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DIFFERENTIAL IDENTITIES, LIE IDEALS,
AND POSNER'S THEOREMS

CHARLES LANSKI

Two well-known results of E. C. Posner state that the composi-
tion of two nonzero derivations of a prime ring cannot be a nonzero
derivation, and that in a prime ring, if the commutator of each element
and its image under a nonzero derivation is central, then the ring is
commutative. Our purpose is to show how the theory of differential
identities can be used to obtain these results and their generalizations
to Lie ideals and to rings with involution.

A number of authors have generalized these theorems of Posner in
several ways. To be more specific, let i? be a prime ring with center Z,
and let d and h be derivations of R. The specific statements of Pos-
ner's theorems, to which we shall refer frequently, are the following:

POSNER'S FIRST THEOREM [25; Theorem 1, p. 1094]. i/chari? φ 2
and if the composition dh is a derivation of R, then either d = 0 or

POSNER'S SECOND THEOREM [25; Theorem 2, p. 1097]. If xxd -
xdx G Z for all x G R, then either d = 0 or R is commutative.

The proof of the first theorem is fairly easy and extends to ideals
of R. For this theorem, the case when chari? = 2 was obtained in
[6] and later in [13], which also gives some generalizations to the case
when chari? φ 2 and R is a semi-prime ring. No attempt seems to
have been made to extend Posner's first theorem to a Lie ideal L of
i?, assuming that dh is a Lie derivation on L. Several authors (see [5],
[7], [8], [16], and [22]) have shown that d = 0 or h = 0 when Ldh = 0
or Ldh c Z. The second theorem of Posner was much more difficult
to prove than the first, although an easier proof has been found [3].
When chari? = 2, this result is easy to prove. One such proof appears
in [1] and, although not stated, it holds for Lie ideals of i?. Partial
generalizations of Posner's second theorem to ideals [10] and to Lie
ideals when chari? φ 2 [4] have also been obtained. More recently,
a full generalization to Lie ideals when chari? Φ 2 has been proved
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([22] and [5]), and in [14] there is an extension to ^-invariant ideals
in ^-semi-prime rings.

In the references cited above, the arguments are generally ad hoc
computations, often lengthy and clever. Our purpose is to obtain and
extend these results in a systematic way by using the theory of differ-
ential identities as developed by V. Kharchenko [17] and extended in
[18]. We are able to prove Posner's second theorem fairly easily for
Lie ideals in any characteristic. His first theorem is harder for us to
prove, but our result gives the full generalization to the case when dh
is a Lie derivation acting on a Lie ideal L of R in any characteristic. In
addition, we obtain results corresponding to Posner's theorems for the
(skew) symmetric elements in rings with involution. The statements
of our main results are:

THEOREM. If L is a noncommutative Lie ideal of R and d is a
nonzero derivation ofR so that xxd = xdx e Z for all x e L, then
either R is commutative, or char R = 2 and R satisfies S$\

THEOREM. IfL is a noncommutative Lie ideal ofR and d and h are
nonzero derivations ofR so that dh is a Lie derivation ofL into R, then
chari? = 2 and either R satisfies S4 or h = dc for c in the extended
centroid ofR;

THEOREM. IfR has an involution, *, / = /* is a nonzero ideal ofRf

and d and h are nonzero derivations ofR so that dh is a Lie derivation
from the skew-symmetric elements of J to R, then R satisfies S4, or d
and h are inner and R must satisfy a nonzero generalized polynomial
identity\ unless chari? = 2 and h = dc for c in the extended centroid
ofR.

