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WEIERSTRASS POINTS WITH TWO PRESCRIBED
NON-GAPS

M. COPPENS

In this paper, we study Weierstrass points P on smooth curves with
two prescribed non-gaps n and s such that s = en + d with 0 < d < n.
Let J( be a fine moduli space of smooth curves of genus g (with some
extra structure) and let ^: Si'-» Jί be the associated universal family.
Let Wns = {x e SC\ n is the first non-gap of x and dim(|sx|) > e + 1}.
Let Z be an irreducible component of Wns and assume that \sx\ is a
simple linear system on / " * ( / ( * ) ) if χ *s a general point on Z. We
prove that dim(Z) = w-fs + g - 4 - e and dim(|s;c|) = e -f 1. We
give an example which shows that we cannot omit the assumption "\sx\ is
a simple linear system". We prove that such a component Z exists if and
only if e(n ~ 1) 4- d < g < ((n - ϊ)(s - 1) + 1 - (n,s))/2. Finally,
we derive some existence results of Weierstrass points.

Introduction. Let C be a smooth, irreducible curve of genus g > 1

defined over the field C of the complex numbers. Let p be a point on C.

Let n G Z >v We write A°(np) instead of dim(#°(C, Θc{np))).

We say that « w ^ gap of p if A°((w - 1)/?) = h°(np). Otherwise, n is

a non-gap of p.

Using the Theorem of Riemann-Roch, one can prove that the number

of gaps of p is equal to g and each one of them is at most equal to

2 g - l .

We say that (nvn2,...,ng) is the gap sequence of p if 1 < nx < n2 <

• < ng < 2g and nι is a gap of p for each 1 < i < g. We say that p is

a Weierstrass point of C if n g Φ g. One can prove that C has only a finite

number of Weierstrass points. (For a detailed study of Weierstrass points

see e.g. [14], §7d.)

Let S c Z > 0 be a sub-semigroup of Z > 0 . Assume that there exists

C G S such that c + Z > 0 c S. Let 1 < nx < n2 < < ng(S) be such

that m e Z > 0 \ S if and only if m = /?, for some 1 < ι < g(S). We call

(Λ 1 5 . . . , ng{S)) a gap sequence of genus g(S). If there exists a smooth curve

C (of genus g(S)) and a point /? on C such that (/?1? n2,..., «g( iS)) is the

gap sequence of p, then we say that (nv n2y..., ng(S)) is a Weierstrass gap

sequence. It is an open problem in the theory of Weierstrass points to

decide which gap sequences are Weierstrass gap sequences. There exist

gap sequences which are not Weierstrass gap sequences (see [4]).
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Throughout this paper, Jί is the fine moduli space of the smooth
curves of genus g with a level-p-structure for some fixed ^ e Z > 3 ; ^:
9C-* Jί is the associated smooth family of curves and μ: Jί -> Jί' is the
natural morphism to the coarse moduli space Jίg of the smooth curves of
genus g. Let ^ r e Z ^ and define

W[ = {χe&: h°(kx)>r + 1}

(here, and throughout this paper, h°(kx) has to be considered with
respect to the fibre /ι~ι(fi(x))). Hence x e Wr

k if and only if x has at
least r non-gaps which are at most equal to k.

One has that Wr

k is a closed subset of X and if Z is a non-empty

irreducible component of it, then

(0.1) dim(Z) > 3g - 2 - r(g + r - k).

The proof of this statement is the same as the proof of Proposition 1 in
[21].

The case r = 1 has been studied intensively. Let us mention some
results. We assume that k < g — 1. In [8] and [10], it is proved that jι\w\\
W\ -> Jί is generically injective. From the results in [1], it follows that
Wl is not empty, equidimensional of dimension 2g - 3 + k (hence, we
have equality in (0.1)) and μ(/ι(Wk)) is irreducible. In particular, it
follows that, for a general point x on W\, we have that

k is the first non-gap of x.

Moreover, the gap sequence of x is the hyperordinary gap sequence of
genus g with its first non-gap equal to k. This means

let g = a(n - 1) + b with 0 < b < n — 1. The non-gaps
of x are the multiples of n and the integers s > g + a
+ 1.

This follows from [27] using the already mentioned results of [1]. It is also
proved in [8] and in [11].

This paper is an attempt to prove similar results for the Weierstrass
points with two prescribed non-gaps. A starting point could be the
following set. Let n, s e Z>x with n < s, g = a(n - 1) + b with 0 < b
< n — 1 and such that s < g + a and s is not a multiple of n. Let
s = en + d with 0 < d < n. Consider

K,s= [x^%' h°(nx) > 2 and h%sx) > e + 2}.
However, this set seems too nasty to me to obtain nice (and valuable)

results. I think it is better to study

Wns = {x G 9£: n is the first non-gap of x and h°(sx) > e + 2}.

In this paper, a satisfactory result is obtained concerning dim( Wn s).
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At first, let me mention a "classical" work. A very general dimension
formula is given in [16, p. 540-550]. However, the proof of this formula is
very incomplete and, moreover, the formula does not always hold. A
discussion of it can be found in [26], §4 and a counterexample can be
found in [22], p. 73. However, the key computations in §1 of this paper are
very close to the computations made in [16]. The key result in §2, which
follows from those computations is the following.

Let Z be an irreducible component of Wns and let x be a general
point on Z. Assume that \sx\ is a simple linear system. Then

(0.2) dim(Z) =n+s+g-4-e and

(0.3) h°(sx) = e + 2

(in particular, s is the first non-gap of x which is not a multiple of n).

If \sx\ is not a simple linear system, then the proof does not work.
Even worse, formula (0.2) does not always hold. An example of this
phenomenon is given in §2.

Hence, it is reasonable to look at

ifn s = {x £ 9C\ n is the first non-gap of x;

s is the first non-gap which is not a multiple of n

and I sx | is a simple linear system}.

In §3 it is proved that Ψ*n s is not empty (whenever this makes sense).
Let Ggns = (nv n2,..., ng) with 1 < nλ < n2 < < ng with ni <£

{an + βs: a,β e Z> 0 ) and if m e Z\{an 4- βs: a,β G Z> 0} with
m <£ {Λ15 ...,/ig}, then m> ng (i.e. Ggns is the gap sequence with the
smallest weight having n and s as non-gaps).

Let x be a general point on H^n%s. It is natural to expect that Ggn s is
the Weierstrass gap sequence of x. I am not able to prove this statement.
Therefore, this is the first of a series of questions concerning this paper.

Question 1. What is the gap sequence of a general point of i^nJl
In §4, it is proved in some cases, that Ggns is a Weierstrass gap

sequence, but this result is far from being complete.

Question 2. Is ft \ ^ : # ^ 5 -» Jί generically injective?

Question 3. Is μ(/(^ 7 , 5 )) irreducible?
If Questions 2 and 3 are answered affirmatively, then Question 1 is

solved if one proves that Ggns is a Weierstrass gap sequence (with the
extra condition that \sx\ is a simple linear system).
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Question 4. If s 4- 1 is not a multiple of /?, then, does Ψ*ns belong to

the closure of Ψ*n S + 1 Ί If s + 1 is a multiple of /?, then, does ϋr

ns belong

to the closure of ^ 5 + 2 ?

This does not follow immediately from formula (0.2). Let x be a

general point of some irreducible component Z of i^ns (assume that

s 4- 1 is not a multiple of n). Let Z ' be an irreducible component of

Wtus+ι containing Z. Then x e Z ' where the first non-gap of a general

point y of Z ' is n and its first non-gap which is not a multiple of n is

5 4- 1. If \{s + 1)jμ| would be a simple linear system then the answer to

Question 4 would be yes. If |(.s + 1)jμ| is not simple then specialization to

x would give rise to an (e 4- 2)-dimensional linear subsystem of \(s 4- l)x\

which is not simple. If s 4- 1 is a gap of x, then \(s 4- l)x | = \sx\ 4- x and

\sx\ is a simple (e 4- 2)-dimensional linear system, hence we would have a

contradiction. But, if s 4 1 is not a gap of x, then dim(|(s 4- 1)JC|) > e 4- 2

and, although |(.s 4- 1)ΛΓ| is simple, it can contain a linear subsystem which

is not simple. It follows that, if the answer to Question 1 is Ggns, then

Question 4 is answered affirmatively.

Question 5. If s > n 4 1 and if s is not a multiple of n 4- 1, then does

ifr

tus belong to the closure of ^ + u (if s is a multiple of n 4- 1 then we

take H + 1 instead of /?)?

This Question can be answered affirmatively — using the dimension

results of this paper — if (e 4- \){n 4- 1) > s. In general, the author thinks

that this is a more difficult question then Question 4 (an answer to

Question 1 seems not to give an answer to this one).

I thank H. C. Pinkham for the correspondence we had concerning this

subject. In particular he drew by attention to the already mentioned

results of [16].

1. Models on rational surfaces and consequences.
Construction 1. Let g e Z ^ 2 and let n e Z > 2 with n < g. Let g =

a(n - 1) + / with 0 < / < n - 1. Let s e Z>0\nZ>0 with s < an + t.

