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Let L: E -* F be an isomorphism of Banach spaces, let H: E X R"
-» F be a completely continuous mapping, and let B: E -> R" be a
bounded linear mapping onto a euclidean space. The solutions ( v, λ) to
the problem

By-0

can be represented as the fixed points of a mapping T: E X R" -» E X
R". Neilsen fixed point theory may be extended to produce lower bounds
for the number of fixed points of such maps. Problems of the type (*)
include boundary value problems for ordinary differential systems of the
form:

ly" = h(x,y,y',λ),

\y(0)-y(ϊ)-0,

where y = y(x): [0,1] -> R" and λ e R " , satisfying an additional condi-
tion such as y(l/2) = 0 or β y(t) dt = A for a given A e R".

A standard technique in nonlinear analysis, for establishing that an
equation has a solution, consists of finding a mapping whose fixed points
correspond to the solutions of the equation and then applying a topologi-
cal fixed point theorem. A fixed point theory initiated by Jakob Nielsen in
the 1920s is concerned with the number (rather than just the existence) of
fixed points [8]. In 1950, Jean Leray [11] suggested that Nielsen fixed
point theory might therefore be useful in proving that equations have
multiple solutions. In this paper, we apply Neilsen fixed point theory to a
class of parametrized equations in which the parameter space is finite-di-
mensional.

Section 1 is concerned with the modification of some techniques from
[1], to obtain a form of Nielsen theory suited to the analytic problem.
Section 2 presents a description of the problem in operator theoretic
language and contains the main result of the paper (Theorem 2.3) which
gives sufficient conditions for the topological methods of the first section
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to be applicable to this problem. Some specfic types of problems for

parametrized nonlinear differential systems which can be formulated as

operator theory problems of the type of §2 are described in §3. In §4 we

examine more closely one of the problem types of §3: the three-point

boundary value problem for a second-order system of parametrized non-

linear ordinary differential equations. The final section presents the analy-

sis of two specific problems which illustrate the characteristics and the

techniques of the Nielsen fixed point theory method.

Most of this research was done while I was a guest of the Istituto

Matematico "Ulisse Dini" of the University of Florence and of the

Mathematics Research Centre of the University of Warwick. I thank

especially Professors Massimo Furi and Pierluigi Zezza for their help and

encouragement.

1. Fixed point theory. Let F:X -+ X be a map (that is, a continuous

function) of a topological space. Suppose that for some subset S oί X and

for Wcontaining S U F(S) there exists a retraction p\W-> S, that is, a

map such that ρ\S, the restriction of p to S, is the identity. Then the

retract / : S -> S of the map F with respect to p is defined by / = p(F\S).

The map F is retractable onto S with respect to p if Fix(/) = Fix(jp) Π S,

where Fix( ) denotes the set of fixed points. (For a more leisurely

exposition of these definitions, see the first three sections of [1].) It will be

convenient to have the following alternative definitions of retractability

which are easily shown to be equivalent:

PROPOSITION 1.1. Let F:X -> X be a map, then the following are

equivalent:

(a) F i s r e t r a c t a b l e o n t o S w i t h r e s p e c t t o p : W - > S

( b ) ify eW\S and p(y) = JC, theny Φ F(x)

(c) ifx e S such that ρF(x) = x9 then F(x) = x.

A subset of a space is called precompact if its closure is compact.

Now suppose that X is a normed linear space and that F:X -* X is

completely continuous, that is, F is continuous and, for any bounded

subset B of X, the set F(B) is precompact. Thus if such an F is

retractable onto a bounded set S, then its retract / is a compact map, that

is, its image f(S) is precompact. If, moreover, S is an absolute neighbor-

hood retract (ANR), then there is a fixed point index theory that applies

to / [5] and therefore the Nielsen number N(f) can be defined as in [12].
Maps /, g: S -> S are said to be compactly homotopic if there is a compact

map Jίf:S X [0,1] -> S such that Jίf(x, 0) = /(JC) and Jί?(x, 1) = g(x) for
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all x G S. The Nielsen number is a compact homotopy invariant, that is,
if / and g are compactly homotopic maps on an ANR, then N(f) = N(g).
The other property of the Nielsen number we will need in the next section
is:

PROPOSITION 1.2. Let X be a normed linear space, let S be an ANR
imbedded as a bounded subset of X, and let F:X -> X be a completely
continuous map retractable onto S with retract f: S -> S, then F has at least
N(f) fixed points in S.