Differential identities and preliminary results. Our method of ap-
proaching these problems is to use results on differential identities to
show that the derivations involved are inner, and then to conclude
that R satisfies a generalized polynomial identity. This means that R
embeds nicely in a primitive ring with nonzero socle [23] and by ex-
tending the base field we argue that one can assume that R is a matrix
ring over a field. At this point, matrix computations yield the desired
result. Unfortunately, even to state the result on differential identities
which we need requires a considerable amount of terminology. We
begin with a review of some important facts about the Martindale
quotient ring and then discuss the notion of differential identity.
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Throughout the paper, R will denote a prime ring with center Z,
extended centroid C, and Martindale quotient ring Q (see [23] for
details). One can view Q as equivalence classes of left i?-module
homomorphisms from ideals of R to R, so R embeds in Q as right
multiplication on R. The center of Q is C, which is a field, and C
is also the centralizer of R in Q. One can characterize C as those
elements of Q which are i?-bimodule mappings. For any q e Q there
is a nonzero ideal I of R with Iq c R, and q = 0 if Jq = 0 for any
nonzero ideal J of R. Using this, one can show easily that any subring
of Q which is also an i?-bimodule is a prime ring whose extended
centroid is again C One subring of Q of particular importance is
RC + C, the central closure of R. Another subring arising in the
theory of differential identities is N(R) = N - {q e Q\Iq + ql c R for
some nonzero ideal / of R} [17]. It is easy to see that RC+C c N. Let
Der(i?) denote the Lie ring of derivations of R. Any d e Der(i?) has a
unique extension to <2, and this extension restricts to N ([17] or [18]).
Thus, we may consider Der(Λ) c Der(i?)C c Όeτ(RC) n Der(N),
where ί/c for d e Der(JR) and c e C is given by x ^ = xdc for any
x e N. Now if ί/ G Der(jR) extends to an inner derivation of Q, say
</ = α</(y) for qd = qy - yq, then yeN ([17] or [18]). The right C-
subspace of Der(i?)C consisting of those elements whose extensions
to Q are inner is denoted by Inn(i?). Finally, if R has an involution,
*, then one can extend * to N by taking q e N, J a nonzero ideal of
R satisfying Jq + qJ c i?, and defining q* on J* by (jf*)^* = (qj)*
(see [24; Theorem 4.1, p. 511]). In particular, RC + C c N has an
involution restricting to * on iί, so we may assume that any involution
of R is also defined on C.

Next, we review the notion of differential identity for R a prime
ring with involution, *. Our discussion is a special case of the devel-
opment in [17] and [18]. Let X be a set of indeterminates over C of
the form {x{\ u {xf}, where / ranges over the positive integers and
d ranges over Der(i?)C We shall say that x7 or xf has subscript /,
that xf has exponent d, and that xt has no exponent. Let F(N,X, Y)
denote the free product over C of N and C{X, Y}, where Y is another
set of indeterminates {yi}U{yf}. One C-basis for F(N, X, Y) is the set
of all monomials a§z\a\ znan, where the coefficients, {#;}, belong
to some C-basis of N, and j>/} c X U 7. Any / e F(iV;X, 7) in-
volves only finitely many indeterminates, so for a suitable integer n, f
defines a function from Rn to N. Specifically, for {rh...frn) e Rn

one substitutes, r, for x/, r* for yit (r, )^ for JC^, and (r*)** for y^. If/
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is a nonempty subset of R so that / ( /*) , the image of Jn under / , is
zero, then / is called a generalized *-differential identity (<?*-DI) for / .
A G*-DI f for / which has all its indeterminates appearing without
exponent, that is in { x j u {y/} is called a generalized *-polynomial
identity (G*-PI) for / . When one ignores the fact that R has an in-
volution, or does not assume an involution, the terminology above
has its obvious parallels. Specifically, / e F(N,X) is a GDI (gener-
alized differential identity) for / if F{Jn) = 0, and is a GPI for / if
all indeterminates appearing in / are in {x/}. In general, we regard
F(N, X) C F(N, X, Y) and consider any result for a G*-DI to hold for
a GDI, with the obvious changes needed.

We note that our use of "GPI" is somewhat nonstandard because
the coefficients of a GPI / are in N rather than in RC + C. This
is a potential problem because we need to use Martindale's theorem
[23; Theorem 3, p. 579] which asserts that if R satisfies a nonzero GPI
with coefficients in RC+C, RC is a primitive ring with nonzero socle,
and for a primitive idempotent e e RC, the division ring eRCe is
finite dimensional over its center eC. This problem is resolved by [19;
Theorem 2, p. 18] which shows that if / e F(N, X) is a nonzero GPI
for an ideal / of i?, then R satisfies a nonzero GPI with coefficients
in R (also see [18; Proposition, p. 769]).

The statement of the main result from [18] requires still more ter-
minology. To say that / € F(N, X, Y) is multilinear means that / is
multilinear and homogeneous in its subscripts; that is, no subscript ap-
pears twice in any single basis monomial appearing in / and all basis
monomials in / have the same set of subscripts. Assume for simplicity
that / is multilinear with subscript set { 1 , . . . , n) and let W c Der(i?)C
be the set of all exponents appearing in / . Of course W is empty ex-
actly when all variables in / are in {JC/} U {j;,-}. To each monomial m
in / we associate its exponent sequence {h\9..., hn)9 where λ, e W if it
is the exponent of the variable in m with subscript /, and λ, = 1 if the
variable with subscript / is xt or y, . For example, m = x^y^ax^bx^
has exponent sequence (h,d,l,d). For any such sequence {h\,...,hn)
we let f(hlt...,hn) b e th e s u m of all monomials of / having this same
exponent sequence, but with all exponents deleted. Thus, if

then
+ y*yiy\> AUΛ) = *3>Ί*2> and

f{l,d,d) =
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Finally, the set W — {d\,...,dk} c Der(/?)C is called independent

modulo Inn(/£) if d\C\ Λ h dkck e Inn(/?), for ct e C, implies that
all a = 0. With all of these preliminaries we can now state the special
case of [18; Theorem 7, p. 783] which we require.