Let C be a smooth curve of genus g and assume that /? is a point on C

such that both n and s are non-gaps of /?. Moreover, assume that \sp\ is a

simple linear system on C. Let /' be a line in \np\ such that /' has no fixed

points and np e /'. Because \sp\ is simple, we can find pr e C \ { /?} such

that there exists i) e |s/?| such that, if Dr e /' with D' - /?' > 0, then

inf(Z)r 4- (5 — #)/?, Ό) = P' ι/f ^1 a n d D2 are two effective divisors on C

then E = inf(D l 9 Z)2) if and only if Dx - E > 0 and D 2 - E > 0 and for

each q <Ξ C, Dλ - E - q or D2 - E - q is not an effective divisor on C].

Let I = Γ + (s - n)p, a line in |sp|, and let gj = (/, D) , the linear span
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of the line / and the point D in the projective space \sp\. Then gj is a
simple linear system on C which gives rise to a morphism

φ: C - + P 2 .

Let Γ = Φ(C) and q = φ(p). Consider the surjective morphism

φ': C -> Γ.

Because /' 4- (s - n)p c g2, one has, for each line L o n P 2 through #,
that

Hence

and, because /' has no fixed points, one has that

Moreover φ' is birational because g2 is simple, hence Γ is a plane model
of C and q is a singular point on Γ of multiplicity s — n. Because
Φ~ι{q) ={/?}, the tangent cone of Γ at q is a multiple of a line T on P 2 .
Because sp e g2, one has that

We are going to consider a composition of blowing-ups

which is determined by the singularity of Γ at #. Hence, the strict
transform f of Γ on M belongs to some definite linear system P on M.
Therefore, we use the following construction.

Construction 2. Let X be a smooth surface, s0 e X and let A and B
be reduced curves on X such that s0 is a smooth point of both A and 5
and assume that A and 2? intersect transversally at s0. Let Z> be a
reduced curve on X. Assume that D has a cusp in s0 (i.e. the tangent cone
of D at s0 is a multiple of a line) and assume that

(D.A)So = (D.A) = s, (D.B)So = (D.B) = n

with s < n. [If X is a smooth surface and Z>1? Z>2 are two divisors on X
and s ^ X, then D1# D2 is the intersection cycle (D1. D2)s is the order of
Dλ .D2diis and (Dι.D2) = deg(Z>1. D2).] Let n = as + t with 0 < / < s.
Let ly. Xλ -> X be the blowing-up of X at s0. Let Ex be the exceptional
divisor on Xλ such that ^(2^) = {s0}. Let />! (resp. Bv Ax) be the strict
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transforms of D (resp. B, A) on Xx. We know that

- Ex I and

Let {sλ} = Dλ Π Eγ. We know that

Continuing this construction, we obtain a composition of blowing-ups
7a 7a-l 72 r l

Y —L V V V V V
A « Λ α - 1 ~* Λa-2 ~* " ' ~~* A 2 " ^ A l A

such that the following properties hold.

For a > i > 0, let ^ be the point on Xt blowing-up by τ r For

a 4- 1 > / > 0, let £, be the exceptional divisor on Xt such that τ / (£ l ) =

{i5'/_j}. For a 4- 1 > / > 0, let Di be the strict transform of D on Xr For

α > / > 0, one has that Dt Π Ex = {5f-}.

Let 5 α be the strict transform of B on Xa. Let DaCλ Ba= {sa}. One

has that

(Z)β. £ , ) , , = (A,. £ , ) = •*, (Da.Ba)Sa = (Da.Ba) = t.

Hence, if t Φ 0, then s^ is a cusp of Da of multiplicity /.

Construction 3. (This is a continuation of Construction 1.) Define

m G Z> L and {ΛX, . . . , Λw_χ, 5 l5 .. ,^ w , nv..., nm_λ} c Z as follows

51 == 5 — î and nλ — s\ for 0 < / < m, one has that ft, = aisι 4- 5 / + 1 with

0 < si + ι < st; for 1 < / < m, one has «, = s,^; i m G {0,1} and sm_λ <£

{0,1). Let Mo = P 2 . For 1 < / < αx 4- 4-αm_1 = ε, let τrz: My -> M /_ 1

be the blowing-up of M /_1 such that the following properties hold.

Let Eι be the exceptional divisor on M, blowing-down by πi and let

Γ# be the strict transform of Γ on Mf . One has that Ef Π Γ, = [q^ and

(7τι° - - - ° π^iqt) — q. (This is a repetition of m — 1 times Construction

2 )

Let ]it/ = tnι ° ° 77,. One finds that
/ \ ik / 7" \ \ Λ / / \ sfc / T"1 \ /^ ^ \ T~'

^— I i i I 1 V / I / ( ( / / I \ f Γ1 I ' l l ' ^ ί ^ C P I V f '

with, for 1 4- ax 4- + Λ Λ < / < ^ 4- 4-β^ + 1, one has that c, = sk + ι

(here, L is an arbitrary line on P 2 ) .

Case A. Assume that sm = 1 (i.e. n and s are relatively prime).

Let Er be the strict transform of E€_a on Mε. One has that

EFΓ\ E' = TεΠ Ef = {qε} and moreover ( £ ' . Γε) q= {Ef .Tε) = l and
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Consider the composition of blowing-ups

defined as follows.

The morphism πε+ι is the blowing-up of Mε at qε. For ε 4- sm_λ > i

> ε, let q{ be the point on Mi blowing-up by ττz+1. Then

(TΓ O . . . o τ r ε + 1 ) ( ^ ) = {qε}.

For ε 4- sm_λ > i > ε, let Ei be the exceptional divisor on Mt blowing-

down by TΓ, and let (Eε)i be the strict transform of Eε on Mt. Then, for

ε 4- sm_λ > i > ε, one has that Et Π {Eε)t = {^}.

Let f be the strict transform of Γ on M. For 0 <j < sm_v let

γ, = πε+J+ι o o mB+Sm_χ. Then

Γ e | (γ o )*(Γ ε ) - Σ ( ( y y - i ) * ( ^ - i ) : 2 <j < sm_λ) - Eε+Sm_γ .

Case B. Assume that sm = 0 (i.e. « and s are not relatively prime).

Let £ ' be as before and let {qε) = Eε Π Γε. One has that £ ' Π Γε = 0

and ( £ ε . Γ ε )^ = sm_v Assume that qε is a point of multiplicity K on Γε.

C α ^ Bl. Assume that K = ^ . ^ Let πε+1: Mε+1 -> M ε be the

blowing-up of M ε at qε. Let Γ e + 1 be the strict transform of Γε on MB+ι.

Let Eε+ι be the exceptional divisor on Mε+1 blowing-down by πε+ι. One

has that

Let Γ ε + 1 Π Eε+ι = {qε+ι}. One has that

(Γ ε + i Eε+ι)qε+ι = ( Γ ε + 1 . Eε+ι) = sm_v

Case B1A. ^ ε + 1 is a smooth point on Γε

+ 1 .

Let ττ ε + 2: M ε + 2 -> Mε+ι be the blowing-up of Mε+1 at ^ ε + 1 and let

Eε+2 be the exceptional divisor on Mε+2 blowing-down by πε+2. Let Γ ε + 2

(resp. ( ^ e + i ) e + 2 be the strict transform of Γ ε + 1 (resp. Ee+ι) on M ε + 2 .

One has that

Because sm_ι > 1, one has that

Γε+2 n Ee+2 = Γε+2 n ( £ ε + 1 ) e + 2 = {qε+2}.
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Let π ε + 3 : M -> Mε+2 be the blowing-up of Mε+2 at qε+2. Let Eε+3 be

the exceptional divisor on M blowing-down by πε+3 and let f be the

strict transform of Γ ε + 2

 o n M. One has that

Case BIB. qε+1 is not a smooth point on Γe + 1.

Let πε+2: M -» M ε + 1 be the blowing-up of Mε+ι at qε+v Let JEe+2

be the exceptional divisor on M blowing-down by π ε + 2 and let f be the

strict transform of Γ ε + 1 on M. One has that

with p ε Z > 1 (

Case B2. K < 5m_x.

Let .sOT_1 = tea + β with 0 < β < K. Let

be the composition of blowing-ups similar to Construction 2. Let Tt+a be

the strict transform of Γε on Mε+a. For 1 < i < a, let Ee+i be the

exceptional divisor on Mε+i blowing-down by πt+j and for 0 < i < a, let

γ, = τr ε + / + 1 o . . . o 7rε+α. One has that

Γε + β e |(γo)*(Γe) - Σ{*(y,ΠE.+ι) 0 < i < a) - κEe+a .

Case B2A. K = 1.

Then, let M = Me+a and let f = Γε + O.

Case B2B. K > 1 and β = 0.

Let E" be the strict transform of Ee on Λ/e+α. One has that

E" Π Γ e + Λ = 0 and Γ e + α Π £ £ + α = { ί ί + J with

Case B2B1. Assume that qε+0L is a singular point on Ta+ε.
L e t πa+F+ι: M ~* Ma+ε b e t h e blowing-up of M α + ε at # α + ε . Let

^ α + f + i be the exceptional divisor on M blowing-down by firΛ+e+1. Let f
be the strict transform of Γα + ε on M. One has that

with p G Z > 1 .

