (-K,.T)+g - 1.
From (2.9) and (2.10), (2.8) follows.
In the proof of Theorem 5 we computed K, . It follows that
(~KMt.I“€) =35—Y (c:0<i<e)—s, ;
=3s—)Y (as:1<i<m-1)
=3s—n —n,+s, ,ts,=s+n+s,_;+s,.
Let us look at each specific case of Construction 3.
Case A. Ky € [Y§(Ky) + E(Y (Eerjo1):2<j<s,)+E, |

Hence, (-K,, I‘)—(K I‘) ,=s+n+1
Case Bl. K,, €| m)*(KMe) +E, .l
Hence, (-K,, F)—(KM I)—-$s,.,=s+n.

Case BlA Ky € (7.4, °We+3)*(KM ) + (7 3)*(Eerr) + E 5l
Hence, (-K,,.T) = (-K,,, - T.i1) — 1-1=s+n-2

Case B1B. K, € |( +2)*(K m.) — Eeol
Hence, ( -K,,.T)=(- Ky, -Tey1) —p=s+n—p with p > 1. Hence,
(-K,,.T)<s+n-2

Case B2. K), € |1(Ky) + L(T)*(E,): 0<i<a)+ E. |
Hence, (-K,, em) (-Ky,-T) —ka=s+n+s, ;- ka

Case B2A. (-K,,.T) = (—KMM. I,)=s+n

Case B2B. (K, .I,.,) =s+n.

Case B2Bl. K\, € (7,40 1)* (K, ) + E i gu1l
Hence, (K, F)—(K Tl — p—s+n—pwith p > 2. Hence,
(-K,,.T)<s+n-2

Case B2B2.
K El( e+a+1 ﬂe+a+2)*(KM )

eta

+ (Ws+a+2)*(Ea+s+l) + Ea+e+2|'

Hence,(—KM.f‘)=(——K L) —2=s+n-2.

Case B2C. K, | e!( Tevar ) (Kn, ) + Eciainl
Hence, (-K,, F+a+1) (-K E+R.Te+a)-/3—s+n.

M, sasi £
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Case B2C1 KM € I(We+a+2)*(KMs+u+l) + Es+a+2|'
Hence, (-K,.I) = (-Ky,,_ )—(k—B)=s+n—(x—B)withk — B

> 1. Hence, (-K,,.T) <5+ n - 1.

Case B2C2. Ky € (7, 0.0)" (K, )+ E b oial
Hence, (-Ky.I)=(-Ky T o)) —B=s+n—p with =1

Hence, (-K,,. ) <s +n 1.

TABLE 2

a general g? gives rise to upper bound for d
case A s+n+g

case B1A s+n+g-—3
case B1B s+n+g-—3
case B2A s+n+g-—1
case B2B1 s+n+g-—3
case B2B2 s+n+g-—3
case B2C1 s+n+g-12
case B2C2 s+n+g-—2

Hence, using (2.8), we obtain an upper bound for d as indicated by
Table 2. Comparing Tables 1 and 2, we obtain that only case A (if
(n,5) =1) and case B2A (if (n,s) # 1) are possible for a general gZ.
Moreover, in those cases, it is also necessary that ¢ = 7 = 0. Using (2.8),
this proves the theorem.

REMARK 12. Cases A and B2A are also the only cases in which the
genus bound of Theorem 5 is attained.

COROLLARY 13. Statement 8 follows immediately from Theorem 11.

To conclude this section, we give an example to show that the
asssumption ““|sx| is simple” is necessary for Theorem 11 to be true.

EXAMPLE 14. Let g = 14 and let ./’ C ./ be the subset of the points
on . corresponding to curves C which are coverings f: C — E of degree
3 with a total ramification point p of some elliptic curve. It is clear that
both 6 and 9 are non-gaps of p. Because 9 is a non-gap of p one has that
21is a gap of p (g > 7). If 4 would be a non-gap of p, then each integer
m > 12 would be a non-gap of p, which is impossible and if 5 would be a
non-gap of p, then each integer m > 14 would be a non-gap of p. We
prove that 3 is a gap of p. Assume that 3 is a non-gap of p, hence
dim(|3p|) = 1. Let 5: C — P! be some associated trigonal covering of C.
Because of Clifford’s Theorem (see e.g. [15], Chapter IV, Theorem (5.4)),
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one has that dim(|6p|) = 2, hence each divisor D of |6p| equals D, + D,
for some D,, D, € |3p|. Let f(p) =p’ and let ¢: E — P! be a double
covering such that p’ is a ramification point of ¢. Then g= ¢ o f:
C — P! is a covering of degree 6 such that p is a total ramification point
of g. Hence g corresponds to some linear system g C |6p|, hence there
exists a morphism ¢: P! — P! of degree 2 such that ¢po f = os.