THEOREM A. Let R be a prime ring with involution, J a nonzero
ideal ofR, and f e F(N, X, Y) a G*-DI for J which is multilinear with
subscript set {1,...,/?} and exponent set W c Der(/?)C independent
modulo Inn(/?). If(h\,...,hn) is the exponent sequence for any basis
monomial in f, and contains a maximal number of derivations among
all such sequences, then f(hUm,mthn) ̂  a G*-PI for R, and R satisfies a
nonzero GPI, iff φ 0.

By applying Theorem A we will be able to assume that R satisfies a
nonzero multilinear GPI, say g: The multilinearity of g makes it clear
that RC, and so, RC = RC ®c C satisfies g, where C is an algebraic
closure of C, and with the identification of RC c N~C = N ®c ~C- BY
Martindale's theorem [23; Theorem 3, p. 579] one concludes that RC
is a primitive ring, that H = soc(i?C) = Soc(i?C)C Φ 0, and for any
idempotent e E H, eHe = Mn(C) where n is the (uniform) dimension
of eH, or of He. Therefore, the multilinear identities for R will be
identities for H and the reduction to matrices depends on showing
that H is finite dimensional over C, in which case RC = H = Mn(C),
RC = Mn{C\ and C is the quotient field of Z [26]. One technical
problem which arises is whether a GPI g for JR is a GPI for H\ that is,
can one consider the coefficients of g to be in N(H)Ί Our first lemma
clarifies this matter and provides a related computation which will be
useful in what follows.

LEMMA 1. Let R satisfy a nonzero GPI, let C be an algebraic closure
ofC, and set H = SociRQ^Then HN + NH c H and N c N{H),
where we consider N,Hc NC.

Proof For q e N let / be a nonzero ideal of R satisfying Jq + qJ c
R. Now JC = JC (g> C is a nonzero ideal of RC and H is the unique
minimal ideal of RC, so

Hq + qH = H2q + qH2 c H(JC)q + q(JC)H

C H{RC) + {RC)H c K

Therefore HN + NH c //, and since right multiplication by q G N is
a left //-module homomorphism of H to itself, N c N(H).
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Since our main results concern Lie ideals, we collect some well-
known facts about them in our next lemma. We say that R satis-
fies S4 if R satisfies the standard polynomial identity of degree four;
equivalently, R is an order in a simple algebra at most four dimen-
sional over its center, the quotient field of the center of R [26], and
so RJC = M2(C). The notation [a,b] = ab - ba is used throughout,
and recall that a Lie ideal of R is an additive subgroup L satisfying
[L,R]cL.

LEMMA 2. Let R be a prime ring, d e Der(i?)C, L a noncommuta-
tive Lie ideal ofR, and M the ideal ofR generated by [L, L], Then the
following hold:

(i) McL + L2;
(μ)[M,M]cL;

(iii) [L, L] is a noncommutative Lie ideal ofR unless char R = 2 and
R satisfies S4; and

(iv) [Lf L]d c Z implies d = 0 unless chari? = 2 and R satisfies S4.

Proof The proof of (i) is given in [11; proof of Lemma 1.3, p. 4].
B r i e f l y , f o r a,b e L a n d r e R , [a,b]r = [ar,b] - a[r,b]eL + L 2 a n d
then commutation with R gives the result. Now (ii) follows from (i) if
[L2, M] c L, and this holds using the identity [xy, z] = [x, yz]+[y, zx\
Next, (iii) is immediate from [21; Lemma 7, p. 120]. Finally, let A
be the subring generated by [U, U] for U = [L, L], Unless chari? = 2
and R satisfies S4, (iii) and (i) show that«/ c A for / a nonzero ideal
of R, and since Ad c [U, U]d = 0, one has Jd = 0 which easily gives
d = 0.

Our first theorem is the result which will enable us to show that H =
Soc(RC) is finite dimensional. This theorem is of some independent
interest because it shows that Lie ideals can satisfy nontrivial linear
identities, whereas ideals cannot ([23], [12; Lemma 1.3.2, p. 22], or
[18; Lemma 1, p. 766]), and further, that this can occur only when
RC is finite dimensional. In the proof of the theorem, and in later
proofs, we will need the fact that LitoίFs theorem [15; Theorem 3, p.
90] holds in H.

THEOREM (Litoβ). For any {h\,..., hn} c H = Soc(RC), there is an
idempotent e e H so that {hi} c eHe.

