PSEUDOCONVEX DOMAINS WITH PEAK FUNCTIONS AT EACH POINT OF THE BOUNDARY

Andrei Iordan

Under certain conditions, each point of the boundary of a smoothly bounded weakly pseudoconvex domain D in \mathbb{C}^n is a peak point of $A^{\infty}(D)$.

1. Introduction. Let D be a bounded pseudoconvex domain with C^{∞} boundary. We denote by $A^{\infty}(D)$ the set of holomorphic functions in D which have a C^{∞} extension to \overline{D} . A compact subset E of ∂D is a peak set for $A^{\infty}(D)$ if there exists $f \in A^{\infty}(D)$ such that f = 0 on E and Re f > 0 on $\overline{D} \setminus E$. Such a function will be called a strong support function for E. If $E = \{p\}$, P is a peak point for $A^{\infty}(D)$.

In [6], [18] it is proved that each point of a strictly pseudoconvex domain is a peak point for $A^{\infty}(D)$ with a strong support function holomorphic in the neighborhood of \overline{D} and in [7], [17] it is proved that each strongly pseudoconvex point of a weakly pseudoconvex domain with C^{∞} boundary is a peak point for $A^{\infty}(D)$. These results fail in the case of weakly pseudoconvex domains [4], [13]. Other results about smoothly varying peaking functions in pseudoconvex domains may be found in [1], [5], [14].

If D is strictly pseudoconvex, Chaumat and Chollet proved in [3] that each closed subset of a peak set for $A^{\infty}(D)$ is a peak set for $A^{\infty}(D)$. The assertion is also true for bounded pseudoconvex domains in \mathbb{C}^2 of finite type [15] and for bounded pseudoconvex domains in \mathbb{C}^2 with isolated degeneracies [11] or with (NP) property [12].

In [16] is given an example of convex domain in \mathbb{C}^2 not of finite type whose weakly pseudoconvex boundary points form a line segment which is a peak set for $A^{\infty}(D)$, but there is a point which is not a peak point for $A^{\infty}(D)$.

Here we prove that, under certain assumptions, each point of the boundary of a weakly pseudoconvex domain is a peak point for $A^{\infty}(D)$.

Some results of this paper were announced at the International Workshop Geometric and Quantitative Complex Analysis, Wuppertal 1986.

This paper was started while the author held a position of research mathematician at Tel-Aviv University. The author wishes to thank the Mathematics Department for the conditions of work created.

2. A Morse lemma for non-negative strictly q-pseudoconvex functions.

LEMMA 1. Let φ be a real-valued non-negative function defined in a neighborhood of $0 \in \mathbb{C}^n$ such that $\varphi(0) = 0$. We suppose that the complex Hessian of φ at 0 has q zero eigenvalues at the origin. Then there exists a complex-linear change of coordinates in \mathbb{C}^n such that

$$\varphi(z) = \sum_{j=1}^{r} (1 + \lambda_j) x_j^2 + \sum_{j=1}^{r} (1 - \lambda_j) y_j^2 + O(|z|^3)$$

where $1 \ge \lambda_i \ge 0$, z = x + iy, r = n - q.

REMARK 1. Lemma 1 is a more complete form of Lemma 4 of [10]. For strictly plurisubharmonic functions the result was obtained in [9].

Proof of Lemma 1. The proof is similar to the proof of Lemma 4 of [10] and most of it is presented there. The point 0 is a local minimum for φ so grad $\varphi(0) = 0$ and the real Hessian of φ at 0 is semi-positive definite. By [18] it follows that the complex Hessian of φ is semi-positive definite at 0. We denote

$$x' = (x_1, ..., x_r), \quad x'' = (x_{r+1}, ..., x_n), \quad y' = (y_1, ..., y_r),$$