In order to make use of the retractability concept in the analytic
problems below, we will need to employ a stronger hypothesis based on
form (b) of Proposition 1.1. For μ > 0 and Q a subset of a normed linear
space X, with norm denoted by || ||, let

Λ"μ(Q) = {x ^ X'- \\x — q\\ < μ ίoτ s o m e ^ G β } .

A map F: X -> X will be called μ-retractable onto a subset S oΐ X if there
exists W containing S U jVμ{F(S)) and a retraction p: W -> S such that
if y e W\ S and p(y) = x then \\y - F(x)| | > μ. The relationship be-
tween retractability and μ-retractability we will exploit is described by:

PROPOSITION 1.3. // U,V:X -> X are maps on a normed linear space
such that, for some μ > 0, the map U is μ-retractable onto a subset S with
respect to a retraction p and | |F(JC)|| < μ for all x e S, then the map
F = (/ -f V: X -> X is retractable onto S with respect to the same retrac-
tion.

Proof. Suppose y = F(x) for some x e S , then \\y — U(x)\\ =
| |F(x)| | < μ by hypothesis. Since U is μ-retractable, we know Λ^(ί7(S))
c W so y e W and we have shown that S U F(S) c W. Now if y is a
point of W\S and x = p(y), then y Φ F(x) because otherwise | |F(JC)||

= \\y — U(x)\\> μ, contrary to hypothesis. Therefore F is retractable
with respect to p by Proposition l.l(b). D

The examples in §5 will make use of two easily-established results
concerning μ-retractability of maps F: X -> X, where X = R", n = 1,2.

Let S = [r, i?] be a closed interval where r > 0, let W = (0, oo) and
define pr R: W -> S by

r if 0 < x < r,
x if r < x < R,
R iίx>R.
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PROPOSITION 1.4. Let F R1 -> R1 be a map and suppose there exist
real numbers 0 < μ < r < R such that

(a) F(x) > μ for all x with r < x < R,
(b)F(r)>r + μ,
(c) F(R)<R-μ.

Then F is μ-retractable onto S = [r, R] with respect to pr R: (0, oo) -> S.

It is convenient at this point to establish the notation we will use for
vectors in R". Let X J G R" S O I = (xl9 x2,..., xn) and similarly for y;
then x y = xxyλ + x2y2 + +x ; ? j w and |JC| = (x x)ι/2.

Now taking n = 2, suppose we have real numbers 0 < r < R and we
define the annulus

Letting W = R2 \ 0, we have a retraction pr R: W -> Ar R defined by

—x ifO < φ | < r,
\x\

= {x if r <\x\< R,

—x iΐ\x\>R.
x\

Proposition 1.4 generalizes to the plane in the following way:

PROPOSITION 1.5. Let F:R2 -> R2 be a map and suppose there exist
real numbers 0 < μ < r < R such that

(a) \F(x)\ > μ for allx with r < \x\ < R,
(b) \x\ = r implies \F(x)\ > r + μ,
(c) |JC| = R implies \F(x)\ < R - μ.

Then F is μ-retractable onto S = Ar R with respect to pr R: R2 \ 0 -» S.

2. Operator theory. Let E and F be Banach spaces, let L: E -» F be
an isomorphism, let H: E X R" -> F be a completely continuous map,
and let B: E -> Rw be a bounded linear operator onto R". We will be
concerned with the problem: find (y,λ) ^ E X Rn such that

Ly = H(y,λ),
By = 0.

We will define a self-mapping T oϊ E X R" whose fixed points are the
solutions of (*). For that purpose, we let Eo denote the kernel of B and
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use the following easily proved fact:

LEMMA 2.1. Let σ: R" -> E be a linear mapping such that Bo: Rn -» Rn

is the identity. The map y:E-^EoxRn defined by y(x) = (x — oBx, Bx)
is an isomorphism with inverse defined by y~1(u,λ) = u + σ(λ).

Define H+:ExRn -> Fby H+(u, λ) = H(u, λ) + Lσ(λ), then T is
the composition

£ X R " -* JF -> E -> £ O X R " C £ X R "

It is not difficult to show that if H is a completely continuous function,
then T is also completely continuous.

THEOREM 2.2. The fixed points of T are the solutions to (*).