B2B2. Assume that qa+ε is not a singular point on Γ f t+ε.
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i r α + β + 1 : Ma+e+1 -> Ma+ε be the blowing-up of Ma+ε at qa+ε. Let

Ea+ε+1 be the exceptional divisor on Ma+ε+1 blowing-down by πa+e+ι.

Let (Ea+εY be the strict transform of Ea+ε on Afα+e+1. Let Γ f t + ε + 1 be the

strict transform of Ta+ε on Ma+ε+ι. One has that, because tc > 1,

L e t π α + ε + 2 : ^ "> M*+ε+i b e t h e blowing-up of Ma+ε+1 at qa+e+ι. Let
£ α + e +2 be the exceptional divisor on M blowing-down by tnOί+ε+2. Let f
be the strict transform of Γ α + ε + 1 on M. One has that

Γ G | ( ^ + ε + l ° ^ α + ε + 2 ) * ( Γ α + ε) ~ ( "a + e + lYiE a + e+l) ~ E« + e + l\'

Case B2C. β > 1.

Let E' be the strict transform of Eε on Ma+ε. One has that

^ f Π Γ α + ε = F Π £ α + £ = { ? J and

hence ήrft+ε is a cusp of multiplicity β on Ta+ε. Let π α + ε + 1 : M α + ε + 1 ->

Ma+ε be the blowing-up of Ma+ε at ^ t t + ε . Let Γ Λ + ε + 1 be the strict

transform of Γ α + ε on Ma+ε+v Let Ea+ε+1 be the exceptional divisor on

M blowing-down byπa+e+1. Then

Ta+ε+ιtΞ\(πa+ε+ι)*(Ta+ε) - βEa+ε+ι\.

Case B2C1. K - β < β.

Let ( £ f t + ε ) α + ε + 1 be the strict transform of Ea+ε on Afα+e + 1. Because

K — β > 1, one has that

^ α + ε + 1 = ^ α + ε + 1 ^ ^ « + ε + l = \9a + ε+lJ'

Ma+ε+1 be the blowing-up of Ma+ε+1 at ςfβ+e+1. Let

Ea + ε+2 be the exceptional divisor on M blowing-down by πa+ε+2. Let Γ

be the strict transform of Γ α + ε + 1 on M. One has that

f ^\(^+ε+2nτa+ε+ι) ~(κ - β)Ea+ε+2\.

Case B2C2. β < K - β.

Let (Ea+ε)a+ε+1 be the strict transform of Ea+ε on Ma+ε+ι. Because

K > β, one has that
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Let 77α + f + 2: M -> M α + ε + 1 be the blowing-up of Ma+ε+1 at qa+ε+v Let

Ea+e+2 be the exceptional divisor on M blowing-down by πa+ε+2. Let f

be the strict transform of Γ α + ε + 1 on M. One has that

REMARK 4. In Construction 3, the points qt which are blown-up, are

completely determined by the exceptional divisors and their strict trans-

forms, except in the following cases:

qε in Case B,

qε+ι in Case Bl,

qε+a in Case B2B.

THEOREM 5. Let (n,s) be the greatest common divisor of n and s. If

g>((n- l)(s - 1) + 1 - (n9s))/2, then iΓns = 0 .

Proof. Let C, Mε and Γε be as in Construction 3. We have that

g(C) < pa(Tε) where g(C) (resp. pa(Tε)) is the genus (resp. arithmetic

genus) of C (resp. Γε). Because Γε is an irreducible curve on a rational

surface M, we have that

where KM is some canonical divisor on Mε (adjunction formula). But

hence

\KK + Γe| = |(μ.) ((ί - 3)L) -(Σ(μ.-ι)*{(c, ~ 1 ) ^ ) : 0

and

( ^ + Γβ. Γ.) = s(s - 3) - Eί^ίc, - 1): 0 < / < ε) - s ^ s ^ - 1)

= 5(5 - 3) - Σ ( α Λ ( 5 , - 1): 1 < i < w - 1)

= (s2 - Σ{a,sf: 1 < / < m - l)) - ( 3 J - E(fl,5 ;: 1 < / < ^ - 1))

- 1))

- 1))m
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+ i K - ni+i): I <i < m - 3 ) - nm_ι(nm_2 - sm_λ)

-sm_ι(nm_ι -sj)

= s2 - nλn2 + 5 m _ Λ -(3s - n ι - n 1 + sm_λ 4- j j

= sn- s - π + 1 + ( s w _ 1 s y m ~ ^ m - i - J w - 1).

Let T = 5 m _ x 5 w - sm^ - sm - 1. Hence

( ^ + Γe.Γe) = ( ί - l ) ( / i - l ) + τ.

If j w = 1, then r = -1 - (5, Λ) = -2. If .ym = 0, then τ = -1 - (5, Λ) =

- 1 — sm_v Hence, in both cases, we obtain that

(1.1) {Kκ + Γε, Γ£) = (s- 1)( Λ - 1) - ( 5 , Λ ) - 1.

Hence, pa(Te) = ((s — l)(n — 1) + 1 - (5, «))/2, which completes the

proof of this Theorem.

2. On a formula of Hensel and Landsberg. In [16, S. 547-548], a

certain statement is claimed which could be interpreted as follows.

Statement 6 (incorrect). Let C be a smooth curve of genus g and let p

be a Weierstrass point on C whose first non-gap is equal to n and whose

first non-gap relatively prime to n is n + r. Let G(p) be the gap sequence

of p and let

WG(p) = {x G !%\ the gap sequence of x on fi~ι(fc(x)) is equal to G(p)}.

Let c G f such that fc~ι(/ι(c)) = C and c corresponds to p under this

isomorphism. Let A be an irreducible component of G(p) containing c.

Then

d i m ( ^ ) = g - 3 + 2n + r-h,

where h + 1 = Λ°((/ι + r)p).

A counterexample to this statement can be found in [22, p. 73].

Namely, if g = 4, then W(l23Ί) is equidimensional of dimension 7 while

the above formula gives 8. Moreover, it is proved in [25], Theorem (14.5)

that W(l 2 3 7 ) is not empty.

However, following the arguments used by Hensel and Landsberg, it

seems to me that they tried to obtain the following result.
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Statement 7 (incorrect). Let (ft, r, h) e Z3 and let W; r Λ = {x e #*:
the first non-gap of JC is equal to ft, the first non-gap of x relatively prime
to n is equal to n 4- r and h 4- 1 = /*°((ft 4- 0/0}•

If ^ r Λ # 0 then W^ΓiΛ is equidimensional of dimension g — 3 4-
2« + r - h,

Lax's example mentioned before does not give a counterexample to
this statement. Indeed, W(l23Ί) c W412, but W(1237) is contained in the
closure of W(1236) and it is proved in [22] that W{1236) *s equidimensional
of dimension 8 which is in agreement with Statement 7. Nevertheless, the
arguments used by Hensel and Landsberg are far from rigorous and it
seems to me that they can be modified only to obtain the following
statement.

Statement 8 (correct). Let (ft, r) e Z 2 and let Gnr = {x e X\ n is
the first non-gap of x and n 4- r is the first non-gap of x relatively prime
to n and h°((n + r)x) = h + 2 where ft 4- r = hn + ε with 0 < ε < n}.

If GnrΦ 0 , then Grt r is equidimensional of dimension g — 4 4- 2ft
4- r — h. This statement follows from Theorem 11.

Statement 7 is indeed false, as it can be seen from the following
example.

EXAMPLE 9. Let g = 8 and consider W496. Let x e H^496. If 6 is a
gap of x, then 1,2,3,5,6,7,9,11 are gaps of x and therefore h°(13x) < 6,
a contradiction to /z°(13.x) = 7. Thus, 6 is not a gap of c. Hence, the only
possible gaps of x are 1,2,3,5,7,9,11,15. Because g = 8, we obtain that

^4,9,6 = ^(1,2,3,5,7,9,11,15)-

This is not empty because of [19, Theorem 4.14]. But, from [19, Proposi-
tion 2.9], it follows that fi~ι{/ι{x)) is elliptic-hyperelliptic (i.e. a double
covering of an elliptic curve). Hence/*(W496) is contained in the so-called
elliptic-hyperelliptic locus. Hence, because of [20, Satz I],

But dim(/i(W496)) = dim(W496) [a curve has only a finite number of
Weierstrass points] and Statement 7 would imply that

dim(W496) = 8 - 3 + 8 + 9 - 6 = 16,

hence a contradiction.
The following lemma is very important for the sequel of this paper.

LEMMA 10. Let g e Z > 2 and let « e Z > 2 with n < g. Let g =

a(n - 1) 4- / with 0 < t < n - 1. Let s e Z>n\nZ>0 with s < an + t.
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Let s = en 4- d with 0 < d < n. Assume there exists x £ 3C with

h°(nx) = 2 and h°(sx) = e + 1 + ε

wΛere £ G Z M . Le/ Z fee 0w irreducible component of

[z^3C\ h°(nz) > 2 andh°(sx) > e + 2}

containing x, then

(2.1) d i m ( Z ) >n + s + g-4-e.