 $y'' = (y_{r+1}, ..., y_n), \quad z' = x' + iy', \quad z'' = x'' + iy''.$

We have

$$\varphi(z) = \operatorname{Re} \sum_{i,j=1}^{n} \frac{\partial^{2} \varphi}{\partial z_{i} \partial z_{j}}(0) z_{i} z_{j} + \sum_{i,j=1}^{n} \frac{\partial^{2} \varphi}{\partial z_{i} \partial \bar{z}_{j}}(0) z_{i} \bar{z}_{j} + O(|z|^{3}).$$

By making a complex-linear change of coordinates in \mathbb{C}^n we may suppose that

$$\left[\frac{\partial^2 \varphi}{\partial z_i \, \partial \, \bar{z}_j}(0)\right]_{1 \le i, j \le n} = \begin{bmatrix} 1 & 0 & \\ & & \\ 0 & 1 & \\ & 0 & 0 \end{bmatrix} r$$

and $\varphi(z) = |z'|^2 + \text{Re}(^t z S z) + O(|z|^3)$ where

$$S = \left[\frac{\partial^2 \varphi}{\partial z_i \, \partial z_j}(0) \right]_{1 \le i, j \le n}.$$

Let $s = {\binom{x}{y}}$ be a real 2*n*-vector in \mathbb{R}^{2n} , where $x, y \in \mathbb{R}^n$,

$$E' = \{s \in \mathbf{R}^{2n} | x'' = 0, y'' = 0\}, \quad E'' = \{s \in \mathbf{R}^{2n} | x' = 0, y' = 0\}.$$

We shall identify E' with \mathbb{R}^{2r} and E'' with $\mathbb{R}^{2(n-r)}$. E' and E'' are complex subspaces of $\mathbb{C}^n = E' \oplus E''$ and for $s \in \mathbb{C}^n$ we obtain s = s' + s'' with $s' \in E'$, $s'' \in E''$. With these notations we obtain that

$$\varphi(s) = |s'|^2 + {}^t s T s + O(|s|^3) = |s'|^2 + \langle T s, s \rangle + O(|s|^3)$$

where \langle , \rangle is the inner product in \mathbb{R}^{2n} and $T = \begin{bmatrix} A & -B \\ -B & -A \end{bmatrix}$ with S = A + iB, A and B real symmetric matrices. In [10] we prove that

$$\langle Ts, s \rangle = \langle T_1's', s' \rangle + \langle T_2's', s'' \rangle + \langle T_1''s'', s' \rangle + \langle T_2''s'', s'' \rangle$$

where

$$T_1' = \begin{bmatrix} A_1' & 0 & -B_1' & 0 \\ 0 & 0 & 0 & 0 \\ -B_1' & 0 & -A_1' & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad T_2'' = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & A_2'' & 0 & -B_2'' \\ 0 & 0 & 0 & 0 \\ 0 & -B_2'' & 0 & -A_2'' \end{bmatrix}$$

and A_2'' , B_2'' are the $r \times r$ $(n - r \times n - r)$ matrices obtained by taking the first r (the last n - r) rows and columns of A and B respectively.

Let J be the real orthogonal matrix representing the multiplication by $i = \sqrt{-1}$, i.e., $J[\binom{x}{y}] = [\binom{-y}{x}]$. If $v' \in E$ ($v'' \in E''$) is an eigenvector for $T'_1(T''_2)$ with eigenvalue λ , then Jv' (Jv'') is an eigenvector for $T'_1(T''_2)$ with eigenvalue $-\lambda$. Because A and B are symmetric matrices, it follows that T'_1, T''_2 are symmetric matrices. We may therefore consider an orthonormal basis of \mathbb{R}^{2n} by the form $v'_1, \ldots, v'_r, v''_{r+1}, \ldots, v''_n, Jv'_1, \ldots, Jv'_r, Jv''_{r+1}, \ldots, Jv''_n$, where $v'_j, Jv'_j, v''_j, Jv''_j$, are eigenvectors for T'_1 , respectively T''_2 . If λ_j is the eigenvalue of $v'_j(v''_j)$, by interchanging v_j and Jv_j if necessary we may assume each $\lambda_j \geq 0$.