Proof. Suppose T(y,λ) = (y, λ); then i?y = 0 because the image of
T is in 2s0 X R". Furthermore, by the definition of T we are assuming
that yL'ιH+(y, λ) = (y, λ) which is the same as

by the lemma. If we apply the linear function L to both sides, the
equation becomes H+(y,λ) = Ly + Lσ(λ). Since we defined H+(y,λ)
= i/(.y, λ) 4- Lσ(λ), we have shown that Ly = i/( j , λ) also holds. Con-
versely, suppose (y9λ) satisfies Ly = H(y,λ); then from the definition
we have L~ιH+(y, λ) = y 4- σ(λ). If we also suppose that By = 0, then
y 4- σ(λ) = y~ι(y, λ) by the lemma and thus T(y, λ) = (y, λ). D

We wish to find conditions on the problem (*) so that T is retractable
onto an ANR imbedded as a bounded subset of £ X Rn. Then Proposi-
tion 1.2 will, in principle at least, produce multiple solutions to (*). For
that purpose, we introduce a condition on H which we require for the rest
of the paper:

HYPOTHESIS: if(0, λ) Φ 0 for some λ e R " .

Writing T:E X R" -> E X Rn in coordinate form as T = (T(l\ Γ(2)),
let us focus for a moment on the map T{2):E XRn-> R". From the
definitions and the linearity of B it follows that we can write

(2.1)
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For λ e R , define Hλ9 Φλ:E -> F by #λ(>>) = H(y, λ) and Φ λ ( / ) =

Hλ(y) — Hλ{ϋ). The hypothesis assures us that this is a useful definition

at least to the extent that Φ λ Φ Hλ for some λ. Then we write Γ ( 2 ) in the

form

(2.2)

where Π : R/7 -> R'2 is defined by

As a final preliminary to our main result, we say that a map

F: X -> X on a normed linear space satisfies the Leray-Schauder condition

(cf. [9]) for some v > 0 if ||x|| = v implies F(x) Φ ωx for all ω > 1. More

briefly, we will write that "F is v - LS".

The result that permits us to apply §1 to problems of the form (*) is:

THEOREM 2.3. Suppose there exist positive real numbers μ and v and an

ANR S a compact, locally contractible subset of W such that

(a) Π is μ-retr'actable onto S with respect to a retraction ρs: W -> S\

call its retract π\S->S,

(b) for each A G S , the map LιHλ :E -> E is v - LS,

(c) λ e S and \\y\\ < v imply

Then (*) has at least N(π) solutions (y, λ) with \\y\\ < v and λ e S .

REMARKS. Before giving the proof of the theorem, we present a brief

analysis which offers some insight into why the hypotheses above might

lead to the stated conclusion. It is enough to know from hypothesis (a)

that Π is retractable to deduce by Proposition 1.2 that it has fixed points

λ ; with j = 1,2,..., JV(ττ). Since Hλ is completely continuous, we can use

the Schauder Fixed Point Theorem to conclude that the v — LS condition

(b) produces a solution ^ λ to Lyλ = H(yλ,λ) for each λ e S , where

||j>λll ^ v- We might then propose (j>; , λy ), j = 1,2,..., N(π), where

Lyf = H(y λ y), as N(π) distinct solutions to (*). But they are usually not

solutions because Π(λ y ) = λy implies only that BL~ιH{Q, λ y) = 0 whereas

the condition we require is that Byj = 0 or, equivalently in this case (note

equation (2.1)), that BL~ιH(yj9\j) = 0. The point is that in order for

hypotheses (a) and (b) really to produce the predicted number N(π) of

solutions to (*), they must be related by a hypothesis such as (c). In §5, we

will analyse a problem concerning a parametrized differential equation
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(Proposition 5.1) which is of type (*). We will show that the problem

satisfies hypotheses (a) and (b) of Theorem 2.3, yet there are no nontrivial

solutions. In another example (5.2), we will consider a parametrized

differential system giving rise to a problem of type (*) and satisfying all

the hypotheses of Theorem 2.3, so there are at least N(π) solutions (y9 λ).