THEOREM 1. Let R be a prime ring, L a noncommutative Lie ideal
ofR, C an algebraic closure ofC, and f e F(N, X) a multilinear GPI
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for L. Then either f =_0, fjs a nonzero GPIfor Q~C, or RC = Mn(C)
and f is a GPI for [RC, RC].

Proof. We proceed by induction on the degree of /, and for the
case deg(/) = 1 let / = f{x\) = Σ)tf/.Xi6/. There is a nonzero ideal
M of R satisfying [M, M] c L, by Lemma 2, and it is clear that
f(x\>xi) = f(x\*i - *2*i) is a GPI for M. Assume that / Φ 0 in
F{N,X), so also / Φ 0. We may concludejrom ([18; Theorem 7,
p. 783] or [24; Theorem 3.9, p.JlO]) that / is a GPI_for R. The
multilinearity of / implies that / is also a GPI for RC, and so for
H = Soc(i?C), using Lemma 1. In particular f([H,H]) = 0. Note
also that f(H) c H by Lemma 1. Employing LitofFs theorem, one
can show that as C-vector spaces, H = [H, H] + Ce for any primitive
idempotent e e H [20; proof of Theorem 4], Therefore, f{H) =
Cf(e) C H. Should f(e) = 0, then f(H) = 0 forcing / = 0 in
F(N(H),X) [18; Lemma 1, p. 766]. Consequently, we may assume
that f(e) Φ 0 and use LitofFs theorem to find idempotents g,g'eH
satisfying f(e) e gHg and {g, gcii} c g'Hg', where the αz are the
left coefficients of /. If H is infinite dimensional over C, there is a
primitive idempotent e1 e H which is orthogonal to g1. As we have
seen, / = 0 if f(e') = 0, so we may write f{e') = cf(e) for c e C-{0}.
Hence cf{e) = cgf{e) = gf(ef) = Σs^bi c Σg'Hg'e'bi = 0,
contradicting f{e') φ 0. We are forced to conclude that either / = 0
or H is finite dimensional over C. Since H is an ideal and simple
subalgebra of RC, the second possibility gives RC = H = Mn(C),
completing the proof when / is linear.

Now let deg/ = k > 1 and assume that RC is not finite dimensional
over C. Write / = f(x\,...,x^) and consider / = f(x\,...,Xk-ι> y)
for any y e i . It is clear that / is multilinear and homogeneous of
degree k - 1, and that J{Lk-{) = 0, so by induction, J{Rk~ι) = 0.
Hence, for any TeRk~\ f(x) = f(r, x) is linear and f(L) = 0. The
case k = 1 now forces f = 0 and we have that / is a GPI for R. We
observe that / is also a GPI for Q [19; Theorem 1, p. 17] and so for
QC by multilinearity. When RC = Mn(C)9 the multilinearity of /
implies that / is a GPI for LC = LC <g>c C. Since [R~C, R~C] c LC
by Lemma 1, the proof is complete.

Posner's second theorem for Lie ideals and involutions. We have
now assembled what we need to prove our first main result, which is
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Posner's second theorem for Lie ideals. As we indicated in the intro-
duction, this result appears in [22] and [5]. Recall that Z denotes the
center of R.

THEOREM 2. Let R be a prime ring, L a noncommutative Lie ideal
ofR, and d e Der(i?) - {0}. If[x, xd] e Z for all xeL, then either R
is commutative, or chari? = 2 and R satisfies S*.

Proof. Suppose that d £ Inn(i?) and linearize the expression [xf xd]
to obtain the multilinear g = [x\,x$] + [xi,xd] e F(N,X). When
chari? = 2 and U y 6 Lf [tt y]d = g(tf y) e Z, or equivalently, [L, L]d c
Z. Thus, R satisfies S4 by Lemma 2, proving the theorem. We may
assume henceforth that chari? Φ 2. In g, replace the variables with
commutators to get

/ = [[xi, *il [xt x*[ + [*3> 4]] + K*3* XΛI [xf, X2] + [*i> Xi 11

and set / = [fxs]. Then / is a GDI for M, th^ideal of i? given
in Lemma 2 and satisfying [M,M] c L. Now if / = 0 in F{N,X)9

then / = 0 also, it would follow that [ [ X b ^ M ^ *^]] is a GPI for
R. But then i? would be commutative, using Lemma 2. Therefore,
we may assume / Φ 0 and apply Theorem A with W = {d} and
exponent sequence (d, 1,1,1,1) to conclude that [[[X3, JC4], [JCI, JC2]], ̂ 5]
is a GPI for i?. Again, i? must be commutative, finishing the proof
when d & Inn(i?).