We have in fact a complex-linear change of coordinates in \mathbb{C}^n and if the new coordinates are denoted also by (z_1, \ldots, z_n) , we have

$$\varphi(z) = \sum_{j=1}^{r} (1 + \lambda_j) x_j^2 + \sum_{j=1}^{r} (1 - \lambda_j) y_j^2$$

$$+ \sum_{i=1}^{r} \sum_{j=r+1}^{n} (a_{ij} x_i x_j + b_{ij} x_i y_j + c_{ij} x_j y_i + d_{ij} y_i y_j)$$

$$+ \sum_{j=r+1}^{n} \lambda_j x_j^2 - \sum_{j=r+1}^{n} \lambda_j y_j^2 + O(|z|^3).$$

Because the real Hessian of φ at 0 is semi-positive definite, it follows that $\lambda_j \leq 1$ for j = 1, ..., r and $\lambda_j = 0$ for j = r + 1, ..., n. If for some $1 \leq i \leq r$ we have $\lambda_i = 1$, then $c_{ij} = d_{ij} = 0$ for j = r + 1, ..., n, because $c_{ij}x_jy_i$ and $d_{ij}y_iy_j$ change sign at the origin if $c_{ij} \neq 0$, $d_{ij} \neq 0$. Thus

$$\begin{split} \varphi(z) &= \sum_{i=1}^{r} \left[\sqrt{(1+\lambda_{i})} x_{i} + \sum_{j=r+1}^{n} \frac{a_{ij}}{2\sqrt{1+\lambda_{i}}} x_{j} + \sum_{j=r+1}^{n} \frac{b_{ij}}{2\sqrt{1+\lambda_{i}}} y_{j} \right]^{2} \\ &+ \sum_{i=1}^{r'} \left[\sqrt{(1-\lambda_{i})} y_{i} + \sum_{j=r+1}^{n} \frac{c_{ij}}{2\sqrt{1-\lambda_{i}}} x_{j} + \sum_{j=r+1}^{n} \frac{d_{ij}}{2\sqrt{1-\lambda_{i}}} y_{j} \right]^{2} \\ &- \frac{1}{4} \sum_{i=1}^{r} \frac{1}{1+\lambda_{i}} \left[\sum_{j=r+1}^{n} (a_{ij}^{2} x_{j}^{2} + b_{ij}^{2} y_{j}^{2}) \right. \\ &+ \sum_{j,k=r+1}^{n} (a_{ij} a_{ik} x_{j} x_{k} + b_{ij} b_{ik} y_{j} y_{k} + 2 a_{ik} b_{ik} x_{j} y_{k}) \right] \\ &- \frac{1}{4} \sum_{i=1}^{r'} \frac{1}{1-\lambda_{i}} \left[\sum_{j=r+1}^{n} (c_{ij}^{2} x_{j}^{2} + d_{ij}^{2} y_{j}^{2}) \right. \\ &+ \sum_{j,k=r+1}^{n} (c_{ij} c_{ik} x_{j} x_{k} + d_{ij} d_{ik} y_{j} y_{k} + 2 c_{ij} d_{ik} x_{j} y_{k}) \right] \\ &+ O(|z|^{3}), \end{split}$$

where \sum' means that we take the sum over the indices i for which $\lambda_i < 1$. Because $\varphi \ge 0$ in the neighborhood of the origin, we obtain that $a_{ij} = b_{ij} = c_{ij} = d_{ij} = 0$ for each i = 1, ..., r, j = r + 1, ..., n.