In fact, Π has exactly N(π) fixed points in S in this example. However, if

Π ( λ 0 ) = λ 0 , it turns out that there is no y G E such that (y, λ 0 ) is a

solution to the system. Thus the solutions provided by Theorem 2.3 are

not obtained merely by solving the finite-dimensional topological fixed

point problem for Π and then combining that solution mechanically with

the solution to an analytic problem arising from an a priori estimate. As

Proposition 5.2 demonstrates, there is a more subtle interplay between the

topology and the analysis, identified through the use of a compact-homo-

topy invariant: the Nielsen number.

We prove Theorem 2.3 in two steps, of which the first is:

LEMMA 2.4. Let D = Dv = {y G E:\\y\\ < v) and define ρv\E -> D

by Pv{y) = (v/\\y\\)y if \\y\\ ̂  v and Pv{y) = y otherwise. Under the hy-

potheses of Theorem 2.3, the map T:E X Kn —> E X Rn is retractable onto

D X S with respect to the retraction p = ρvX ps:E X W -> D X S.

Proof. Define Γ/2):RW -> R" by 7;(2)(λ) = Γ ( 2 )(j>,λ). We claim that

the hypotheses of Theorem 2.3 imply that if | | j ; | | < *>, then the mapping

Ty

{2) is retractable onto S with respect to the retraction ρs. To establish

this claim, we use the equation (2.2) to write Ty

{2) = Π + Vy where

Vy(λ) = BL~ιΦλ(y). We are assuming \\y\\ < v so by hypothesis (c):

μ
II D Γ - i l l *

II "•L II

Therefore | |K y(λ)| | < μ and hypothesis (a) supplies the other condition for

Proposition 1.3 to imply this claim. Now suppose ( j , λ ) e ΰ x S such

that pT(y, λ) = (y, λ), that is, both pvT
{l\y, λ) = y and PsT<2Xy, λ) =

λ. Since y G Z>, the claim above tells us, by Proposition l.l(c), that

Γ ( 2 ) (y 9 λ) = λ. Thus by equation (2.1) we conclude that BL~ιH{y, λ) = 0.

Since it is immediate from the definition that, in general,

T{l)(y, λ) = L~ιH(y9 λ) - oBL'ιH{y, λ)

we see that

for all (y,λ)e D X S such that T(2\y, λ) = λ. Now ρvT
a\y, λ) = y

means that Ta)(y, λ) = ωy for some ω > 1. Suppose ω > 1; then since

we have L'1Hλ(y) = ωy for this (y,λ), hypothesis (b) tells us that
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< v. But then the definition of pp implies that T{1)(y, λ) = y. Thus we
have shown that T(y, λ) = (y, λ) so the conclusion follows from Proposi-
tion l.l(c). D

REMARK. Hypothesis (b) of Theorem 2.3 is a well-known condition
for showing that the operator equation Ly = Hλ(y) has a solution, by the
Schauder Fixed Point Theorem. Hypothesis (b) is not a statement about
T{l):E -* E defined by T£\y) = T{l\y,λ\ except, as we saw in the
proof above, when T(2)(y, λ) = λ for some y e D. For an arbitrary
λ G S, we have no need to demand that Γλ

(1) satisfy any Leray-Schauder
type conditions. This is an important distinction because a priori esti-
mates implying Leray-Schauder conditions are available in the literature
for the operators of the form L~ιHλ (see Theorem 4.5 below) but not for
those of the type of Γλ

(1).

The rest of the proof of Theorem 2.3 is carried out in the next lemma.
We note that D X S is an ANR because D is [2], and S is [7], and the
cartesian product of two ANRs is an ANR [3]. Since by Lemma 2.4 we
know that T is retractable onto D X S, then Propositions 1.2 and 2.2 tell
us there are at least N(τ) solutions to (*), where r:D X S -> D X S is
the retract of T with respect to p. Thus Theorem 2.3 is immediate from:

LEMMA 2.5. Under the hypotheses of Theorem 2.3, N(τ) = N(π).

Proof. Define JίT:D X S X [0,1]-^ D X S by

jr(y,λ,t) = p ( ^ 1 > ( 7 , λ ) , Π ( λ ) + tBL-ιΦλ(y)).