c - P!

fl Ly

E - P!
¢

It is not difficult to see that, if a is a general point on P! then f(s7!(a))
contains 2 points. But then the diagram induces a morphism A’: C —
P! X i E (fibred product of ¢ and ¢ as defined in [15], p. 87) which is
dominant, hence surjective. Hence P* X E is irreducible. Let C’ be the
normalization of P' X 1 E. This gives rise to coverings A\: C = C’ and 7:
C’ — P! such that 7 has degree 4 and 7o A = ¢ o 5 has degree 6, which is
impossible.

This proves that p € I/°V6’9 C . On the other hand, dim(./Z’) = 25,
hence V°V6,9 contains some irreducible component Z with dim(Z) > 25,
which is greater than 24. Nevertheless, 14 satisfies the genus bound of
Theorem 11.

[One can also prove that 9 is the second non-gap for a general point p
of Z. Indeed, if 7 would be a non-gap of p then p € #;,—because
(6,7) = 1—but dim(#5 ;) = 22 < 25. If 8 would be a non-gap of p then
—because (8,9) = 1 — |[9p| would be simple and we obtain a contradic-
tion to Theorem 11. Finally, it is easy to see that p comes from a covering
of an elliptic curve as considered above using the morphism x: 4#7'( £( p))
— P2 associated to [9p]. Hence dim(Z) = 25.]

3. #,, is not empty (whenever possible). If x € #, and if C =
#7'(A(x)) and if p is the point on C corresponding to x. From Construc-
tion 1, we obtain a plane model I' of C with a singular point ¢
corresponding to p. In Construction 3, we obtain a birational morphism
»: M — P? such that T, the strict transform of T, belongs to some

definite linear system P on M. It is noted in Remark 12 that

P(T) = ((n=1(s = 1) +1 = (n,s))/2
exactly in the Cases A and B2A. Let &= r~!(gq). We also have that
(€.T)=1 in the cases A and B2A [we consider »!(g) as a reduced
divisor on M. Hence in those cases & N T consists of exactly one point
— say §j— which is a smooth point on T
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From now on, starting with a point g on P? and a line T on P?
through ¢, let M be the surface mentioned above and let P be the linear
system on M mentioned above (which can be defined using the curves L
and E, mentioned in Construction 3), i.e. we consider Construction 3
without having the curve T', which is possible because the points at which
we are blowing-up can be defined without I' in Cases A and B2A. We are
going to prove that P indeed contains curves I' as mentioned above
coming from a point x on ¥, .. As a first step, we prove the following
theorem.

THEOREM 15. For each 0 <g<((s—1)(n—1)+1—(n,s))/2,
there exists an irreducible element T of P such that T has geometric genus g.

(The main line of the following proof is also suggested to me by H. C.
Pinkham.)

LEMMA 16. It is enough to prove that there exists an irreducible element
Iy, of P of geometric genus O which has ordinary nodes as its only
singularities.

Proof. Because p,(I)) = ((s — 1)(n — 1) +1 — (n,s))/2, the curve
I'y, has precisely 6 = ((s — 1)(n — 1) + 1 — (n, s))/2 ordinary
nodes — say si,...,55. Let § =& — g. Because (Kj;.[,) <0, it follows
from [28 ((2.3)V)] that P contains smooth irreducible elements, hence we
can apply [28, Theorem (2.13)]. It follows from that theorem that, for any

choice of § nodes of T,— say s,,...,s5— there exist a smooth curve T
and a family of effective divisors n € M X T over T such that there exist
t, € T and sections S, ..., S5 of n over T such that

n, =T, and S(z,) =s,,...,85(z) = 55,

if r € T\ {t,} then 7, is an irreducible element of P; S\(1),..., S5(t) are
ordinary nodes of 7, if x € n,\ {S,(¢),...,S5(¢)} then x is a smooth
point of 7.

In particular, if 1 € T\ {,}, then , is an irreducible element of P of
geometric genus g.

Now, we are going to prove that P contains rational curves. Then, we
prove that the general one has ordinary nodes as its only singularities.

In Construction 1 we obtained particular linear systems g?2. Namely,
there exists a point p and a fixed-point-free linear system gl — say
y — with np € y such that (n — s)p + y C g2 and g? is simple. We call
them suited linear systems.
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We first investigate “how many” such suited linear systems g2 exist
on P!, Let ¢ be the space parametrizing the linear systems g/, on P! and
let £ C %2 be the locus of the suited linear systems.