Now assume d = ad(^4), so h = [g,x$] is a GPI for L, where each
xf is replaced with [xif A]. Note that h is written as a sum of distinct
basis monomials of F(N, X) if A & C, and that A e C means d = 0.
Hence h Φ 0 and so from Theorem 1 either h is a GPI for H, or
H = RC = Mn(C) and A is a GPI for [H,H]. In the first case take
e2 = e e H and replace each JC/ with e to obtain 0 = [e, #(e, e)] = [ef A];
that is, A centralizes all idempotents in H. but when H is infinite
dimensional, it is generated by its idempotents, forcing A e C and
d = 0. Consequently, we may assume that H = RC = Mn(C) for
rt > 1, and that A is a GPI for [H, H].

Let {e/y } be the usual matrix units for H. If / Φ j , then e/7 =
[eu>eij] £ [ £ ί # L so g{eij,eij) is a scalar matrix. This shows that
Aji = 0, so A is a diagonal matrix. For any invertible P € H,P~ιhP
is still a GPI for [iΐ H], and it follows that P~ιAP is also a diagonal
matrix. This is possible only if A is scalar, resulting again in d = 0
and completing the proof of the theorem.
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COROLLARY. Let R be a prime ring, I a nonzero ideal of R, and
d e Der(i?) - {0}. If[x, xd] e Z for each x el then R is commutative.

Proof. From Theorem 2 we may assume chari? = 2 and that R
satisfies S4. The proof of Theorem 2 shows that we may take d =
ad(Λ). Since RC = M2{C) and C is the quotient field of Z [26],
it follows that [x, [x, A]] e C for any x e RC = IC. In particular,
the choice of x = β\\ shows that A is diagonal, and then taking x =
e\\ + 1̂2 yields the contradiction AeC.

In Theorem 2, the exception given when chari? = 2 is necessary
because if R = Af2(C), for C a field with char C = 2, then L = [i?, 7?]
is noncommutative, but [L, L] c C. Hence if d = ad(A) for A e L,
then [x, X ^ ] G C holds for all x e L.

Our next theorem is the version of Theorem 2 for rings with invo-
lution. When R has an involution, *, and /* = / is an ideal of i?,
set S(J) = {y e J\y* = y}9 T(J) = {y + y*\y e /}, and K{J) =
{y - y*\y € J} We shall consider the situation when [x,xd] e Z for
all x G T(J), or for all x e A^(/). As one might expect, the exam-
ple mentioned just above shows that one must again exclude the case
when R satisfies S4.

EXAMPLE. Let R = M2{C) for C a field and assume first that
chari? φ 2. When i? has the symplectic involution (a

c J)* = (*c ~a

b),
S = C h so [S, SD] = 0 for any D e Der(i?). With the usual transpose
involution, K = C[en - e2\), so [K, K] = 0 and [iζ KD] = 0 whenever

Now, if char C = 2, T — K and for the transpose involution Γ =
C(en + e2\) is commutative, so again [7; TD] = 0 if TD c T\ for
example, D = ad(^4) with Aϊ2 = A2X. For the symplectic involution
on i?, T = C I2 and S = [i?, i?]. As we have seen [S, S] c C I2, so
for any D e Der(i?) [5, SD]cC-12 and [7: Γ D ] = 0.

Recall that an involution, * in i? is of theyksΐ kind if S(C) = C,
and of the second kind otherwise [24]. If * is of the second kind, let
c Φ c* and choose a nonzero ideal / = /* of i? with cJ + c*J c i?.
Then for y e I [c - c*)y = (cy + c*y*) - c*(y + y*) and (c - c*)y =
(cy-c*y*) + c*(y*- y)9 so / c CT(R)nCK(R). Consequently, each
of CT and CK contains a nonzero ideal of RC. When * is of the first
kind, then it can be extended to RC by setting (a ® c) = a* <g) c for
aeRC.
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Our next lemma states an important fact which we need in Theorem
3. It is certainly known, but there is no apparent reference, particularly
when chari? = 2. The statement that it holds for K when chari? Φ 2
is given in [9; p. 529], We provide an argument for completeness.

LEMMA 3. Let R be a prime ring with involution, *, and I = I* a
nonzero ideal ofR. If either [T{I), T{I)] c Z or [K(I), K(I)] c Z then
R satisfies S4.

Proof. Suppose that [Γ(/), T{I)] c Z, Ietf=[[xι+yι,
and note that / is a nonzero multilinear G*-PI for /. By Theorem A,
/ is a G*-PI for i?, so R satisfies £5 [2; Theorem 1, p. 63]. Localizing
R at S(Z) [26] and using the multilinearity of / and Sβ enable us to
assume that R is simple Artinian and satisfies both / and S^. If * is
of the second kind, then as we indicated above R = CT9 resulting in
[R,R] C C, which forces R to be commutative [11; Corollary, p. 9].
When * is of the first kind, RC satisfies / and S^, so unless R satisfies
S4,RJC = M3(C) and * is of transpose type. But for / ψ j , Uj =
Ciβij + Cjβji e T, where CjCj Φ 0 and [tχ2, ^3] ^ C /3. Thus R must
satisfy S4. The proof when [K(I), K(I)] c Z proceeds in exactly the
same fashion, starting with g = [[x\ —y\,x2 — y2]> *3]

THEOREM 3. Let R be a prime ring with involution, *, I = I* a
nonzero ideal of R, and d e Der(i?) - {0}. lf\x,xd\ e Z for all
x e T{I), or for all x e K(I), then R satisfies S4.