Proof. Consider the family of smooth curves of genus g

This family has a natural section s such that for z e X the point s(z) on
fe~ι(z) corresponds to z on ̂ - 1 (^(z)) . Because h°(nx) = 2, one has that

In particular, x is a smooth point on W^ and

(2.2) &mx{Wϊ) = 2g + n-?,.

This is proved in [21] for the universal family of Teichmuller surfaces. But
this family is etale over our family^ (see [13]), hence it is also valid in our
situation. Let U = Spec(yl) be a smooth affine neighbourhood of x on
Wfj. We write ψ for the restriction of ft to ft~ι(U) and we write Y instead
of fc~x{ϋ). We also write s for the restriction of s to U. Hence we obtain a
family of smooth curves of genus g

ψ\ y-> U

where U is smooth of dimension 2g -f n - 3 and φ has a section s such
that, for each z e l / , one has

(2.3) *°M*)) = 2

It is enough to prove that

(2.4) d i m ( Z ΠU)>n + s + g-4-e.

L e t

D:=s(U)9

a divisor on Y. Because of (2.3) we have that, for each z e J7

(2.5) A

[here (0K(nZ)))(z):= Θγ{nD) ®Θγ Θ^{Z)]. Because of Grauert's Theorem
(see [15], Chapter III, Corollary^(12.9)), p#(Θγ(nD)) is a locally free
C,y-Module of rank 2 and, because of the Base Change Theorem (see [15],
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Chapter III, Theorem (12.11)), we have that

(2.6) (r*{Or{nD)))(z) s H«{f-\z),(Θγ{nD)){z))

for each z e U [i.e. there exists a natural morphism

{fm(Θγ(nD)))(z) - H°{?-\z),(ΘY(nD))(z))

and this is an isomorphism; here (p+(0γ(nD)))(z) means γ*(Θγ(nD))

®Θ C(z)]. Let T be a global section of Θγ(dD) corresponding to the

divisor dD. Then r is also a global section of

Let

M=Θγ(sD) and F

Let

1 = A ° ( M ( J C ) ) = ̂  + l + ε and i = hι(M(x)) = g + e + ε-s.

By shrinking Y if necessary, we can find two free A -modules K° and Kι

of rank resp. 1 and / and an v4-module-homomorphism a: K° -> K1 such

that, for each morphism φ: V -» U between affine sets we have that

H°{Y X υ V, Mv) s ker(α ®A Γ(F, 0V)).

This follows from [24, Chapter V]. Hence the ^4-module-homomorphism a

gives rise to a morphism a: K° -^ K1 between free ΰ^Modules such that

U Π Z is an irreducible component of ( z G {/: Λε(ά(z)) = 0} [for K°

and ΛΓ1 see [15, p. 110], by ά(z) we mean a <8>̂  C(z)]. Hence, a lower

bound for the dimension of Z can be obtained from this description. But,

for each z e ί7 Π Z, one already has that Λ ε + I (ά(z)) = 0. Hence, the

bound will not be as sharp as possible.

Consider

which maps a local section xλ Θ (8>xe to JCX xe τ. This gives rise

to

Let K0/ = coker(γ(ί/)). Because m(γ(ί7)) c ker(α), this induces

One can prove that K0' is locally free of rank ε and that for each z e I/,

one has that

(2.6) * ° ( Λ φ ) ) - ( ^ + 1) = dim(ker(ά'(z))).
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The proof of those claims is exactly the same as the proof of Proposition

5.7 (namely the continuation) in [9]. Hence U Π Z is an irreducible

component of (z e U: Aε(a\z)) = 0}. Because U is smooth and because

s < g + e, we can apply Corollary ll(i) of [18] to obtain that

(2.7) c o d i m u ( Z ) < e + ε + g - s - ε + l = e + g + l — s .

Hence

d i m ( Z ) >2g + n - 3 - e - g - l + s = g + n + s — 4 - e

which gives us (2.4), which was to be proved.

We are now able to prove the main result of this paper.

THEOREM 11. Let Z be an irreducible component of W}US (see the

Introduction). Let 2 + e + ε = min{ h°(sz): z e Z} . Assume that there

exists x e Z such that

h°(sx) = 2 4- e 4- ε and \sx\ is simple.

Then ε = 0 tf^J

dim(Z) = g + n + s - 4 - e .

Proof. It is not difficult to prove that the existence of x implies the

existence of a non-empty Zariski-open subset U of Z such that, for / e [/,

one has

/?°(si) = 2 + β + ε and \st\ is simple

(the proof is similar to the proof of Lemma (3.3) in [7]).

Each t e U gives rise to models Γ, on a rational surface M as

described in Construction 3. In order to obtain those models, one has to

use some particular linear system gj (see Construction 1). For each

/ e ί/, one has an (e + ε - l)-dimensional family of such linear systems.

Because of Lemma 10, we have that

(2.8) d i m ( [ / ) = g + n + s - e - 4 + η

with η > 0. Hence we obtain a ( g - f π + s - 5 - h ε + ^-dimensional

family of such linear systems gj. This gives rise to a family of curves on a

rational surface as obtained in Construction 3, whose dimension depends

on the case obtained by a general such linear system. The result is

summarized in Table 1.
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a general gj gives rise to

case A

case B1A

case BIB
case B2A
case B2B1
case B2B2
case B2C1
case B2C2

TABLE 1

a lower bound for the dimension
of the family of curves is

g+n+s+ε+η
g + n + s + ε + η — 2
g+n+s+ε+η-2

g+n+s+ε+η-l
g+n+s+ε+η-2

g+n+s+ε+η— 2
g+n+s+ε+η-l
g+n+s+ε+η—1

In it, we have to take care of the following considerations. Linear
systems gj, as obtained in Construction 1, give rise to 5-dimensional
families of plane curves Γ obtained in Construction 1 (choice of the base
of the linear subspace of H°(p~1(t), Θp-ι{ΐ)(st)) corresponding to gj). We
also have to pay attention to Remark 4. In each case, one obtains a family
of curves Γ on M of dimension d > g + 1. Because g > 2, it follows that

(2.9) d=(T.-KM)+g-l.

This is proved in [8, Corollary 4]. The proof can be sketched as follows.
Let Γ be a general element of the obtained family of curves of geometric
genus g on M. Let <//: C -> Γ be the normalization of Γ. This induces a
morphism φ: C -> M such that φ(C) e P. This morphism gives rise to an
injective morphism of sheaves

dφ: Γ c->φ*(ΓM)

(between tangent sheaves). Let Nφ be the Cokernel sheaf of dφ. It follows
from deformation theory of holomorphic maps (see [17]) that

d<dim(H0{C,Nφ)).

Let Z be the ramification divisor of φ and let iVφ' be the Cokernel sheaf
of the injective morphism

(dφ)': TC(Z) - φ*(TM).

From [3], Corollario (6.11), it follows that

d<dim(H°(C,N;)).

Hence, dim(//°(C, iVφ')) > g, but Nj is invertible, therefore h\N^) = 0.
Hence ^(Nφ) = 0 which means that infinitesimal deformations of <j> are
unobstructed (see [17] again). Because of this fact Nφ = N^ and

(2.10) h°{Nφ) = d.
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Because Nφ is invertible we have that

Hence, because of the Theorem of Riemann-Roch, we have

(2.11) h ° ( N φ ) = (-KM.Γ) + g - l .

From (2.9) and (2.10), (2.8) follows.
In the proof of Theorem 5 we computed KM. It follows that

{-KM.Te) = 3s - Σ(cΓ 0 < / < ε) - sm_x

= 3s - Σ(aisi' 1- < i <m- ί)

= 3s - nx - n2 + sm_x + sm = s + n + sm_1 + sm.

Let us look at each specific case of Construction 3.

Case A. KM e \Ί${KM) + IHyfiE,^): 2<j< s^) + Eε+Sm J.
Hence, (-KM.T) = (-KMι.Tt) - s ^ = s + n + 1.

Case Bl. Kκ+ι e |(^+1)*(^Λ/e) + ^. + i l

Hence, ( - ^ ^ . f) = {-Kκ .Tε)-sm_1 = s + n.

Case B1A. KM e |(ττe+2 ° ^ H ^ J + (τr ε + 3 )*(£ e + 2 ) + £ ε + 3 | .
Hence, (-KM.ΐ) = (-ΛΓM<+1. Γe + 1) - 1 - 1 = s + n - 2.

Case BIB. Km e K ^ + 2 ) * ( ^ . + 1 ) - ^ + 2 I
Hence, (-KM. f ) = ( - ^ M + 1 Γ8 + 1) - p = 5 + « - p with p > 1. Hence,
( Γ ) 2

B2. KMe+a e | τ o * ( ^ w ) + Σ((τ,.)*(£ε+;.): 0 < / < α) + J? ί + β | .

Hence, (-^ W t + a Γε + α) = (-KMt.Tε) - ica = s + n + s ^ - κ«.

Case B2A. {-KM. Γ) = ( - ^ + . . Γε + α) = s + n.

CaseB2B.(-KMι+a.Te+a) = s + n.