LEMMA 17. & is irreducible and has dimension s + n — 2.

Proof. One has that ¥ C &’ with
&' = {g?e 92 thereexist p € P and y € &} such that np € g;
g has no fixed points and g +(s — n)p C g2}.
Below we prove that %’ is irreducible and has dimension s + n — 2. Now
S="n{g2e 9*: g is simple}.
Because { g? € 9% g? is simple} is a non-empty Zariski-open subset of
%2, we find that & is irreducible and has dimension s + n — 2if ¥+ &.
We construct an element of & as follows. Let p € P! and D € (P})@®
with p & Supp(D). Let D’ € (P))® with deg(inf(D, D)) = 1 and p &
Supp(D’). Let y = (D, np) € 9+ and g? = (y + (s — n)p, D). Clearly,
gl €%’ and g2 is simple because deg(inf(D + (s — n)p, D’)) = 1, while
both D + (s — n)p and D’ belong to g2.

We now prove the irreducibility and compute the dimension of #’.
Let I C ¢} X P! be defined by

(y,p) €1 ifandonlyif np € y.

Consider the projection morphism : I — P'. Clearly, for p € P!,
(m)7Y(p) is irreducible of dimension n — 1, hence I is irreducible of
dimension n. Let (9)) = {y € ¢': y has no fixed points}. This is a
Zariski-open subset of ¥} and I’ =1nN ((¢!) X P!) is a non-empty
Zariski-open subset of I. Let J € ¢* X I’ be defined by

(h,(y,p))€J ifandonlyif y +(s —n)p C h.

Consider the projection morphism =,: J — I'. Clearly, for (v, p) € I,
(m,)"X(¥, p)) is irreducible of dimension s — 2 [namely, if (y, p) € I',
then

(PHY\(y +(s = n)p) = (m) (v, p)):
D - ({y+(s—n)p,D),(v,p))

is surjective with 2-dimensional fibres— the fibre over (4,(y, p)) being
AN\ (y + (n — s)p)], hence J is irreducible of dimension s+ n — 2.
Consider the projection morphism m,: J — 92, Clearly m;(J) = &’ and it
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is easy to see that 7, is generically injective. Hence %’ is irreducible and
has dimension s + n — 2.

COROLLARY 18. If (n,s) = 1, then P contains rational elements.

Proof. Indeed, there exist suited linear systems g2 on P! and Case A
only occurs.

If (n,s) # 1, then we are going to prove that we obtain Case B2A in
Construction 3 if g is a general element of &. This is done to prove the
following Lemma.

LEMMA 19. If (n, s) # 1, then P contains rational elements.

Proof. Let g? be a general element of . This gives rise to a
5-dimensional family of generically injective morphisms ¢: P! - M with
¢(P!) € P as obtained in Construction 3 for some B-Case. Each ¢ €
Aut(P') gives rise to such a morphism y*(¢) = ¢ o ¢ which is associated
to ¥*(g?2) € &. Moreover, dim(Aut(P')) = 3. Combining those consider-
ations with Lemma 17, gives rise to Table 3. This table gives the lower
bound for the dimension of some irreducible subset of P consisting of
irreducible rational elements, under the assumption that a general g?
gives rise to the B-Case under consideration (and, of course do not forget
Remark 4). Comparing this with Table 2, we see that a general g2 € &
gives rise to Case B2A.

We already obtained that P contains an irreducible subset P(0)
consisting of irreducible rational elements with

dim(P(0)) = s + n if (n,s) =1
dim(P(0)) =s+n—1 if(n,s)#1.
We are going to prove that, if T, is a general element of P(0), then T, has

ordinary nodes as its only singularities. If this is proved, then Theorem 15
holds because of Lemma 16.

TABLE 3
Case Lower bound
B1A s+n-—-2
B1B s+n-—2
B2A s+n—1
B2B1 s+n-—2
B2B2 s+n-—2
B2C1 s+n-1
B2C2 s+n—1
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PrOPOSITION 20. If T, is a general element of P(0), then T, has
ordinary nodes as its only singularities.

Proof. As noted at the beginning of this section,
(3.1) Sing(T,) ¢ M\ &.

But »| s M\ &- P2\ {q) is an isomorphism (blowing-up). Let ¢:
P! - M be a genencally injective morphism such that ¢(P') =T is a
general element of P(0). It is shown in the proof of Theorem 11 that T,
has no cusps. Hence N,, the Cokernel of the injection Tp1 — ¢*(Tj) is an
invertible sheaf on P! with

deg(N,) =s+n+1 if(n,s)=1
deg(N,) =s+n if (n,s) # 1.