Proof. Assume first that d £ Inn(i?) and set

g =

- yu 4 - y{\ X3] + [[*2 - yi, 4 - vίl

Then if [x,xd] e Z holds for T(I),g e F(N,X, Y) is a multilinear
G*-DI for /, and if it holds for K(I), f is a multilinear G*-DI for /.
We proceed assuming that the hypothesis holds for T(I) and indicate
what changes, other than obvious ones, are necessary at each step if
one assumes instead that the hypothesis holds for K{I). Now g Φ 0
since it is a sum of distinct basis monomials, so by Theorem A g^ dtVj

is a G*-PI for R. But then [T(R), T(R)] c Z and R satisfies S4 by
Lemma 3. Therefore, we may assume d = ad(^4) and replacing each
expression td in g with [t, A] enables us to view g as a G*-PI for /.
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Next, observe that g Φ 0, unless A e C and d = 0, since the
basis monomial X\X2Ax^ in g is not canceled. By Theorem A, g is a
G*-PI for i? and i? satisfies a nonzero GPL Suppose that * is of the
second kind. Our comments before Lemma 3 show there is an ideal
J of R satisfying / c CT{R). Since d = ad(A) and g is an identity
for i?, it follows that for a,b e J, [a, bd] + [b, ad] e C n R = Z. If
chari? = 2, then [J,J]d c Z and i? must satisfy S4 by Lemma 2. If
char Φ 2 taking a = b - x eJ shows that [x, JC^] e Z and i? must be
commutative by the Corollary to Theorem 2. Consequently, we may
now assume that * is of the first kind, so * extends to RC = RC®c C-
Furthermore by multilinearity of g and Lemma 1, g is G*-PI for
H = Soc(i?C) Φ 0, from which it also follows that [x, [x} A]] e C for
all x e T(H) c T{IC).

Suppose for now that chari? = 2 and that H is infinite dimensional
over C. If a, be T(H) then [a, b]d = [a, bd]+[b, ad] e Cn/f = 0, using
Lemma 1 again. Thus [[7^ T], A] = 0 and since the subring generated
by [7;T] is H [21; Theorem 25, p. 129], we must have A e~C and
d =_0. This contradiction means that when chari? = 2, i/ = RC =
Mn(C)9 and i? satisfies S4 unless n > 2. If * is of transpose type on H,
then {tij = Cieij + Cj eji\i Φ j and certain c, e C with c\Cj Φ 0} span T
over C, and it is easy to see that [T,T] = T. As above, for a,b e T,
[a,b]d e C, so [T,A] = [[T,T],A] c C /Λ. Consequently [7;^] =
[[7; Γ], A] = 0, A centralizes Γ, and so, ^ centralizes ^ G Ctijtjk for
/, 7, /: distinct. This clearly gives the contradiction AeC In.

Consider now chari? = 2, H = Mn(C) and assume that * is of
symplectic type. This means that n = 2m and if B e H is written
as B = ΣBijEij for 1 < /,./ < m, where 5 0 e M2(C) and JEl7 =
h e M2(C) in the ui-j" position, then B* = E^/^17 w i t h (c ί ) * =
(_<c " / ) . In particular £ l 7 = (J g)^ 7 + (J })EH e T. Taking x = Ea

and using En is an idempotent shows that [Eiif [Eiit A]] = [En, A] e
C /„ which yields A^ = 0 if / Φ j \ that is, A = ΣAnEn. Now, for
B e M2(C) set Y = BEU + B*Eβ + Eu e T and compute [If [1M]] =
[Y2, A] = (BAjj + AaΈ^Eij + {B*An + AnB*)En e C In which forces
BAjj = AnB. When B = I2 one gets An = ^477, resulting in BAn =
i4//J?, S O ^ E C and d = 0. This contradiction finishes the proof when
chari? = 2, so we may now assume that char Φ 2.