The mapping J(? is well-defined because hypotheses (a) and (c) of
Theorem 2.3 imply that Π(λ) + tBL~ιΦλ(y) is in W (compare the proof
of the previous lemma). The homotopy tf is compact because H is
assumed completely continuous and we may make use of the fact that the
convex hull of a precompact set is precompact. Thus T and 0 X π: D X S
-> D X S are compactly homotopic so N(τ) = N(0 X π) by [12]. It is
evident from the appropriate commutativity property of the Nielsen
number [1, Theorem 5.4] that N(0 X π) = N(π). D

3. Parametrized differential systems. In this section, we present several

types of problems concerning systems of nonlinear differential equations
that can be expressed in the form

Ly = H(y,λ),

By-0,
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where L: E -> F is an isomorphism of Banach spaces, H: E X R'7 -> F is

a completely continuous mapping, and 5 : F -> R'7 is a bounded linear

operator onto R".

For a map y: [0,1] -> R'7, the sup norm will be written ||)>||0, that is,

By C,f [0,1] we denote the space of all CA-maps y: [0,1] -> R'7 with the Ck

norm:

PROPOSITION 3.1. Let /z: [0,1] X R2'7 -> R'7 be a continuous function.

Then the problem of finding a map y = y(x): [0,1] -» RA7 α/?J α vector

λ G R" satisfying

ly' = h(x9y,λ),

\y(0)=y(l) = 0

can be expressed in the form (*).

Proof. Let £ be the subspace of C^[0,1] consisting of maps y

satisfying the initial condition y(0) = 0, let i 7 = CM°[0,1] and define

L:E -> F by Ly = y'. The operator i / : £ X R'7 -> F is the superposition

(or "Nemytskii") operator H(y,λ)(x) = h(x,y(x),λ); then H is com-

pletely continuous by the Ascoli-Arzela Theorem. Letting B:E -> R" be

defined by By = y(ϊ) completes the proof. D

The next type is called a "three-point boundary value problem"

(compare [13]).

PROPOSITION 3.2. Let A:[0,1] X R3" -> R" be a continuous function.

Then the problem of finding a map y: [0,1] -> R" and vector λ e RΛ7

(y" = h(x,y,y',λ),

\y(0)=y(l/2)=y(l) = 0

can be expressed in the form (*).

Proof. In this case, E is the subspace of Q2[0,1] consisting of maps y

satisfying the Dirichlet boundary condition y(0) = y(l) = 0, again F =

C,?°[0,1] and now Ly = y". We will later use the fact that the inverse of L

is defined by

= f1 G(t,s)y(s)ds
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where G: [0,1] X [0,1] -» R is defined by

(t-l)s i f θ < 5 < / < l ,

t{s - 1) iΐO < t < s <1.

We again use the superposition operator for H but now we set By =

a

The following type of problem comes from [4], where it is viewed as a

control problem with finite-dimensional control space.

PROPOSITION 3.3. Let h: [0,1] X R2" -> R" be a map and A e R" a

given constant vector, then the problem of finding a map y: [0,1] —> R" and

a vector λ ^ R" satisfying

y" = h{x,y,λ),

y(0)=y(l) = 0,

I y{x)dx = A

can be expressed in the form (*).

Proof. The subspace of Q2[0,1] we use for this case consists of maps

satisfying the initial condition y(0) = 0. We let F be CΛ

0[0,l] X R" with

the product norm, that is, with | | ( j , λ) | | = (\\y\\l + | λ | 2 ) 1 / 2 . Define L:E

-> F by Ly = (/', jj y(x) dx). Setting H(y, λ)(x) = (A(JC, y(x\ λ), A)

and By = y(l) completes the proof. D

The next type of problem is based (when n = 1) on a model of an

adiabatic tubular chemical reactor [10], in which case we could be trying

to choose a value of one of the parameters λ of the input so that the

effluent leaves the reactor at a required temperature A.

PROPOSITION 3.4. Let λ:[0,l] x R2" -» R" be a map, β > 0 a real

constant, and A e R" a given vector. Then the problem of finding a map

y : [0,1] -> R" and a vector A G R " satisfying

lβy"-y' = h(x,y,\),

\βy'{0) =y{0) and / ( I ) = 0 and y(l) = A

can be expressed in the form (*).
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Proof. We still have E c Q2[0,l] but now y e E if it satisfies the
condition £y'(0) = j>(0). Again F = Cπ°[0,1] X R" but here Ly = (βy" -
y\ y(l)). The operator H is exactly as in the previous proposition while
we set By = y\\). •