Moreover, H(P!, N,) corresponds in a natural way to the space of the
first order deformations of ¢ (modulo Aut(P')) (see [17]) and because
H'(P', N,) = 0, there is no obstruction.

If x is a singular point of T, then x € M\ &= P2\ {q}. Assume
that the multiplicity of x is equal to m > 3. Then m < s — n and there
exist qy,...,q,, € P! with

¢(q) = -+ =¢(q,) = x.
Because H'(P', N,(-¢; — -+ —¢,,)) =0, there exists o € H°(P', N,)
with 6(q;) # 0 and o(g,) = --- = 0(q,,) = 0. Then o gives rise to a

global deformation of T, in P(0) which splits the singular point x of T},
into singular points of lower multiplicity — a contradiction to the assump-
tion that T}, is general. Let ¢q;, ¢, € P! with ¢(q,) = ¢(g,) = x. Because
H'(P', N,(~¢q; — ¢,)) = 0, there exists ¢ € H(P', N,) with o(q;) # 0
and o(q,) = 0. If the two branches of I, at x have a contact of order
b > 2, then o gives rise to a global deformation of I'; which splits x into
double points where the two branches have a contact of order lower than
b — again a contradiction to the assumption that I, is general. Hence, the
only singularities of I, are ordinary nodes. (For more details concerning
those arguments, see [2], p. 97 and 98.)

One can also prove Proposition 20 using [3, Corollario (6.11)] in a
way similar to the proof of (2.b) and (2.c) in [6].

COROLLARY 21. For each 0 < g<((s—1)(n—-1)+1 - (n,s))/2,
there exists a curve C of genus g such that C contains a point p such that both
n and s are non-gaps of p and |sp| is simple.
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Proof. Let T be an irreducible element of P of geometric genus g.
Consider the linear system % of the lines on P? through ¢. Let C be the
normalization of T'. Then »*(.#) is a one-dimensional linear system on
M. Tt is not difficult to see that »*(.%). T gives rise to a linear system g!
on C—being a subsystem of g2, the linear system corresponding
to »(I') € P?— such that there exists p € C with sp € g} and {D -
(s — n)p: D € g!} has no fixed points.

Now, we are going to prove that, for (s — 1)(n — 1) + 1 — (n,s)) >
g=>a'(n—1)+ b with s=a’n+ b (0 < b’ < n), there exists a couple
(C, p) as in Corollary 21 such that » is the first non-gap of p and s is the
first non-gap of p which is not a multiple of .

Let I' be an irreducible element of P of geometric genus g and with
ordinary nodes p,, ..., p; as its only singularities. Let »": M’ — M be the
blowing-up of M at the points p,,...,p, and let F,,...,F; be the
exceptional divisors on M’ such that »'(F) = { p,} for each 1 <i < 8.
Let I” be the strict transform of T on M’, hence

| YQ2F:1<i< 8)|
Then I" is a smooth curve of genus g on M’. Consider the exact sequence
(32) 0 - @ = i 8, O5(T") > (@i @, 04 (T7)) @y, Or — 0.

Because M’ is a rational surface, we obtain that this induces an isomor-
phism

(33) HY (M, w5 ®,, 04(T")) = H(M,(wg 8, 0;(I")) @, Or)

and because of the Adjunction Formula, we obtain an isomorphism

(3.4) HO(M', 0 ®,, 05(T") > H(I", 1)
This gives rise to an isomorphism

(3.5) |Ky + T’'|>|Kp|: D> D.T.

But

(3.6) K | =|()*(K) + L(F:1 < i <8)|
hence

(3.7) |Kip + T =|(»")*(Kp + T) = L(F 1 < i < 8)|.
Therefore

(3.8) »(|Ky + 1))
={De|Ky+T|: p, € Supp(D) foreach1 <i < 8}.
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It follows that the projective space associated to
ker(HO(M, Wiz ®, 0M(1"))) - C% s> (s(py),...,s(ps))

is isomorphic to |K|. Let p’ € I'” such that (v o »")(p’) = ¢. Because n
and s are both non-gaps of p’, one has that