3. Local properties of strong support functions.

LEMMA 2. Let $D \subset \mathbb{C}^n$ be a pseudoconvex domain with smooth boundary, $E \subset \partial D$ a peak set for $A^{\infty}(D)$, f a strong support function for E and $p \in E$. Let ρ be a local defining function for ∂D in the neighborhood of p. We denote $C_p(\rho, f) = -(\partial \operatorname{Re} f/\partial n)(p)\rho + \operatorname{Re} f$, where $\partial/\partial n$ is the derivative with respect to the normal direction at p. Then:

- (a) $H^rC_p(\rho, f)(p)$ is semi-positive definite, where H^r represents the real Hessian restricted to the complex-tangent space $TC_p(\partial D)$;
- (b) $H^cC_p(\rho, f)(p) = -(\partial \operatorname{Re} f/\partial n)(p) L_p$ where H^c is the complex Hessian restricted to $TC_p(\partial D)$ and L_p is the Levi form at p;
- (c) Suppose that L_p has q zero-eigenvalues and r = n q 1 strictly positive eigenvalues at p. Let e_1, \ldots, e_r be the eigenvectors corresponding to the strictly positive eigenvalues and V_p^r the real subspace generated by e_1, \ldots, e_r . If V_p^+ is the subspace of $TC_p(\partial D)$ generated by the eigenvectors corresponding to the strictly positive eigenvalues of $H^rC_p(\rho, f)(p)$, then $V_p^r \subset V_p^+$.

REMARK 2. By the Hopf lemma we have $(\partial \operatorname{Re} f/\partial n)(p) > 0$.

Proof. The proof of Lemma 2 is similar to the proof of Proposition 9 of [3] and we shall repeat the arguments from the beginning of it.

By making a complex-linear change of coordinates in \mathbb{C}^n we may suppose that p is the origin and in the neighborhood U_1 of the origin D is given by $D \cap U_1 = \{(z', w) \in U_1 | \rho(z', w) < 0\}$ where $z' = (z_1, \ldots, z_{n-1}), \ z_j = x_j + iy_j, \ w = u + iv \text{ and } \rho(z', w) = u + R_1(z) + R_2(z', w)$, where $R_1(z')$ is a second order homogeneous polynomial in z', \overline{z}' , and $R_2(z', w) = O(|z'||w| + |w|^2 + |z'|^3)$.

Because (0,0) is a local minimum for Re f, by the Hopf lemma we obtain that

$$\frac{\partial \operatorname{Re} f}{\partial u}(0,0) < 0, \quad \frac{\partial \operatorname{Re} f}{\partial v}(0,0) = 0,$$

$$\frac{\partial \operatorname{Re} f}{\partial x_{i}}(0,0) = \frac{\partial \operatorname{Re} f}{\partial y_{i}}(0,0) = 0, \quad 1 \le j \le n - 1.$$

It follows that in a neighborhood U_2 of the origin, $U_2 \subset U_1$, we have

$$\operatorname{Re} f(z', w) = \frac{\partial \operatorname{Re} f}{\partial u}(0, 0)u + K_1(z', w) + K_2(z', w)$$

where $K_1(z', w)$ is a second order pluriharmonic polynomial in z', \bar{z} , w, \bar{w} and $K_2(z', w) = O((|z'| + |w|)^3)$.

From the Cauchy-Riemann equations at the origin we obtain that

$$\frac{\partial \operatorname{Im} f}{\partial v}(0,0) < 0, \quad \frac{\partial \operatorname{Im} f}{\partial u}(0,0) = 0,$$

$$\frac{\partial \operatorname{Im} f}{\partial x_{i}}(0,0) = \frac{\partial \operatorname{Im} f}{\partial y_{i}}(0,0) = 0, \qquad j = 1, \dots, n-1.$$

Because

$$\frac{\partial (\rho, \operatorname{Im} f)}{\partial (w, \overline{w})}(0, 0) = \frac{i}{2} \frac{\partial \operatorname{Re} f}{\partial u}(0, 0) \neq 0$$

it follows that the set $\Sigma = \{(z', w) | \rho(z', w) = 0, \text{ Im } f(z', w) = 0\}$ is in a neighborhood U_3 of the origin, $U_3 \subset U_2$, a 2n - 2-dimensional C^{∞} -submanifold of the boundary which contains $E \cap U_3$.