Let Ω be a region of Rw whose boundary 3Ω is a smooth, compact
(ra — l)-manifold. Let H^ be the Sobolev space of L2-functions y:Ω ->
R'7 with L 2 first and second derivatives and let E be the subspace of H^
consisting of functions that are zero on 3Ω. The Laplacian Δ: E -> L2(Ω)
= F is an isomorphism. Define B:E -> R" by 5y = fΩy(x) dx. Making
use of the superposition operator as before, we have

PROPOSITION 3.5. Let h:Ω x R ( w + 2 ) " -+Rn be a map. Then the prob-
lem of finding an L2-function y = (yl9 y2,..., yn): Ω -> R" and a vector
λ e R " satisfying

= h(x, y, dyλ/dxl9..., dyydxm, λ) ,

= 0,

( y(x)dx = 0

can be expressed in the form (*).

4. Three-point boundary value problems. We will discuss problems of
the form

\y" = h(x,y,y\λ),

\y(0)=y(l/2)=y(l) = 0,

where h: [0,1] X R3n -> R" is a map, as in Proposition 3.2. The main
result of this section, Corollary 4.6, presents sufficient conditions on h so
that hypothesis (b) of Theorem 2.3 is satisfied by these three-point
boundary value problems. We will make use of this result in the final
section. In addition, the result on which it is based (Theorem 4.5)
illustrates how estimates in the literature may be modified to verify
hypothesis (b).

From the proof of Proposition 3.2, we observe that

LEMMA 4.1. The map Π: R" -> Rn is defined by

Π(λ) = λ + f1 g(s)h(s9O9O9λ)ds9
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if 0 < s

if 1/2 <

<

s

1/2,

< i ;

and also that

LEMMA 4.2. For the bounded linear operator BL~ι: F -> R" we have

-'\\\BL

Proof. Let M = (uv u2, • •., " „ ) : [0,1] -» R" be an element of F with

| | M | | 0 < 1. Then we use Schwarz's Inequality to see that

j \g(s)\ ^ = 4o Π

The next two results are preliminaries to the theorem that follows

them. The first is an elementary exercise:

LEMMA 4.3. // cl9 c2 are non-negative constants, not both zero, and

0 < σ < 1, then the function / : R -> R defined by f(x) = x — cx — c2x
σ

has exactly one positive zero.

For a map y: [0,1] -* Rn and any p > 1, the Lp norm is

Λ/P

Note how the notation distinguishes between the C2 norm \\y\\2 and the

L2 norm | | j ; | | ( 2 ) .

LEMMA 4.4. // 0 < σ < 1, then

Proof. First suppose that σ > 1/2, then by Schwarz's Inequality

ίl\y(x)\1+'dx"f1\y(x)\\y(x)\'dx
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where the last inequality depends on Holder's Inequality because we then

have that 1 < p < pf implies \\y\\(p) < \\y\\(P>y Now suppose that σ < 1/2.

Then similarly,

•

Now we are ready to establish an a priori estimate for solutions to a

class of Dirichlet boundary value problems for ordinary differential

systems. The argument follows one in [6], but we give it in some detail

because we need an explicit description of the a priori bound whereas all

that was required for [6] was a proof that some bound exists. In order to

obtain an easily-stated result, we considerably strengthen the hypotheses

of the original result, Theorem 8.1, in particular limiting ourselves to

second-order systems in which no first-derivative terms appear.

THEOREM 4.5. Suppose A:[0,1] X R" -> R" is a map for which there

exist non-negative constants c l 9 c2, not both zero, and 0 < σ < 1 such that

\h{x,u)\ < cx + c2\u\°

for allx e [0,1] andu e R", then a solution y e Crt

2[0,1] to

has the property \\y\\2 < 3ξ, where ξ is the positive zero off(x) = x - cλ —

c2x°.

Proof. Integration by parts and the boundary conditions imply

Thus, using Lemma 4.4,

dx < c^yy)* c2\\\\l°2\\y\\(2)

11 II / l l 1 + σ

1(2)+ c 2 |b 11(2)
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The argument for the last inequality is that \\y\\{2) ̂  \\yIIo a n d the condi-

tion y(0) = 0, the Fundamental Theorem of Calculus, and Schwarz's

Inequality imply that \y(x)\ < 11/11(2) for all x.

We have shown that | | / | | ( 2 ) must satisfy the inequality

I/Ik) <q + c2||/||(2).
The function f(x) = x — cx — c2x

σ obviously has the property, for x > 0,

that f(x) < 0 only if x < ζ, so | | / | | ( 2 ) < f τ h u s \\y\\0 < S also.