h(sp’) = a’ + 2
and h%(sp’) = a’ + 2 if and only if n is the first non-gap of p’ and s is
the first non-gap of p’ which is not a multiple of n. Hence, in order to
obtain our aim, it is enough to prove that there exists such a curve I'” with
h°(sp’) = a’ + 2. Because of the Theorem of Riemann-Roch, this is
equivalent to
(3.9) W (sp)=a +1+g—s.
On the other hand, because h°(sp’) > a’ + 2, we already know that
h'(sp’) > a’ +1+ g— 5. Hence, because g>a'(n—1)+ b =s— a’,
we have that h'(sp’) > 1. Hence, using Serre-Duality, we obtain that
hO(K — sp’) = 1. This proves that there exists some effective canonical
divisor on I'” containing sp” and in order to prove our aim, it is enough to
prove that there exists such a curve IV such that the family of effective
canonical divisors on I containing sp’ has dimension exactly a’ + g — s.
Now, let R be a line on P? such that R N »(T") contains exactly s points
—say qy,...,q,. Because (»'ov)7}(gq) + -+ +(»'ov)}(q,) is linearly
equivalent to sp” on I'” we have to prove that for some I' the dimension of
the elements of |K, + T| containing p;,..., ps, »"X(¢,),-..,7»*(q,) has
dimension exactly a’ + g — s. Let D be such an element of [K,, + I'|. It
follows from Construction 3 that, as a reduced curve on P2, »(D) has
degree at most s — 3. But this curve has s points in common with the line
R hence R C »(D). Hence

D - v*(R)€|Ky;+ T —v*(R)|
or D — v*(R) is an element of
() *((w)*(s —4)L = L (1, ) (e, —DE:1<i<e—1)

= (5,1 = DEJ]
containing p,,..., ps. Thus, we have to prove that the linear subsystem of
|Ky + I' = v*(R)| of elements containing p,,..., p, has dimension ex-
actly a’ + g — s for some curve I' as under considering.
We will use (and we are going to prove below) the following formula:

(3.10)  dim(|K; + T — »*(R))
=(((n=D(s =) +1=(n.)/2) +a’ ~s
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(notice that this formula gives our aim for

g=((n-1D(s=1)+1-(n5))/2).

THEOREM 22. Let
an—-1)+b<g<((n-1)(s-1)+1—(n,s))/2.
There exists a smooth curve C of genus g possessing a point p such that n is
the first non-gap of p; s is the first non-gap of p which is not a multiple of n
and |sp| is simple.

Proof. Because of the preceding arguments it is enough to prove that
there exists an irreducible element I of P such that I" has

8=(((n=D(s-=1)+1~(n,s))/2) ¢

ordinary nodes — say p,,..., p;— and no other singularities, such that
S(py,---» Ds), the linear subspace of |K;, + ' — »*(L)| of elements con-
taining p,, ..., Ps, has dimension a” + g — s.

Because of Lemma 19 and Proposition 20, P has an irreducible
element I’y of geometric genus 0 having ((n — 1) (s = 1) + 1 — (n,s))/2
ordinary nodes (and no other singularities). We prove that we can find
p1(0), ..., ps(0) — & different nodes of I')y— such that S( p,(0),..., ps(0))
has codimension & in |K; + I' — v*(L)|. This is clearly true for § = 0.
Assume that it is already proved for some 0 < §” < § — hence there exist
P10, ..., ps(0) such that S( p,(0),..., ps(0)) has codimension 8" in |K
+ I' — »*(L)|. For each node p of I}, different from p,(0),..., ps(0) we
have that

codim(S( p,(0),..., ps(0), p)) <8 + 1
and

codim(S( p(0),..., py(0), p)) < 8" + 1
if and only if

S(p1(0),.-., ps(0) = S(p4(0),..., p5(0), p)
i.e. each element of |K; + I' — »*(L)| containing p,(0),..., ps(0) also
contains p (it concerns linear spaces!). Assume that for each such p we
have that

codim(S( p,(0),..., ps(0), p)) = &".
Then, each element of |K; + I' — »*(L)| containing p,(0), ..., ps(0) also
contains the other nodes of T', hence

S(p,(0),..., ps(0)) = S({ p: pisanodeof [,}).
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But — from the reasonings done above — it follows that
S({p: pisanodeof I,}) =|Kp — sx|
with x € P!. But |Kp — sx| = @ hence it would follow that S({ p: p is a
node of I';}) = @. Because “containing a point” is a linear condition for
H(M,0; (K, + T — v*(L))) one has that this would imply that
codim(S({ p: p is anode of T,})) = & > dim(|K;; + T — »*(L)]).