Case B2B1. KM e K». + β + i )*(^ H + . ) + £«+«+il
Hence, (-KM. f ) = ( - # w + . Γ ε + J -ρ = s + n-p with p > 2. Hence,
(-KM.T)<s + n-2.

Case B2B2.

Hence, (-A:w. f ) = (-Kκ+a.Tt+a) - 2 = s + n - 2.

Cose B2C. i:M e + α + i e Kτ. + β + 1 ) ( ^ . + . ) + Ee+a+ι\.
Hence, ( - ^ κ + α + 1 . Γ ε + α + 1 ) = (-Kκ+a. Tε+a) - β = s + n.
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Case B2C1. KM e + Eε+a+2\.

Hence, (-KM.T) = (-KM+aJ - (/c - β) = s + n - (/c - β) with K - β

> 1. Hence, (~KM. f ) < s + « - 1.

Owe B2C2. * „ e (*t+a+2)*(KMt+aJ + Ee+a+2\.

Hence, ( - * „ . Γ) = (-KM+ ^ . Γ ε + α + 1 ) - β = j + n - β with β > 1.

Hence, (-A"w. f ) < 5 + « - 1.

TABLE 2

a general gj gives rise to

case A
case B1A
case BIB
case B2A
case B2B1
case B2B2

case B2C1
case B2C2

upper bound for d

s +
s +
s +
s +

s Λ-

s +

s +
5 +

w + g
n + g - 3
H + g - 3

H + g - 1

« + g - 3
« + g - 3
« + g - 2

« + g - 2

Hence, using (2.8), we obtain an upper bound for d as indicated by

Table 2. Comparing Tables 1 and 2, we obtain that only case A (if

{n,s) = 1) and case B2A (if (n,s) Φ 1) are possible for a general g].

Moreover, in those cases, it is also necessary that ε = η = 0. Using (2.8),

this proves the theorem.

REMARK 12. Cases A and B2A are also the only cases in which the
genus bound of Theorem 5 is attained.

COROLLARY 13. Statement 8 follows immediately from Theorem 11.

To conclude this section, we give an example to show that the

asssumption "|.SJC| is simple" is necessary for Theorem 11 to be true.

EXAMPLE 14. Let g = 14 and let Jίf c Jί be the subset of the points

on Jί corresponding to curves C which are coverings /: C -> E of degree

3 with a total ramification point p of some elliptic curve. It is clear that

both 6 and 9 are non-gaps of p. Because 9 is a non-gap of p one has that

2 is a gap of p (g > 7). If 4 would be a non-gap of /?, then each integer

m > 12 would be a non-gap of p, which is impossible and if 5 would be a

non-gap of /?, then each integer m > 14 would be a non-gap of p. We

prove that 3 is a gap of p. Assume that 3 is a non-gap of /?, hence

dim(|3/?|) = 1. Let s: C -> P 1 be some associated trigonal covering of C.

Because of Clifford's Theorem (see e.g. [15], Chapter IV, Theorem (5.4)),
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one has that dim(|6/?|) = 2, hence each divisor D of \6p\ equals Dx 4- D2

for some Dv D2 G |3/?|. Let f(p) = p' and let φ: E -> P 1 be a double

covering such that // is a ramification point of φ. Then g = φ° f:

C -> P 1 is a covering of degree 6 such that p is a total ramification point

of g. Hence g corresponds to some linear system g\ c \6p\, hence there

exists a morphism ψ: P 1 -> P 1 of degree 2 such that Φ ° / = ψ ° s.

c Λ p1

/I iΨ
£ -» p 1

Φ

It is not difficult to see that, if a is a general point on P 1 then f(s~ι(a))

contains 2 points. But then the diagram induces a morphism λ': C -»

P 1 X pi £ (fibred product of ψ and φ as defined in [15], p. 87) which is

dominant, hence surjective. Hence P 1 X pi E is irreducible. Let C" be the

normalization of P 1 XPi E. This gives rise to coverings λ: C -> C" and T:

C —> P 1 such that τ has degree 4 and τ ° λ = ψ o j- has degree 6, which is

impossible.

This proves that p G W^9 c JF. On the other hand, dim(c/#') = 25,

hence W69 contains some irreducible component Z with dim(Z) > 25,

which is greater than 24. Nevertheless, 14 satisfies the genus bound of

Theorem 11.

[One can also prove that 9 is the second non-gap for a general point p

of Z. Indeed, if 7 would be a non-gap of p then p G # ^ 7—because

(6,7) = 1—but dim(#"6 7) = 22 < 25. If 8 would be a non-gap of p then

—because (8,9) = 1 — \9p\ would be simple and we obtain a contradic-

tion to Theorem 11. Finally, it is easy to see that p comes from a covering

of an elliptic curve as considered above using the morphism χ: /~ 1 (/( j p))

-> P 2 associated to \9p\. Hence dim(Z) = 25.]

3. i^ns is not empty (whenever possible). If x G Ψ*n s and if C =

fi~ι{fc{x)) and if p is the point on C corresponding to x. From Construc-

tion 1, we obtain a plane model Γ of C with a singular point q

corresponding to p. In Construction 3, we obtain a birational morphism

v: M -> P 2 such that Γ, the strict transform of Γ, belongs to some

definite linear system P on M. It is noted in Remark 12 that

exactly in the Cases A and B2A. Let <f= v~ι{q). We also have that

(<f .Γ) = 1 in the cases A and B2A [we consider v~ι(q) as a reduced

divisor on M]. Hence in those cases SΉT consists of exactly one point

— say q — which is a smooth point on f.
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From now on, starting with a point ^ on P 2 and a line Γ o n P 2

through q, let M be the surface mentioned above and let P be the linear

system on M mentioned above (which can be defined using the curves L

and Et mentioned in Construction 3), i.e. we consider Construction 3

without having the curve Γ, which is possible because the points at which

we are blowing-up can be defined without Γ in Cases A and B2A. We are

going to prove that P indeed contains curves Γ as mentioned above

coming from a point x on H^ns. As a first step, we prove the following

theorem.

THEOREM 15. For each 0 < g < ((s - l)(n - 1) + 1 - (Λ, S))/2,

there exists an irreducible element Γ of P such that Γ has geometric genus g.

(The main line of the following proof is also suggested to me by H. C.

Pinkham.)

LEMMA 16. // is enough to prove that there exists an irreducible element

Γo of P of geometric genus 0 which has ordinary nodes as its only

singularities.

Proof. Because pa(T0)
 = ((s - l)(n — 1) + 1 — (n,s))/2, the curve

Γo has precisely 8 = ((s - l)(n - 1) 4- 1 - (n, s))/2 ordinary

nodes — say sv ..., s8. Let δ = δ - g. Because (K^. Γo) < 0, it follows

from [28 ((2.3)V)] that P contains smooth irreducible elements, hence we

can apply [28, Theorem (2.13)]. It follows from that theorem that, for any

choice of δ nodes of Γ o— say sv ..., s$— there exist a smooth curve T

and a family of effective divisors η c M X T over T such that there exist

t0 e T and sections Sl9..., S$ of η over T such that

V^ = Γo and S^to) = sl9..., S-8(t0) = s-δ,

if / G T\ {t0} then ηt is an irreducible element of P; Sλ(t),..., Sg(/) are

ordinary nodes of η(; if x G r\t\ {Sλ( t),..., S$(t)} then x is a smooth

point of ητ.

In particular, if t e Γ \ {t0), then η r is an irreducible element of P of

geometric genus g.

Now, we are going to prove that P contains rational curves. Then, we

prove that the general one has ordinary nodes as its only singularities.

In Construction 1 we obtained particular linear systems g^. Namely,

there exists a point p and a fixed-point-free linear system gι

d—say

γ — with np e γ such that (n - s)p + γ c gj and gj is simple. We call

them suited linear systems.
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We first investigate "how many" such suited linear systems g2 exist
on P1. Let ^r

d be the space parametrizing the linear systems gr

d on P 1 and
let Sfa <^2 be the locus of the suited linear systems.

LEMMA 17. SP is irreducible and has dimension s + n — 2.

Proof. One has that SP<z &>' with

&" = {sf G &?- Λere exist G P 1 and γ G &* such that np G g;

g has no fixed points and g + ( 5 - « ) / ? c g 5

2 } .

Below we prove that $f' is irreducible and has dimension s -f n — 2. Now

^ ^ ' n { g 5

2 e ^ 2 ; g 2 is simple}.

Because {g2 G 9?/: g2 is simple} is a non-empty Zariski-open subset of
S?/, we find that 5^ is irreducible and has dimension s + n — 2iί Sfφ 0 .

We construct an element of Sf as follows. Let p G P 1 and 2) e (P 1) ( ί / )

with /? « Supp(/)). Let D' e (P 1 ) ( s ) with deg(inf(A-DO) = 1 and ^ ί
SuppίDO- Let γ = (D, np) G SζJ and g,2 = (γ + (s - n)p9 Df). Clearly,
g2 e ^ / a n c j ^2 j s sixnpie because deg(inf(D -f(5-«)/? ?i) /)) = l ? while
both D + (s — n)p and D r belong to g2.

We now prove the irreducibility and compute the dimension of Sf'.
Let / c <$l x P 1 be defined by

(γ, p) G / if and only if np G γ.