So, there exists a C^{∞} -function h = h(z') defined in a neighborhood V_1 of $0 \in C^{n-1}$ such that $\Sigma = \{(z', w) | w = h(z')\}.$

We have $\rho(z', h(z')) = 0 = \text{Re } h(z') + R_1(z') + R_2(z', h(z'))$ and because the first order derivatives of h vanish at the origin we obtain that $\text{Re } h(z') = -R_1(z') + O(|z'|^3)$.

We define

$$\Theta(z') = \operatorname{Re} f(z', h(z'))
= \frac{\partial \operatorname{Re} f}{\partial u}(0, 0) \operatorname{Re} h(z') + K_1(z', h(z')) + K_2(z', h(z'))
= -\frac{\partial \operatorname{Re} f}{\partial u}(0, 0) R_1(z') + K_1(z', 0) + O(|z'|^3),$$

and we obtain (b).

The complex tangent space of ∂D at (0,0) is $\{(z',w)|w=0\}$, hence the complex Hessian of Θ has n-q-1 strictly positive eigenvalues and q zero-eigenvalues at 0.

Because f is a strong support function for E we have $\Theta(z') \ge 0$ and $\Theta(z') = 0$ if and only if $(z', h(z')) \in E$. Because the origin is a minimum for Θ , we obtain (a).

We denote by $Z = \{z \in V_1 | \Theta(z') = 0\}.$

From Lemma 1 it follows that there exists a complex-linear change of coordinates in \mathbb{C}^{n-1} such that in the new coordinates (which we shall denote also $z' = (z_1, \ldots, z_{n-1})$) we have:

(1)
$$\Theta(z') = \sum_{j=1}^{n-q-1} (1-\lambda_j) x_j^2 + \sum_{j=1}^{n-q-1} (1-\lambda_j) y_j^2 + O(|z|^3), \qquad \lambda_j \ge 0,$$

and we obtain (c).

PROPOSITION 1. Let $D \subset \mathbb{C}^n$ be a pseudoconvex domain with smooth boundary, $E \subset \partial D$ a peak set for $A^{\infty}(D)$, f a strong support function for E and $p \in E$ such that the Levi form has q zero-eigenvalues at p. We denote by \mathbb{Z}_p the complex q-dimensional subspace of $TC_p(\partial D)$ generated by the eigenvectors corresponding to the zero-eigenvalues.

Using the notations of Lemma 2, suppose that:

- (i) $H^rC_p(\rho, f)(p)$ has at least n-1 strictly positive eigenvalues;
- (ii) There exists a neighborhood V of p and a q+1 codimensional generic submanifold S of ∂D such that $E \cap V \subset S$ and $TC_p(S) \oplus Z_p = TC_p(\partial D)$;
- (iii) The tangent space $T_p(S)$ has a q dimensional complement V_p in $T_p(\partial D)$ which is contained in W_p , where $V_p' \oplus W_p = V_p^+$.

Then there exists a neighborhood ω of p, an n-dimensional totally real submanifold of $\partial D \cap \omega$ and c > 0 such that $E \cap \omega \subset M$ and $\operatorname{Re} f(z) \geq cd(z, M)^2$ for each $z \in \overline{D} \cap \omega$.

REMARK 3. The conditions (ii) and (iii) mean that there exist ρ_1, \ldots, ρ_q defined in the neighborhood of p such that

$$\frac{\partial (\rho_1, \dots, \rho_q)}{\partial (z_1, \dots, z_q)}(p)$$
 and $\frac{\partial (\rho_1, \dots, \rho_q)}{\partial (y'_1, \dots, y'_q)}(p)$

have maximal rank, where z_1, \ldots, z_q , respectively y'_1, \ldots, y'_q are the variables corresponding to Z_p , respectively to V_p .

Proof. We shall use the notations from the proof of Lemma 2 and continue the proof with the methods used in the proof of Proposition 9 of [3] and Proposition 3 of [11].

The set

$$N = \left\{ z' \in V_1 \mid \frac{\partial \Theta}{\partial x_j}(z') = 0, 1 \le j \le n - q - 1 \right\}$$

is in a neighborhood $V_2 \subset V_1$ of $0 \in \mathbb{C}^{n-1}$ an n+q-1-dimensional generic submanifold of C^{n-1} which contains $Z \cap V_2$.