From (3.10), it would follow that

8>(((n—1)(s—-1)+1—-(n,s5))/2) +a’ —s,
hence

—g>a —s or g<s—a =a(n-1)+V,
which is a contradiction to the assumption that g > a’'(n — 1) +b".
Hence there exists a node p; , 1(0) of T}, such that

codim(S( p,(0),..., py11(0))) =& + 1
and in particular there exist nodes p,(0),..., ps(0) of I}, such that

codim(S( p,(0),..., p;(0))) = 8.
From [28] it follows that we can fi~nd a smooth curve T and a family
n C M X T of effective divisors on M over T with sections S|, ..., S; of 3
over T such that there exists 7, € T such that , = [, and S,(z,) = p;(0);
if t € T\ {t,}, then 0, is an irreducible element of P; Si(2), ..., Ss(¢) are
ordinary nodes of 7,; 7, has no other singularities (see also the proof of
Lemma 16). In particular, for t € T\ {¢,}, n, has geometric genus g.
Consider
S(Sl""’SB) C|KM + r - V*(L)‘X T

with

(D,t) € 8(S,,...,8,;) ifandonlyif D € S(S,(¢),...,S;5(1)).
This is a Zariski-closed subset of |K;, + I' — »*(L)| X T. Each fibre of
the projection morphism

7. S(S),...,85) > T

is irreducible (as a linear space).

Because dim(77'(#,)) = g + @’ — 5, there exists a non-empty
Zariski-open subset U of T such that, for each ¢ € U, one has that

dim(77(¢)) <g+a’ —s.

Because one also has that codim(.S(S,(7), ..., S5(¢))) < 8, it follows that,
for t € U we have that

dim(77(¢)) =g+ a’ - s.
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Hence, if t € U\ {t,} and C is the normalization of 7,, then C is a curve
with the desired properties.

REMARK 23. A well-known formula for an effective divisor D on a

rational surface M is the following one:
dim(|D|) = p,(D) —(K,,. D) — 1.

This formula holds if Supp(D) is connected and D = Y, + --- +Y, with
Y, irreducible; Y, # Y; for i #j and (Y;- K,,) <O0. (For r =1 this is
proved in Lemma (2.2) of [28], the reduction to this case is easy — see [5,
Lemma (0.1)].) From this formula, (3.10) follows immediately. Piteously I
am not able to prove that |[K;, + I' — »*(L)| contains a suited element.
Therefore, I have to do some nasty work in order to prove (3.10).

PROPOSITION 24. Formula (3.10) holds.

Proof. At first, consider the case § = a’n + 1 and g = ((n — 1)a’n) /2.
Let C be a smooth element of P (we use ~ to denote the case (n, §) instead
of (n,s) in Construction 3). Let { p} = &N C. Then both n and § are
non-gaps of p. Because each integer an + B(a’n + 1) witha, BEZ_,
are non-gaps of p, and because p has exactly g gaps, this gives each
non-gap of p. It follows that
(3.11) A°((n—1)p)=1; h%np)=2; hK°anp)=ada +1,
h(sp)=a" +2; K (((a’+1)n—1)p)=a +2;
h°((a" + 1)np) = a’ + 3.
Let #: & — A be for the case g as 4 is defined in the introduction for
the case g. Let X € £ such that C = ﬁ‘l( /(X)) and p corresponds to X
under this isomorphism. For 1 <b<n —1 let Z, be an irreducible
component containing X of
{x e Z: h°(nx) > 2and h°((a'n + b)x) > a’ + 2}.
Let X, be a general point of Z,. Using the Semi-Continuity Theorem (see
[15], Chapter III, Theorem (12.8)) one can prove that (using (3.11))
(3.12) h°((n — Dx,)=1; h°%nx,)=2;
h°(a'nx,)=a +1; h°(a'n+b)x,)=a +2.
LEMMA 25. |((a’n + b)X,| is simple.
From this lemma, it follows that

COROLLARY 26. a'n + b is the first non-gap of X, which is not a
multiple of n.
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Proof (of Corollary 26). Because of (3.12), it follows from Lemma 10
that
(3.13) dim(Z,)>g+n+an+b—-4-a.
Assume that a’n + b is the first non-gap of X, which is not a multiple of
n (for some b < b) [this non-gap is at least a’n + 1 because h°(a’'nx,) =
a’ + 1]. Because of Lemma 25, we can use Theorem 11 which gives us that

(3.14) dim(Z,) <g+n+an+b-4—a.
Combining (3.13) and (3.14), we obtain that b = b, which proves the
corollary.

Proof (of Lemma 25). Assume that the lemma is not true. Then the
following situation can be obtained because Z, # Z; for b # 1 (use
Lemma 10 for Z, and Theorem 11 for Z;). Let R be a discrete valuation
ring, let m be the closed point of Spec(R) and let o be the generic point
of Spec(R). Let #: € — Spec(R) be a smooth family of curves of genus g
and let & be a section of & such that

¢,=C and #(m)=p.