Just as in the case chari? = 2, we want to show that H is finite
dimensional, so assume for now that H is infinite dimensional over
C. Thus for f 1, r2 e T{H), [th td] + [t2, t

d]eCnH = 0, using the fact
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that g is a G*-PI for 77, and Lemma 1. For y e T(H) and A e H,
hy + yh* e T(H). The computation above, with t{ = t2 = y shows
[yf yd] = 0, and then taking t\ = hy + yh* and t2 = y gives

0 = [Ay + μA*, / ] + [y, {hy + yA*/]

= [h, yd]y + y[h\ yd] + y(hy + yh*)d

- hdy2 - hydy - ydh*y - y(A*)*y.

Consequently, A^y2 = hydy-ydhy + yhι-hydy-ydh*y for Ai e /f,
and we may conclude from this that for y e T(H)9 Hdy2 c yH+ydH.
If also x e T(H) then (hx2)d = hdx2 + h(x2)d, and it follows that
H{x2)dy2 c i ^ x V + i / V c xH + jc^i* + yiϊ + >^#. Suppose
that (x2)dy2 Φ 0 for some choice of x and y. Now we have H =
H(x2)dy2H = xH + xdH + yH + ydH, which forces H to have finite
uniform dimension, since x, y, xd, yd e H, contradicting the infinite
dimensionality of H over C. Therefore, we may assume (x2)dy2 = 0.
Since char C φ 2, T(H) = S(H), and the span over C of {t2\t e S(H)}
is a Jordan ideal of S(H) (t2s + st2 = (t2 + s)2 - (t2)2 - s2); this span
is S(H) [11; Theorem 2.6, p. 32]. Also, the span of {t2\t e K(H)}
contains S(H), by a theorem of Baxter [11; Theorem 2.3, p. 29]. Con-
sequently, under either possible original hypothesis, S(H)dS(H) = 0,
and it follows from the fact that S(H) generates H as a ring [12; The-
orem 2.1.6, p. 61], that d = 0. In summary, we may now assume that
H = RC = Mn(C) where n > 2 and char C # 2.

If * is of transpose type on H, then as in the char I? = 2 case {ίίy =
Cĵ y + Cjβji\i Φ j and CiCj Φ 0} spans Γ(Jf). Since Y = [ίl7, [/l7, ^]] 6
C /w and n>2,ίoτkφ i, j we have Y# = -CiCjAik = 0, and it follows
that ^ is diagonal. Thus Y = 2cjCj(Aij - Ajj)(eu -e , 7 ) G C /rt, and so
^ 7 = ^ y y forcing ^ G C and again d = 0. Finally, if * is of symplectic
type on ΛΓ, then n = 2m and B e H can be written 5 = X) 5 l7JE l7 as
in the char I? = 2 case. Now EH = (J jj)£j7 + (J J)*£ l 7 e T(H), so
7 = [En, [Eiif A]]eV - In and this yields 0 = Yu = Au when / / j .

Now set ί = BEij + B*Eβ for any B e M2(C) and let
X = [f, [f, ^]] = 2BB\AiiEii + ^ 7 7 £ 7 7 ) - 2(BAjjB*Eii + B*AnBEn\

using ^ = ΣAuEa and £ £ * G C /2. Since X is scalar, for 5 = (J J),
5 5 * = 0 and it follows that X = 0, the "1-2" entry of ^ 7 is zero
and the "2-1" entry of An is zero. Using B = (Q °{) shows that ^7
and Ajj are diagonal. Lastly setting B = (Q | ) yields the fact that
4 | 7 = Ajj e C /2, giving the contradiction ̂ G U /n. Therefore n < 2
and R satisfies £4, finishing the proof of the theorem.
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Posner's first theorem for Lie ideals. We turn now to Posner's first
theorem. An additive mapping d of i? which satisfies [x, y]d = [xd, y]+
[JC, yd] for all x, y e A c R is called a Lie derivation of A into i?, and
the set of all such will be denoted Lie-Der(,4,i?). If (xy)d = xdy +
xyd for all x,y e A we write d e Deτ(A,R). Clearly, Όer(A,R) c
Lie-Der(,4,i?). Suppose now that d, h e Der(i?), L is a Lie ideal of
i?, and dh e Lie-Der(L,i?). As Posner observed [25, p. 1094], for
x,yeL, [JC, y]dh = [xdh, y] + [xd