From the differential equation,

and therefore ||.y"|lo < f
Now

so

1/(0)1 -f <||/'|(2)<?

and

|/(*)|<|/(o)|-

Thus | | / | | 0 < 3ξ so | | j | | 2 < 3ξ also. D

COROLLARY 4.6. Suppose that for some subset S of Rn there exist

non-negative constants cvc2, not both zero, and 0 < σ < 1 such that

\h{x,y,λ)\< cx + c2\y\°

for all 0 < x < 1, j/G R\ and λ e S , then LιHλ:E -> E is 3ξ - LS,

where ξ is the positive zero off(x) = x — cx — c2x
σ.

Proof. Suppose y £ E such that L~ιHλ(y) = ωy for some ω > 1 and

some λ e S . Then y(0) = j ( l ) = 0 by the definition of E in Proposition

3.2, and also ωy"(x) = h(x, y9 λ). Thus y is a solution to

[y(0) =y(l) - 0

which certainly satisfies the hypotheses of Theorem 4.5, so | | j ; | | 2 < 3ξ. D
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5. Examples. This first example was constructed with substantial help

from Tim Poston and David Sanchez.

PROPOSITION 5.1. The problem

ly' = KyV - λe-^ιoox + λ1/3,
W \y(0)=y(l) = 0

satisfies hypothesis (a) of Theorem 2.3 for an interval S = [ r , J ί ] c R , r > 0 ,

independent of the choice of the positive constant K, with N(π) = 1, and it

satisfies hypothesis (b), but for K > 60, it has no nontrivial solutions.

However, if K < 1/4, then there is at least one solution (y, λ) with A E S .

Proof. To verify hypothesis (a) of Theorem 2.3, we calculate (note

Proposition 3.1) that

Π(λ) = λ + f (-λe-χ/100s + X1/3)ds = λίl - iβ- λ/ 1 0 0) +

Using Proposition 1.4, we find that Π is 1/2-retractable onto S =

[1/2,9/2] and from the definition of the Nielsen number [8] we see that

N(π) = 1. We emphasize that neither the choice of S nor the value of

N(π) depended on K.

Next we wish to verify the hypothesis (b). If \ E S and y is a

solution to the initial value problem

y' = Ky1^ - λe-λ/ l o ox 4- λ1/3, y(0) = 0,

then

) I = \K(y(x))ι/3 - λe-χ/100x + λ1'31

< K\(y(x))\1/3 +\-λe-χ/100x + λ1/3! < K\\y'\\Y3 + 2.65,

so

It follows that ||̂ v||χ = ||/Ho < (κ + 2.65)3/2. Then a proof similar to that

of Corollary 4.6 shows that LιHλ is v - LS with v = (K + 2.65)3/2.

An elementary argument establishes the fact that if y is a solution to

the initial value problem above, with K > 60, then y is an increasing

function on [0,1], except, of course, when λ = 0.

To show that nontrivial solutions to (*) do exist if K is small, we need

only verify hypothesis (c) of Theorem 2.3. For y e E with ||jμ||x < v =

(K + 2.65)3/2 we have (for λ e S )

\H(y9λ)(x)-H(09λ)(x)\

= K\y(x)\1/3<K\\y\\Y3<K(K+2.65)1/2
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On the other hand, certainly H-SL"1!! = 1 for this problem, so we require

K(K+ 2.65)1/2 < μ = 1/2

which holds if K < 1/4. D

PROPOSITION 5.2. The problem

U" =

o" = ^ « 1 / 3 + jβ[l6 - 2xJ/3 + 4(α2

κ(0) = «(l/2) = «(1) = 0,

.ϋ(0) = o(l/2) = ϋ(l) = 0

has at least two nontriυial solutions (y,λ) = ((u,υ), (a, β)) & D X S. If
(y,λ) is a nontriυial solution to (*), then Π(λ) Φ λ.