We denote by $\tau(z) = J(\operatorname{grad} \rho(z))$ where J represents the complex structure on $\mathbb{C}^n = \mathbb{R}^{2n}$. Because $T_0(\Sigma) = \{(z, w) \mid w = 0\}$, it follows that τ is transversal to Σ at (0, 0), hence there exists a neighborhood $U_4 \subset U_3$ such that τ is transversal to Σ on U_4 .

Therefore there exists a C^{∞} -diffeomorphism φ defined on

$$0_{\varepsilon} = \{ (z', t) \mid z' \in V_2, t \in (-\varepsilon, \varepsilon) \}$$

with values in ∂D such that

(2)
$$\varphi(z',0) = (z',h(z'))$$
 and $\frac{\partial \varphi}{\partial t}(z',0) = \tau(z',h(z')).$

Because $Z \cap V_2 \subset N$ we have

(3)
$$E \cap U_4 \subset \varphi(Z \times \{0\}) \subset \varphi(N \times \{0\}).$$

We denote by $\Phi(z', t) = \operatorname{Re} f(\varphi(z', t))$ and by

$$\tilde{N} = \{ (z', t) \in 0_{\varepsilon} | r_j(z', t) = 0, 1 \le j \le n - q - 1, \rho_j(\varphi(z', t)) = 0, \\ j = 1, \dots, q \}.$$

where $r_i(z',t) = (\partial \Phi/\partial x_i)(z',t)$ and ρ_i are obtained by Remark 3.

Let us suppose that $0 \le \lambda_j < 1$ for $1 \le j \le q$ and denote $h_j = \rho_j \circ \varphi$, j = 1, ..., q. Let $\{e_1, ..., e_n\}$ be the standard basis in \mathbb{C}^n and let S_0 be the real space generated by $e_1, ..., e_{n-q-1}, Je_1, ..., Je_q$. Because

(4)
$$r_j(z',0) = \frac{\partial \mathbf{\Phi}}{\partial x_j}(z',0) = \frac{\partial \mathbf{\Theta}}{\partial x_j}(z')$$

from (1) we conclude that

$$(\operatorname{grad} r_j)(0,0) = 2(1 + \lambda_j)e_j.$$

By Remark 3 we obtain that

$$\frac{\partial (r_1,\ldots,r_{n-q-1},h_1,\ldots,h_q)}{\partial (x_1,y_1,\ldots,y_{n-1},t)}(0)$$

has maximal rank n-1 and \tilde{N} is in the neighborhood of the origin an *n*-dimensional submanifold of 0_{ϵ} .

From (1) and (4) we obtain that the restriction to S_0 of the Hessian of Φ at the origin is strictly positive definite. From (iii) we obtain that $S_0 \oplus T_{(0,0)}(\tilde{N}) = \mathbb{R}^{2n-1} \times \mathbb{R}$ and the proof continues as in the proof of Proposition 3 of [11], the genericity being obtained by (ii).

LEMMA 3. Let D be a bounded pseudoconvex domain in \mathbb{C}^n , $\{E_n\}_{n \in m}$ a family of peak sets for $A^{\infty}(D)$ with strong support functions f_n which satisfy (i) of Proposition 1. Then $E = \bigcap_n E_n$ is a peak set for $A^{\infty}(D)$ with a strong support function which satisfies (i).

Proof. A strong support function for E is $f = 1 - \sum_{n \in N} (1/2^n) e^{-f_n}$.

$$H_p^r(\operatorname{Re} f) = \sum_{n \in \mathbb{N}} \frac{1}{2^n} H_p^r(\operatorname{Re} f_n)$$

and

$$\frac{\partial \operatorname{Re} f}{\partial n} = \sum_{n \in \mathbb{N}} \frac{1}{2^n} \frac{\partial \operatorname{Re} f_n}{\partial n}$$

and by Lemma 2(a) the lemma follows.