Consider the projection morphism τrx: / -» P1. Clearly, for p G P1,
( ^ I ) H/7) i s irreducible of dimension n — 1, hence / is irreducible of
dimension n. Let (S^1)' = {γ G ̂ : γ has no fixed points}. This is a
Zariski-open subset of ^ and Γ = I Π ((&*)' X P1) is a non-empty
Zariski-open subset of /. Let / c ^ 2 x /' be defined by

(A,(γ,/?)) G / if and only if y +(s — n)p c Λ.

Consider the projection morphism ττ2: / -> /'. Clearly, for (γ, p) G /',
(ττ2)"1((γ,/?)) is irreducible of dimension s - 2 [namely, if (y,p) G /',
then

D -* «Ύ +(s ~ n)p,D)9(γ,p))

is surjective with 2-dimensional fibres—the fibre over (h,(y9p)) being
h\(y + (n - s)p)], hence / is irreducible of dimension s -f n - 2.
Consider the projection morphism π3: J -> ^ 2 . Clearly ττ3(/) = 5^' and it
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is easy to see that 7Γ3 is generically injective. Hence if' is irreducible and

has dimension s + n — 2.

COROLLARY 18. // (n, s) = 1, then P contains rational elements.

Proof. Indeed, there exist suited linear systems gj on P 1 and Case A

only occurs.

If («, s) Φ 1, then we are going to prove that we obtain Case B2A in

Construction 3 if g is a general element of if. This is done to prove the

following Lemma.

LEMMA 19. // (n, s) Φ 1, then P contains rational elements.

Proof. Let gj be a general element of if. This gives rise to a

5-dimensional family of generically injective morphisms φ: P 1 -> M with

φ(Pι) G P as obtained in Construction 3 for some B-Case. Each ψ e

Aut(P2) gives rise to such a morphism ψ*(φ) = φ ° ψ which is associated

to ψ*(gs

2) <Ξ if. Moreover, din^Au^P1)) = 3. Combining those consider-

ations with Lemma 17, gives rise to Table 3. This table gives the lower

bound for the dimension of some irreducible subset of P consisting of

irreducible rational elements, under the assumption that a general gj

gives rise to the B-Case under consideration (and, of course do not forget

Remark 4). Comparing this with Table 2, we see that a general gj ^ if

gives rise to Case B2A.

We already obtained that P contains an irreducible subset P(0)

consisting of irreducible rational elements with

dim(P(0)) = 5 + n if (n,s) = 1

d i m ( P ( 0 ) ) = s + n - 1 if(n,s)Φl.

We are going to prove that, if Γo is a general element of P(0), then Γo has

ordinary nodes as its only singularities. If this is proved, then Theorem 15

holds because of Lemma 16.

Case

B1A
BIB
B2A
B2B1
B2B2
B2C1

B2C2

TABLE 3

Lower bound

s + n - 2
s + n - 2
s + n - 1
s + n - 2
s + n - 2
s + n - 1
s + n - 1
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PROPOSITION 20. // Γo is a general element of P(0), then Γo has

ordinary nodes as its only singularities.

Proof. As noted at the beginning of this section,

(3.1) S i n g ( Γ 0 ) c M \ < ? .

But V\M\/ M\£-+ ¥2\{q) is an isomorphism (blowing-up). Let φ:

P 1 -» M be a generically injective moφhism such that φ(P x) = Γo is a

general element of P(0). It is shown in the proof of Theorem 11 that Γo

has no cusps. Hence Nφ9 the Cokernel of the injection Γpi -> φ*(7^) is an

invertible sheaf on P 1 with

deg(iVψ) = s + n + 1 if ( n , j ) = 1

( ) = s + n if(n,s)Φl.

Moreover, H°(P1, Nφ) corresponds in a natural way to the space of the

first order deformations of φ (modulo Aut(Px)) (see [17]) and because

H\P\ Nφ) = 0, there is no obstruction.

If x is a singular point of Γo, then x e M\#= P2\{q}. Assume

that the multiplicity of JC is equal to m > 3. Then m < s — n and there

exist ql9..., qm e P 1 with

Because H\P\ Nφ{-qλ - -qm)) = 0, there exists σ e JΪ°(P 1, Nφ)

with σ(^x) ^ 0 and o(q2) = = σ(^ w ) = 0. Then σ gives rise to a

global deformation of Γo in P(0) which splits the singular point x of Γo

into singular points of lower multiplicity — a contradiction to the assump-

tion that Γo is general. Let ql9 q2 e P 1 with φ{qλ) = Φ(q2)
 = *• Because

Hl(P\ Nφ(~<lι ~ q2)) = °> t h e r e e x i s t s σ G # ° ( P \ Nφ) with σ ( 9 l ) ^ 0
and σ(q2) = 0. If the two branches of Γo at x have a contact of order
b > 2, then σ gives rise to a global deformation of Γo which splits x into
double points where the two branches have a contact of order lower than
b — again a contradiction to the assumption that Γo is general. Hence, the
only singularities of Γo are ordinary nodes. (For more details concerning
those arguments, see [2], p. 97 and 98.)

One can also prove Proposition 20 using [3, Corollario (6.11)] in a

way similar to the proof of (2.b) and (2.c) in [6].

COROLLARY 21. For each 0 < g < ((s - \){n — 1) + 1 — (Λ, S))/29

there exists a curve C of genus g such that C contains a point p such that both

n and s are non-gaps of p and \sp\ is simple.
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Proof. Let Γ be an irreducible element of P of geometric genus g.
Consider the linear system <£? of the lines on P 2 through q. Let C be the
normalization of Γ. Then v*(J£) is a one-dimensional linear system on
M. It is not difficult to see that v*(J?). Γ gives rise to a linear system g]
on C—being a subsystem of g2, the linear system corresponding
to v(T) c P 2 — such that there exists p e C with sp e gj and (Z> -
(s — n)p: D E: g]} has no fixed points.

Now, we are going to prove that, for ((s — l)(n — 1) + 1 — (n, s)) >
g > a\n - 1) 4- br with s = a'n 4- b (0 < bf < n), there exists a couple
(C, /?) as in Corollary 21 such that « is the first non-gap of p and s is the
first non-gap of p which is not a multiple of w.

Let Γ be an irreducible element of P of geometric genus g and with
ordinary nodes Pι9.-.,Ps as its only singularities. Let v'\ Mr -> M be the
blowing-up of M at the points Pι,.. ,pδ and let Fv...9 Fδ be the
exceptional divisors on M' such that /(i*)) = {/?,} for each 1 < / < δ.
Let Γr be the strict transform of Γ on M\ hence

Then Γ' is a smooth curve of genus g on M''. Consider the exact sequence

(3.2) 0 -> ω& - ω^ β ^ (P^(Γθ -^ (ω^ β ^ ^ ( Γ ' ) ) ® ^ « r ^ 0.

Because Mf is a rational surface, we obtain that this induces an isomor-
phism

(3.3) /f°(M',«* 9βfr GΛ.{T')) - H°(M,{ωfy, ®^, ^,(Γ')) ®

and because of the Adjunction Formula, we obtain an isomorphism

(3.4) H°{M',ωΛ, β ^ Φ

This gives rise to an isomorphism

(3.5) \Ka. + Γ\-*\

But

(3.6) \KΛ.\-\{p') (Ka

hence

(3.7) \K* + Γ'| = | ( , ' ) * ( ^ ' + Γ) -

Therefore

(3.8) v(\Kfi, + Γ\)

= {D <Ξ\Ka + Γ | : />, e Supρ(Z)) f o r e a c h l < i < δ ) .
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It follows that the projective space associated to

> Cδ: s -* {s(p1)9...fs(pa))

is isomoφhic to \Kf\. Let pr e Γ" such that (p°vr)(pr) = #. Because n

and 5 are both non-gaps of p\ one has that

h°(sp') > a' + 2

and h°(sp') = a' + 2 if and only if π is the first non-gap of />' and s is

the first non-gap of pf which is not a multiple of «. Hence, in order to

obtain our aim, it is enough to prove that there exists such a curve Γ' with

h°(sp') = af + 2. Because of the Theorem of Riemann-Roch, this is

equivalent to

(3.9) h\sp') = af + 1 4- g - s.

On the other hand, because h°(sp') > a' + 2, we already know that

hι(sp') > af + 1 4- g - s. Hence, because g > α r(π - 1) + V = 5 - a\

we have that hι{sp') > 1. Hence, using Serre-Duality, we obtain that

h°(Kτ, — spf) > 1. This proves that there exists some effective canonical

divisor on P containing sp' and in order to prove our aim, it is enough to

prove that there exists such a curve Γ' such that the family of effective

canonical divisors on Γ' containing spf has dimension exactly a' + g — s.