Let C be a smooth curve defined over k(o) [the quotient field of R] and
let § be a point on C defined over k(o). Let F: €, —» C be a morphism
of degree ¢ defined over k(o) with F~1(§) = £(0); t divides a’n + b (for
some b < b) and h°((a’n + b)/t)§) = a’ + 2 [here h°(((a’n + b)/1)§)
comes from § Xk(a)m)— € € Xy k(0) where k(o) is the algebraic
closure of k(o0)]. Because of [20, §2 Lemma 1], we can assume that there
exists a smooth curve #’: ¥’ — Spec(R) and a Spec(R)-morphism % ":
% — %’ such that

¢ =C and % =F.
Let &’: Spec(R) — %’ be the unique section of £’ such that ¥’(0) = §
(see the Valuative Criterion of Properness in [15, Chapter II, Theorem
4.7]). Because of the Semicontinuity Theorem (see [15, Chapter III,
Theorem 12.8]), we have that
(3.15) r(((a’n + b) /1) & (m)) = a’ + 2.
Moreover, we have that (%)) (&'(m)) = {SF(m)} = {p} because
(Z) N(&L'(0)) = {&(0)}. But |(a'n + b)p|is simple and |(a’n + 1) p| +
(b—1p=|an+b)p|>(F)(((a'n+b)/t)¥(m)) [the equality
comes from (3.11)] and both sides of the inclusion have dimension a’ + 2
((3.11) again), hence, because of (3.15), we obtain that

l(an+1)p| +(B-1)p = (%) (|((an + ) /1) (a)

which is a contradiction to the fact that |(a’n + 1) p| is simple.
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Continuation of the proof of Theorem 22. Using the irreducible compo-
nent Z,, and repeating the proof of Proposition 20 for the case of genus g
instead of 0, we obtain a locally closed irreducible subset P(g) of P such
that each T € P(g) is an irreducible curve of geometric genus g having
§=((s—1)(n—-1)+1-(n,s))/2 — g ordinary nodes as its only singu-
larities. Let I" be such a general curve and let p,,..., ps be its nodes. Let
C, be the normalization of I' and let X,, be the special Weierstrass point
on C,, corresponding to & N I. Because h%((a’'n + b)X,) = a’ + 2 (3.12),
the linear subsystem of |K; + I' — »*(L)| containing p,,..., ps has
dimension g + a’ — a’n — b’. Hence

(316) dim(|Kz+T —»*(L)|)<g+da —an—b+38
=(((s—=1)(n—=1)+1—(n,s))/2) +a —s.

On the other hand, if T is a smooth element of || and p = &N T, then
h%(sp) = a’ + 2. Hence

(317)  dim(|Ky + T — »*(L)|)
>(((s=1)(n=1)+1—(n,s))/2) +a —s.
From (3.16) and (3.17), Formula (3.10) follows.

4. Existence of Weierstrass gap sequences. As already mentioned
in the Introduction, it is an open problem in the theory of Weierstrass
points to decide which gap sequences are Weierstrass gap sequences. In [4]
it is shown that there are gap sequences which are not Weierstrass gap
sequences. In some cases the existence of Weierstrass gap sequences is
known.

— The only gap sequence of genus g such that 2 is a non-gap is equal
to (1,3,5,7,...,2g — 1). A point p on a smooth curve C of genus g has
gap sequence (1, 3,5,7,...,2g — 1) if and only if p is a ramification point
of some double covering C — P, In particular C is hyperelliptic.

— Each gap sequence such that 3 is a non-gap is a Weierstrass gap
sequence (see [23]).

— Each gap sequence such that 4 is a non-gap is a Weierstrass gap
sequence (see [19]).

— Each gap sequence (1,2,3,...,g— 1, g+ 1)forl1 </<g-—-1lisa
Weierstrass gap sequence (see [25], [27]).

— Each hyperordinary gap sequence (see the Introduction) is a
Weierstrass gap sequence (see [8], [11], [27]).

— Each gap sequence of weight w:= Y(n, —i:1 <i<g)<g/2isa
Weierstrass gap sequence (see [12]).
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Also, some other results — stated in a ringtheoretical way — are obtained
(see e.g. [29]). Here, we hope to deduce some new existence results.

THEOREM 27. Letn € L, andleta € Z . , such that
aln-1)<g<(a+1)(n-1).

Letm, g € L, such that

1) g=em+bwithe€Z_ ,and 0 <b <m,

(2) n <m <2n,

(3) {am+Bg<g+1+a a BEZL,,} contains at least a ele-
ments,

4) g = (e + D)n,

3 g<m+qg—1--e—1[q/(e+ 1)) |entire part],
then there exists a couple (C, p) such that C is a smooth curve of genus g
and p € C and the non-gaps of p are

(1) each x € Zzgwﬂ,

(2) each am + Bgwitha, BE L,

Proof. Consider the universal family 4: 2 — 4 and let W, be some
irreducible component of W]!. As already mentioned in the Introduction,
the gap sequence of a general point x on W, is the hyperordinary gap
sequence of genus with first non-gap equal to . It follows that

x€{zeZ: h°(mz) =2and h°(qz) > e + 2}

(because of (2), (1) and ﬁ)). Hence, there exists some irreducible compo-
nent W, of W,  with W, ¢ W, . Because of Lemma 10,

m.,q

(4.1) dim(W,,’,Qq) >m+q+g—4—e.