PROPOSITION 2. Let $D \subset \mathbb{C}^n$ be a bounded pseudoconvex domain with smooth boundary, E a compact subset of ∂D , ω a neighborhood of E in \mathbb{C}^n and ρ a continuous function on ω which vanishes on E. We suppose that there exists $G \in C^{\infty}(\omega \cap \overline{D})$ such that:

- (a) $\{z \in \overline{D} \cap \omega | G(z) = 0\} = E$,
- (b) for each $\alpha \in \mathbb{N}^n$, $\kappa \in \mathbb{N}$, there exists $C_{\alpha\kappa} > 0$ such that

$$|D^{\alpha}\bar{\partial}(G(z))| \leq C_{\alpha\kappa}\rho(z)^{\kappa}$$

for each $z \in \overline{D} \cap \omega$ *,*

(c) there exists c > 0 such that $\operatorname{Re} G(z) \ge c\rho(z)$ for each $z \in \overline{D} \cap \omega$.

Suppose that Re G verifies (i) of Proposition 1. Then E is a peak set for $A^{\infty}(D)$ with a strong support function which verifies (i).

Proof. We know from [3] that E is a peak set for $A^{\infty}(D)$ with strong support function f = G/(t - uG) where t = 1 in the neighborhood of E and u is a solution of a $\bar{\partial}$ problem. It is easy to see that f verifies condition (i).

4. Peak points in weakly pseudoconvex domains. For simplicity, we shall say that a peak set E for $A^{\infty}(D)$ which verifies (i), (ii), and (iii) of Proposition 1, verifies the (GC) condition (GC=good convexity).

REMARK 4. The (GC) condition is obviously verified at the points of strong pseudoconvexity.

THEOREM 1. Let D be a bounded pseudoconvex domain in \mathbb{C}^n with smooth boundary, E a peak set for $A^{\infty}(D)$ which verifies the (GC) condition, and K a compact subset of E. Then K is a peak set for $A^{\infty}(D)$.

Proof. The proof is identical with the proof of Theorem 11 of [3], which uses only the conclusions of Proposition 1.

THEOREM 2. Let D be a bounded pseudoconvex domain with smooth boundary such that the set of weakly pseudoconvex boundary points $w(\partial D)$ is contained in a peak set E which verifies the (GC) condition. Then each subset of $w(\partial D)$ is a peak set for $A^{\infty}(D)$.

Proof. By Corollary 1 of [11], $w(\partial D)$ is a peak set for $A^{\infty}(D)$. By the proof of Lemma 1, Lemma 2, Corollary 1 of [11] and by Lemma 3 and Proposition 2 above, $w(\partial D)$ verifies the (GC) condition and we obtain the result from Theorem 1.

From Theorem 2 we obtain the following:

THEOREM 3. Let D be a bounded pseudoconvex domain with smooth boundary in \mathbb{C}^n such that $w(\partial D)$ is contained in a peak set E which verifies the (GC) condition. Then each point of ∂D is a peak point for $A^{\infty}(D)$.

REMARK 5. Using the same proof as in Lemma 2 of [11] we may suppose in Theorem 3 that the (GC) condition is verified except at a finite number of points.

EXAMPLE. Let $\rho(z) = |z_1|^4 + |z_2|^4 + |z_3|^4 + |z_3|^2$ ($(\operatorname{Im} z_1)^2 + (\operatorname{Im} z_2)^2 - \operatorname{Re} z_3^2$) and $D = \{z \in \mathbb{C}^3 | \rho(z) < 1\}$. D is a bounded pseudoconvex domain in \mathbb{C}^3 with real analytic boundary which does not have the (NP) property (it is a slightly modified version of the domain considered in Example 3 of [12]). We have $w(\partial D) = C_1 \cup C_2 \cup C_3$, where

$$C_1 = \{z \mid |z_1| = 1, z_2 = z_3 = 0\}, \quad C_2 = \{z \mid |z_2| = 1, z_1 = z_3 = 0\},$$