Now, let R be a line on P 2 such that R Π v(T) contains exactly s points

— say #i, . . . , # s . Because {vf°v)~ι(qι) + ••• +{ve °v)~ι(qs) is linearly

equivalent to sp' on Γ" we havevto prove that for some Γ the dimension of

the elements of \K^ 4- Γ| containing ρv..., pδ9 v~ι(qx),..., P " " 1 ^ ) has

dimension exactly a' + g — s. Let D be such an element of \K^ + Γ|. It

follows from Construction 3 that, as a reduced curve on P 2 , v(D) has

degree at most s - 3. But this curve has s points in common with the line

R hence R c *>(/)). Hence

D-v*(R)e\Kfi+T-v*(R)\

or D — v*(R) is an element of

- 4)L - Σ((f».-,) (c/ - 1)^,: 1 * / < e - 1)

containing pv...,ps. Thus, we have to prove that the linear subsystem of

\Kfy + Γ — v*(R)\ of elements containing px,...,ps has dimension ex-

actly α' + g — 5 for some curve Γ as under considering.

We will use (and we are going to prove below) the following formula:

(3.10) d i m ( | Λ Γ Λ + Γ - * * ( Λ ) | )

= ( ( ( Λ - \){s - 1) + 1 -(n,s))/2) + a'-s
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(notice that this formula gives our aim for

THEOREM 22. Let

a'{n - 1) + V < g < ((/i - l)(s - 1) + 1 - ( / I , J ) ) / 2 .

There exists a smooth curve C of genus g possessing a point p such that n is

the first non-gap of p\ s is the first non-gap of p which is not a multiple of n

and \sp\ is simple.

Proof. Because of the preceding arguments it is enough to prove that

there exists an irreducible element Γ of P such that Γ has

8 = (((n - l)(s - I) + I ~(n,s))/2) - g

ordinary nodes — say Pι,...9Ps—and no other singularities, such that

S(pl9...9pδ), the linear subspace of \K^ + Γ - v*(L)\ of elements con-

taining /? ! , . . . , pδ, has dimension af 4- g — s.

Because of Lemma 19 and Proposition 20, P has an irreducible

element Γo of geometric genus 0 having ((n — l)(s — 1) 4- 1 - (n9s))/2

ordinary nodes (and no other singularities). We prove that we can find

px(0),..., pδ(0) - 8 different nodes of Γ o — such that Sip^O),..., pδ(0))

has codimension δ in \K^ + Γ - v*(L)\. This is clearly true for δ = 0.

Assume that it is already proved for some 0 < δ' < δ — hence there exist

/?j(0),..., pδ(0) such that ^(/^(O),. . . , pδ>(0)) has codimension δ' in \K^

+ Γ — p*(L)\. For each node p of Γo different from /^(O),..., pδ,(0) we

have that

and

codim{S(Pι{0),...,pδ,(0),p)) < δ' + 1

if and only if

i.e. each element of \K^ 4- Γ - v*(L)\ containing pλ(0),...,pδ,(0) also

contains p (it concerns linear spaces!). Assume that for each such p we

have that

Then, each element of \K^ + Γ - v*{L)\ containing Pι(0),..., pδ>(0) also

contains the other nodes of Γ, hence

S(pι(Q),...,p8,(Q)) = S({p: p is a node of Γo}).
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But — from the reasonings done above — it follows that

S({p: p is a node of Γo}) s |K P ι — sx|

with x G P 1 . But IKpι — sx\ = 0 hence it would follow that S({ p: p is a

node of Γo}) = 0 . Because "containing a point" is a linear condition for

H°(M, OM(KM + Γ - *>*(L))) one has that this would imply that

codim( £({/>: /? is a node of Γo})) = δ' > dim( |A^ + Γ - v*(L)\).

From (3.10), it would follow that

β' > (((* - 1 ) ( J - 1) + 1 ~(n,s))/2) +a'-s9

hence

-g > a' - ^ or g < s - a' = a'(n - 1) + 6',

which is a contradiction to the assumption that g > a\n — 1) + b'.

Hence there exists a node /v+i(0)'of Γo such that

and in particular there exist nodes px(0),..., pδ(0) of Γo such that

codim(5( j p 1 (0) , . . . , Λ (0))) = β.

From [28] it follows that we can find a smooth curve T and a family

η c M X Γ of effective divisors on M over T with sections 5 l 9 . . . , Ss of η

over Γ such that there exists t0 G Γ such that TJ/Q = Γo and S f(/0) = ̂ ,-(0);

if / e Γ \ {ί 0}, then TJ, is an irreducible element of P; S^t),..., Sδ(t) are

ordinary nodes of ηt; ηt has no other singularities (see also the proof of

Lemma 16). In particular, for ί e Γ\{/ 0 }, ηt has geometric genus g.

Consider

with

(D9t)eS(Sl9...9S9) iί *nd oiύy \t D e S ( S ι ( t ) 9 . . . 9 S 8 ( t ) ) .

This is a Zariski-closed subset of \K^ 4- Γ - v*(L)\ X Γ. Each fibre of

the projection morphism

π:S(Sl9...9Sδ)-*T

is irreducible (as a linear space).

Because dim(7τ""1(ί0)) = g -f a' — s, there exists a non-empty

Zariski-open subset U of Γ such that, for each ί G { / , one has that

Because one also has that ooάajθί{S{Sι{t\...,S8{t))) < δ, it follows that,

for t G ί/ we have that

^ ( ί ) ) = g + α' - J .
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Hence, if t & U\{t0} and C is the normalization of ηn then C is a curve

with the desired properties.

REMARK 23. A well-known formula for an effective divisor D o n a

rational surface M is the following one:

tim{\D\)~pa(D)-(KM.D)-l.

This formula holds if Supp(Z>) is connected and D = Yλ + + Yr with

Yι irreducible; Yi Φ Y. for i Φj and (Yt KM) < 0. (For r = 1 this is

proved in Lemma (2.2) of [28], the reduction to this case is easy — see [5,

Lemma (0.1)].) From this formula, (3.10) follows immediately. Piteously I

am not able to prove that \K^ + Γ - P*(L)\ contains a suited element.

Therefore, I have to do some nasty work in order to prove (3.10).

PROPOSITION 24. Formula (3.10) holds.

Proof. At first, consider the^case s = a'n + 1 and g = ((n - \)a'n)/2.

Let C be a smooth element of P (we use " to denote the case (n, s) instead

of (n,s) in Construction 3). Let {p} = # Π C. Then both n and s are

non-gaps of p. Because each integer an + β(a'n + 1) with α, J 8 G Z > 0

are non-gaps of /?, and because p has exactly g gaps, this gives each

non-gap of p. It follows that

(3.11) h°((n-l)p) = l; h°(np) = 2; h°(a'np) = a'+ 1;

h°(sp) = a' + 2; Λ°(((α' + l)/i - 1)/?) = tf' + 2;

Λ°((α' + l)/ip) = a' + 3.

Let ^ : 3C -* Jί be for the case g as ̂  is defined in the introduction for

the case g. Let x e if such that C ̂ ^ " ^ ^ ( j c ) ) and /? corresponds to x

under this isomorphism. For 1 < b < n — 1 let Z^ be an irreducible

component containing x of

{x e ^ : Λ0(«x) > 2 and A°((fl'/i + 6)JC) > Λ' + 2}.

Let xh be a general point of Zb. Using the Semi-Continuity Theorem (see

[15], Chapter III, Theorem (12.8)) one can prove that (using (3.11))

(3.12) h°{(n-l)xh) = l; h°(nxh) = 2;

h°(a'nxh) = α' + 1; A°((α/Λ + 6)3cJ = αr + 2.

LEMMA 25. |(^'« + b)xh\ is simple.

From this lemma, it follows that

COROLLARY 26. a'n Λ- b is the first non-gap of xh which is not a

multiple of n.
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Proof (of Corollary 26). Because of (3.12), it follows from Lemma 10
that

(3.13) dim(Zj > g + n + a'n + b - 4 - a'.

Assume that a'n + Ί> is the first non-gap of xh which is not a multiple of
n (for some Ί> < b) [this non-gap is at least a'n + 1 because h°(a'nxh) =
a' 4- 1]. Because of Lemma 25, we can use Theorem 11 which gives us that

(3.14) dim(Z^) < g + n + a'n + b - 4 - a'.

Combining (3.13) and (3.14), we obtain that b = ϊ , which proves the
corollary.

Proof (of Lemma 25). Assume that the lemma is not true. Then the
following situation can be obtained because Zh Φ Zx for b Φ 1 (use
Lemma 10 for Zh and Theorem 11 for Zλ). Let R be a discrete valuation
ring, let m be the closed point of Spec(i?) and let o be the generic point
of Spec(iϊ). Let &\ <β -> Sρec(i?) be a smooth family of curves of genus g
and let & be a section of ̂  such that

# m = C and <¥?(rn)=p.

Let C be a smooth curve defined over k(o) [the quotient field of R] and
let ^ be a point on C defined over k(o). Let F: ^0 -* C be a morphism
of degree / defined over fc(o) with F~ι(q) = <5 (̂o); / divides a'n + ϊ (for
some b < b) and h°(((a'n + b)/t)q)j=jϊ + 2 [here h°(((a'n + £)//)£)
comes from ϊ X ^ Φ l ^ C X ^ ^ o ) where A:(o) is the algebraic
closure of /c(o)]. Because of [20, §2 Lemma 1], we can assume that there
exists a smooth curve &': <€' -> Spec(i?) and a Sρec(i?)-morρhism J^ r:
<€-*<€' such that

if; = C and J^/ = F.