Therefore, because of (5), a general point x of W, = does not belong to
w,.

Let /2 be the first non-gap of x. In particular WW’L 4, C W,,. Because of
(5), this is impossible if m < [q/(e + 1)], hence iz > g/(e + 1). Because
h°(gx) = e + 2, there exists some non-gap of X, at most equal to g, which
is not a multiple of /. Let § be the smallest non-gap of x which is not a
multiple of /m. Let ¢ = fin + h with 0 < h < /. If |gx| would not be
simple, then |#Xx|is composite with some involution ;. But, as it is done
in the proof of Lemma 25, it would follow that |nx| is composite with
some involution v,. An easy parameter count shows that this is impossible

(see [8], Chapter 2). It follows from Theorem 11 that
(4.2) dim(W, )=g+m+§—4-f.
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Using (4.1), this gives us that

(4.3) m+qg—e<m+qg-—f.

If §j=qand in <m,then f<e,hencem<m—1.lf m=mand §<gq
then, because it is necessary that f + 1 < e, one has that § <¢ — 1. It
follows that, if m + § <m + ¢, then i + § < m + q — 2 and therefore
f+2<e. Because (e+1ym—e<m+qg—e and m+§—f<
(f + 2)m — f, one has, because of (4.3), that (using also 1 < m)

(4.4) (e+1)m—e<(f+2)m—f.
But f < e — 2, hence (4.4) becomes

(4.5) (e+1)m—e<em—f,
hence

(4.6) f<e—m.

We are going to prove that
f<e —(m’ - Y(m:l<i<t- 1)) foreachr € Z ,,

which is, of course, impossible. It will follow that 72 = m and § = q. We
already proved it for ¢t = 1. Assume that it holds for some 7, € Z _,,
hence

(4.7) fse—(mo— Y(m:1<is<t,—1)).
Hence, because of (4.4), we obtain that
(e+1)m—e< [e—(m’ﬂ— Z(mizlsiStO—l))+2]m—f

which gives us the desired inequality for ¢, + 1.

Now, assume that r € Z _ ., ,with 7 & {am + Bq: a,B € Z } and
assume that 7 is a non-gap of x. Then, because of (3), X would have at
least @ + 1 non-gaps ¢ < g + a. It would follow that 2°((a + g)x) > a
+ 2. In particular, because of the Semi-continuity Theorem, 4°((a + g)x)
> a + 2. But, because the gap sequence of x is the hyperordinary one,
one has that #°((a + g)x) = a + 1. This gives a contradiction. Hence the
gap sequence of x is the gap sequence described in the announcement of
this theorem.

In order to understand the result of this theorem, I think it is
necessary to give some examples of Weierstrass gap sequences which exist
because of this theorem.

ExaMPLE28. n = 3, m = 5.

For each g € Z _ ,, one has that (1) and (4) hold.
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Case q = 6. Hence, e = 1. Then (5) holds if g < 6. Consider the case
g = 5 (which would give a Weierstrass point of maximal weight in this
case). In this case a =2 and {a5 + B6 <8} = {5,6} consists of 2
elements, hence (3) holds. Hence (1,2,3,4,7) is a Weierstrass gap se-
quence. Its weight is equal to 2.

Case q = 7. Hence, e = 1. Then (5) holds if g < 7. Let g = 6. One
proves that (1,2,3,4,6,8) is a Weierstrass gap sequence. Its weight is
equal to 3.

Case q = 8. One proves that (1,2,3,4,6,7) is a Weierstrass gap
sequence.
And so on.

Finally, I give an example of a Weierstrass gap sequence of weight
greater than its genus, whose existence follows from this theorem.

ExAMPLE 29. Let n = 10, m = 15 and ¢ = 46. One has that e = 3
and g > 40 hence (1), (2) and (4) hold. Let g = 44. Clearly (5) holds.
Moreover a = 4 and

{al5 + B46 < 49) = {15,30,45,46)

hence (3) holds. Therefore (1,2,...,14,16,...,29,31,...,44,47,48) is a
Weierstrass gap sequence. Its genus is equal to 44 and its weight is equal
to 50.
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