Proof. Using Lemma 4.1 and computing, we find that

Π(λ) = Π(α, j8)

= (« + 2W + f (α2 + £2)-1 / 3,-£ - 2 ^ - f («2 + /?2Γ1

where

= τr(2~ 4 / 3 - 1) (approximately -0.1).
JO

We may write

Π(λ) = τi(a,β) = ((1 + 2η) + | (α 2 + βψ^a, -β)

SO

Let us consider the function φ:R+-> R + = (0, oo) defined by φ(x) =
(1 4- 2η)x + \xxn. We observe that φ(x) > x if x < x0 and φ(x) < x if
x > x0, where x0 = (~4η)~3/2. Furthermore, φ(x) — x has a maximum
on (0, x0) at r = (-12η)"3/2 (approximately 0.76) with the maximum
value μ = (-108τj)~1/2 (approximately 0.3). We choose R so that R -
Φ(R) > μ; the value R = 6.1 will serve the purpose. Noting that φ is an
increasing function, we see that φ(x) > μ if JC > r. Since |Π(λ)| = Φ(|λ|),
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Proposition 1.5 tells us that Π is μ-retractable onto the annulus

S = ArR = {λ e R 2 : r < | λ | < R}

with respect to the radial retraction ρr R:R2\0 -> Ar R. Since the retrac-
tion ρr R is homotopic in R2 \ 0 to the identity map, the retract π: S -> S
of Π is homotopic in R 2 \ 0 to Π | 5 : S -> R 2 \ 0, the restriction of Π.
The homotopy Jf: S X [0,1] -> R2 \ 0 defined by

3 r ( \ , t ) = j e ( ( a , f i ) , t ) = ( 1 + t[2η + j \ λ \ -2/3 (a,-β)

shows that Π | S is homotopic to reflection of S about the horizontal axis,
which is a map of degree - 1 . Thus 77 is a map of degree - 1 . On the other
hand, N(π) = |(degree of 77) - 1| by [8], so N(π) = 2. We note for later
use that Fix(7τ) = Fix(Π) Π S (since Π is retractable onto £), which in
this particular case consists of precisely two points: ((-4η)~3/2,0) and

Now we wish to use Corollary 4.6 to verify hypothesis (b) of Theorem
2.3. We write

h(x,y,λ) = - 4(α2

β[l6 - 2x^ + 4(a2 + β2y1/3}

α,-ίί) +(0,16/!)

so that by the triangle inequality

\h(x,y,λ)
' 9

u(x)
1/3

- 4 | λ |
1/3

< 105 +

< 105 +

\ 9

1/3
.1/3

Thus L '//λ is 3f — LS for all λ e 5 where f is the positive zero of
/(x) = x - 105 - (.29)x1/3. We may take ζ = 107.
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Turning to hypothesis (c), we note from Lemma 4.2 that

On the other hand, for λ £ S and | | j ; | | 2 < 3ζ we have \y(x)\ < 321 for all
0 < x < 1 so

\H(y9λ)(x)-H(0,λ)(x)\ =

< (.29)(321)1/3 < 2.1

Therefore, Theorem 2.3 tells us that the problem (*) has at least two
solutions (y9 λ) with | | j ; | | 2 < 321 and (-12TJ)~ 3 / 2 < |λ| < 6.1.

It remains to show that the fixed points λ = ±{(~4η)~3/2,0) of Π do
not themselves produce solutions to (*). We will consider λ =
((-4τ])~3/2,0); the other case is almost identical. Since β = 0, the first
differential equation of (*) becomes

u"{x) = 2ax1^3 - 4aι/3

where a = (-4τ])'3 / 2 = [(9/14)(l - 2" 4 / 3 )]- 3 / 2 . Integrating and using the
boundary conditions κ(0) = u(\) = 0, we find that

u\ X j 1 1 1 / y i i-L £* j ty\ x )

where θ(x) = x1/3 + (2~1/3 - 2)x2 + (1 - 2"1/3)x, which has the prop-
erty 0(1/2) = "(1/2) = 0. Thus the second differential equation is

v"(x) = \cV\u{x)\

= M(θ(x))ι/3

where M is a positive constant. So the only solution y = (w, υ) possible
for this value of λ must be

υ^^Mf1 G(x,s)(θ(s))l/3ds

where G is as in the proof of Proposition 3.2. In particular

ϋ(l/2) = Afίl g(s)(θ(s))ι/3ώ

where g(s) is as in Lemma 4.1, that is

,(1/2) = }
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An elementary argument shows that θ(s) + 0(1 - s) > 0 for 0 < s < 1/2
so u(l/2) < 0 and we conclude that there is no solution (y,λ) to the
three-point boundary value problem (*) with λ = ((-4η)~3/2,0). D
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