Let S?': Spec(7?) -> «" be the unique section of &' such that ^ r (o) = q
(see the Valuative Criterion of Properness in [15, Chapter II, Theorem
4.7]). Because of the Semicontinuity Theorem (see [15, Chapter III,
Theorem 12.8]), we have that

(3.15) h°(((a'n + b)/ήy(m)) > a' + 2.

Moreover, we have that ( ^ " ^ ' ( m ) ) = {^(w)} = {/?} because
\ o ) ) = {y(o)}. But Kέi'/i + b)p\ is simple and |(^r« + l)p\ +

K ^ + 6)Pl^(^0'1(K(Λ /Λ + ϊ)/O^ / (m)D [the equality
comes from (3.11)] and both sides of the inclusion have dimension a' + 2
((3.11) again), hence, because of (3.15), we obtain that

\(a'n + l)p\ +(b - \)p = {^γ\\{(a'n + b)/t)9>\a)

which is a contradiction to the fact that \(a'n 4- l)p\ is simple.
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Continuation of the proof of Theorem 22. Using the irreducible compo-

nent Zw and repeating the proof of Proposition 20 for the case of genus g

instead of 0, we obtain a locally closed irreducible subset P( g) of P such

that each Γ e P(g) is an irreducible curve of geometric genus g having

δ = ((s - \){n — 1) + 1 - (n, s))/2 — g ordinary nodes as its only singu-

larities. Let Γ be such a general curve and let pl9..., p-8 be its nodes. Let

Cιy be the normalization of Γ and let xb, be the special Weierstrass point

on Cw corresponding to SΉ Γ. Because h°((a'n + b)xb>) = a' + 2 (3.12),

the linear subsystem of \K^ + Γ - v*(L)\ containing pl9...,/?§ has

dimension g + af — a'n - bf. Hence

(3.16) dim(|##+ Γ - v*(L)\) < g + a' - a'n - V + 8

= ({(s - ί)(n - 1) + 1 -(n,s))/2) + a'- s.

On the other hand, if Γ is a smooth element of |Γ| and p = £ C\ f, then

h°(sp) > a' + 2. Hence

(3.17) d i m ( | ^ + Γ - *

> (((s - l)(n - 1) + 1 - ( / i , J ) ) / 2 ) + a ' - s .

F r o m (3.16) and (3.17), Formula (3.10) follows.

4. Existence of Weierstrass gap sequences. As already mentioned

in the Introduction, it is an open problem in the theory of Weierstrass

points to decide which gap sequences are Weierstrass gap sequences. In [4]
it is shown that there are gap sequences which are not Weierstrass gap

sequences. In some cases the existence of Weierstrass gap sequences is

known.

— The only gap sequence of genus g such that 2 is a non-gap is equal

to (1,3,5,7,. . . , 2g - 1). A point p on a smooth curve C of genus g has

gap sequence (1,3,5,7,..., 2g - 1) if and only if p is a ramification point

of some double covering C -> P 1 . In particular C is hyperelliptic.

— Each gap sequence such that 3 is a non-gap is a Weierstrass gap

sequence (see [23]).

— Each gap sequence such that 4 is a non-gap is a Weierstrass gap

sequence (see [19]).
— Each gap sequence (1,2,3,. . . , g — 1, g + 1) for 1 < / < g — 1 is a

Weierstrass gap sequence (see [25], [27]).
— Each hyperordinary gap sequence (see the Introduction) is a

Weierstrass gap sequence (see [8], [11], [27]).

— Each gap sequence of weight w := Σ(n,: — i: 1 < i < g) < g/2 is a

Weierstrass gap sequence (see [12]).
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Also, some other results — stated in a ringtheoretical way — are obtained

(see e.g. [29]). Here, we hope to deduce some new existence results.

THEOREM 27. Let n e Z > 2 and let a e Z > 2 swc/z that

a(n - 1) < g < (a 4- l)(w - 1).

Le/ ra, # e Z > 0 swcΛ //*#/

(1) g = em 4- b with e e Z >x awd 0 < 6 < m,

(2) >? < m < 2Λ,

(3) {am + βq < g + I + a: a, J 8 E Z > 0 } contains at least a ele-

ments,

(4) q > (e + l)/ι,

( 5 ) g < r a + g - l - e - [<?/(e 4- 1)] [entire part],

then there exists a couple (C, p) such that C is a smooth curve of genus g

andp G C and the non-gaps of p are

(1) eachx e Z ^ + β + 1 ,

(2) each am + ^8^with α , j 8 e Z > 0 .

Proof. Consider the universal family^: 9t-+ Ji and let Ŵ  be some

irreducible component of W^. As already mentioned in the Introduction,

the gap sequence of a general point x on Wn is the hyperordinary gap

sequence of genus with first non-gap equal to n. It follows that

χ G { z e f : h°(mz) = 2 and h°(qz) > e + 2}

(because of (2), (1) and (4)). Hence, there exists some irreducible compo-

nent W^ιq of Wmq with Wn c Ϊ F ^ . Because of Lemma 10,

(4.1)

Therefore, because of (5), a general point x of W^ does not belong to

wn.
Let m be the first non-gap of x. In particular W^ q c Wm. Because of

(5), this is impossible if m < [q/(e 4- 1)], hence m > q/(e + 1). Because

h°(qx) > e 4- 2, there exists some non-gap of x, at most equal to #, which

is not a multiple of m. Let ^ be the smallest non-gap of x which is not a

multiple of in. Let q = fm -\- h with 0 < h < m. If |̂ 3c| would not be

simple, then |mx| is composite with some involution γ^. But, as it is done

in the proof of Lemma 25, it would follow that \nx\ is composite with

some involution yx. An easy parameter count shows that this is impossible

(see [8], Chapter 2). It follows from Theorem 11 that

(4.2)
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Using (4.1), this gives us that

(4.3) m + q — e < fh + q — f.

If q = q and fh < m, then / < e, hence fh < m — 1. If m = m and q < q

then, because it is necessary that / + 1 < e, one has that q < q — 1. It

follows that, iί fh + q < m + q, then m + q<m + q- 2 and therefore

/ + 2 < e. Because (e + l)m — e < ra + # — e and m + q — f <

(/ + 2)m — /, one has, because of (4.3), that (using also fh < m)

(4.4) (β + l)m - e < (f + 2)m - / .

But / < e — 2, hence (4.4) becomes

(4.5) (e + l)m - e < em - f,

hence

(4.6) f < e - m.

We are going to prove that

f < e -{m1 - Σ ( m 7 : 1 < / < ί - 1)) for each t e Z ^ 1 ?

which is, of course, impossible. It will follow that fh = m and q = q. We

already proved it for t = 1. Assume that it holds for some / o e Z ^ ,

hence

(4.7) / < e -(m'° - £ ( m < : 1 < i < t0 - l ) ) .

Hence, because of (4.4), we obtain that

(e + ϊ)m - e < [e -(m'° - Σ ( m ' : 1 < / < 0̂ ~ !)) + 2}m " /

which gives us the desired inequality for t0 + 1.

Now, assume that r G Z < g + α w i t h τ £ {am + βq: α , j 8 G Z > 0 } and

assume that τ is a non-gap of 3c. Then, because of (3), x would have at

least fl + 1 non-gaps c < g + a. It would follow that h°((a + g)3c) > α

+ 2. In particular, because of the Semi-continuity Theorem, h°((a + g)x)

> a 4- 2. But, because the gap sequence of x is the hyperordinary one,

one has that h°((a + g)x) = Λ + 1. This gives a contradiction. Hence the

gap sequence of x is the gap sequence described in the announcement of

this theorem.

In order to understand the result of this theorem, I think it is

necessary to give some examples of Weierstrass gap sequences which exist

because of this theorem.

EXAMPLE 28. n = 3, m = 5.

For each ? G Z > 6 , one has that (1) and (4) hold.
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Case q = 6. Hence, e = 1. Then (5) holds if g < 6. Consider the case
g = 5 (which would give a Weierstrass point of maximal weight in this
case). In this case a = 2 and (α5 + β6 < 8} = {5,6} consists of 2
elements, hence (3) holds. Hence (1,2,3,4,7) is a Weierstrass gap se-
quence. Its weight is equal to 2.

Case q = 7. Hence, e = 1. Then (5) holds if g < 7. Let g = 6. One
proves that (1,2,3,4,6,8) is a Weierstrass gap sequence. Its weight is
equal to 3.

Case q = 8. One proves that (1,2,3,4,6,7) is a Weierstrass gap
sequence.
And so on.

Finally, I give an example of a Weierstrass gap sequence of weight
greater than its genus, whose existence follows from this theorem.

EXAMPLE 29. Let n = 10, m = 15 and q = 46. One has that e = 3
and q > 40 hence (1), (2) and (4) hold. Let g = 44. Clearly (5) holds.
Moreover a = 4 and

{αl5 + £46 < 49} = {15,30,45,46}

hence (3) holds. Therefore (1,2,..., 14,16,..., 29,31,..., 44,47,48) is a
Weierstrass gap sequence. Its genus is equal to 44 and its weight is equal
to 50.
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