 $C_3 = \{z \mid y_1 = y_2 = z_3 = 0, x_1^4 + x_2^4 = 1\}.$

The points of C_3 are not of strict type in the sense of [2] or [8]. Let $E = \{z \in \partial D \mid z_1^4 + z_2^4 = 1\}$, which is a peak set for $A^{\infty}(D)$ and $C_3 \subset E$. At each point of C_3 with $x_1 \neq 0$, $x_2 \neq 0$ we obtain that

$$H^{r}C_{p}(\rho, f) = 12\left(4\sqrt{x_{1}^{6} + x_{2}^{6}} - 1\right)(x_{1}^{2}t_{1}^{2} + x_{2}^{2}t_{3}^{2}) + 4\left(\sqrt{x_{1}^{6} + x_{2}^{6}} + 3\right)(x_{1}^{2}t_{2}^{2} + x_{2}^{2}t_{4}^{2})$$

has 4 strictly positive eigenvalues and in the neighborhood of p, C_3 is contained in $M = \{z | p(z) = 1, x_1^4 + y_1 + x_2^4 + x_3 = 1\}$. Because each point of C_1 and C_2 is obviously a peak point for $A^{\infty}(D)$, it follows that each point of ∂D is a peak point for $A^{\infty}(D)$.

REFERENCES

- [1] E. Bedford and J. E. Fornaess, A construction of peak functions on weakly pseudoconvex domains, Ann. of Math., 107 (1978), 555-568.
- [2] T. Bloom, C^{∞} peak functions for pseudoconvex domains of strict type, Duke Math. J., 45 (1978), 133-147.
- [3] J. Chaumat and A. M. Chollet, Caractérisation et propriétés des ensembles localement pics de $A^{\infty}(D)$, Duke Math. J., 47 (1980), 763-787.
- [4] J. E. Fornaess, Peak points on weakly pseudoconvex domains, Math. Ann., 227 (1977), 173-175.

- [5] I. Graham, Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in \mathbb{C}^n with smooth boundary, Trans. Amer. Math. Soc., 207 (1975), 219-240.
- [6] R. C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, New-York: Prentice Hall, 1965.
- [7] M. Hakim and N. Sibony, Frointière de Shilov et spectre de $A(\overline{D})$ pour les domains faiblement pseudoconvexes, C. R. Acad. Sci., Paris, 281 (1975), 959-962.
- [8] _____, Quelques conditions pour l'existence de fonctions pics dans des domaines pseudoconvexes, Duke Math. J., 44 (1977), 399-406.
- [9] F. R. Harvey and R. O. Wells, Jr., Zero-sets of non-negative strictly plurisubharmonic functions, Math. Ann., 201 (1973), 165-170.
- [10] A. Iordan, Peak sets in weakly pseudoconvex domains, Math. Z., 188 (1985), 171-188.
- [11] _____, Peak sets in pseudoconvex domains with isolated degeneracies, Math. Z., 188 (1985), 535-543.
- [12] _____, Peak sets in pseudoconvex domains with the (NP) property, Math. Ann., 272 (1985), 231-235.
- [13] J. J. Kohn and L. Nirenberg, A pseudoconvex domain not admitting a holomorphic support function, Math. Ann., 201 (1973), 265-268.
- [14] S. G. Kranz, Function Theory of Several Complex Variables, New York: Wiley and Sons, 1982.
- [15] A. V. Noell, Properties of peak sets in weakly pseudoconvex boundaries in C², Math. Z., 186 (1984), 117-123.
- [16] _____, Peak points in boundaries not of finite type, Pacific J. Math., 123 (1986), 385-390.
- [17] P. Pflug, Uber polynomiale Funktionen auf Holomorphiegebieten, Math. Z., 139 (1974), 133–139.
- [18] H. Rossi, Holomorphically convex sets in several complex variables, Ann. of Math., 74 (1961), 470-493.

Received January 4, 1987.

Université Paris X-Nanterre U.E.R. Sciences Economiques 92001 Nanterre Cedex France