9 yh] + [xh, yd] + [JC, ydh] since d,he
Der(i?), and also [x, y]dh = [xdh, y] + [JC, ydh] since dh e Lie-Der(JR).
Together these equations give [xd, yh] + [xh, yd] = 0, and this exhibits
the GDI in which we are interested. Working with the commutator of
this expression with another variable will enable us to obtain all of the
results mentioned in the introduction. In our results about Lie ideals
it is necessary to exclude the case when chari? = 2 and R satisfies
S4. For example, when R = Mι{C) and charC = 2, we have seen
that [L, L] c C for L = [R, R], so taking d = ad(Λ) and h = ad(5)
for A,BeL and C-independent results in dh e Lie-Der(L,i?), since
Ldh = 0, and also Rdh c C, although dh need not be zero. However,
a direct extension of Posner's first theorem to ideals does not require
this exception. As we mentioned earlier, Posner's proof [25; Theo-
rem 1, p. 1094] actually holds for ideals when chari? φ 2, and when
chari? = 2 a (characteristic free) proof is given in [6], and another in
[13]. The proof in [13] is not obviously adaptable to ideals, and while
the proof in [6] does work for ideals, it has never appeared in print.
For the sake of completeness of our results, and as an easy illustration
of our approach, we provide a proof of this theorem for ideals. First
we state a lemma from [18] which we will need to use a number of
times in the results which follow. Special cases whose proofs are es-
sentially the same are [23; Theorem 1, p. 577] and [12; Lemma 1.3.2,
p. 22].

LEMMA 4 [18; Lemma 1, p. 766]. Let R be a prime ring and let
f = ΣaiXφi e F{N,X, Y) be a GPI for a nonzero ideal I of R. If
{aι} c N - {0} then {6/} is C-dependent and if{b{\ c iV-{0} then
{at} is C-dependent

THEOREM 4. Let R be a prime ring, d,he Der(i?) and J a nonzero
ideal of R. ifdh e Όer(J,R) then either d = 0, h = 0, or chari? = 2
and d = he for c eC.
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Proof. Set / = xd

xx\ +xξx{9 so that for x, y e /, f{x, y) = (xy)dh -
xdhy - xydh = 0. If {d,h} is independent modulo Inn(iί), then /
is a multilinear GDI to which we may apply Theorem A to get the
identity f^fh) = X\X2- This contradiction shows that we may assume
h = dc + ad(A) for c e C, and rf £ Inn(i?). Replacing, in /, each (Xi)h

with xfc+[Xi, A] gives a GDI / for /, and if char R = 2, by Theorem A
JμΛ) = x\ [X2> A] is an identity for R. Thus AeC, and h = dc results,
finishing the proof if chari? = 2. If chari? φ 2 and c / O w e now
get the identity fψM) = ^cχ\χ2 f°Γ ^> another contradiction. Thus
we may assume d = ad(^4), and by a similar argument, h = ad(2?). If
h φ 0 or d Φ 0, there is y € / with either yh φ 0 or yd φ 0. Write
out f{x\, y) = JCI(v4yΛ + Byd) - Ax\yh - Bx\yd and use Lemma 4 to
conclude that {1, A, B} is C-dependent, again completing the proof if
charR = 2. When charR φ 2, d Φ 0, and h φ 0, / = 2c[xb ^][x2, -4],
when B = cA + C\, and substituting x for x\ and y c for x2 shows that
AeC, giving the contradiction d = 0.

We return now to the consideration of Lie ideals. As in our general-
ization of Posner's second theorem, much of the work in generalizing
the first theorem occurs after applying Theorem A. The computations
for matrix rings are more involved than for the earlier result and we
present them in a separate theorem which gives Posner's first theorem
for inner derivations of matrix rings.

THEOREM 5. Let R = Mn(C)for C an algebraically closed field, and
for A,BeR set g(xhx2) = [[xuAl lx2,B]] + [[xuB], [x2, A]]. If[g,x3]
is a GPIfor [R,R], then {In,A,B} is C-dependent, unless chari? = 2
and n = 2, and either A e C In or B e C In //char i? Φ 2.

Proof. Let {βίy} be the standard matrix units in R. It is clear that
it suffices to prove the theorem if either A or B is replaced by itself
plus a scalar matrix, or if both A and B are replaced by P~ιAP and
P~ιBP, respectively, for any P e GLΛ(C). Assume throughout that
A<£C In. Note first that for i φ j , etj e [R, R] and eti - en e [R, R],
so g(eij,eu - ejj) e C In. Computing the j-i entry of this element
yields %AμBμ = 0. Assume for now that char C Φ 2, so that

(1) AjiBJi = 0 if iφj.

Replacing A and B with A and B, their conjugates by P = In + ceij
for c e C, and applying equation (1) yields

0 = AijBij = [Aij + c{Au - Ajj) - c2Aji){Bij + c{Bu - BJJ) - c2Bji).
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If Aij Φ 0, then l?;y = 0 by (1). Since C is infinite, there is c £ C with
Aij Φ 0 and Ήu φ 0 unless BjΊ = Bu - BJJ = 0. But 4//J?,7 = 0 by
(1), so we may conclude

(2) if Aij Φ 0, then By = Bji = 0 and £,-/ = £/,.

Next, if k Φ i, j \ then using (1) again gives

0 = AikBik = (4 / i k - cAjk){Bik - cBjk).

As above, if Aik / O w e could choose c e C so AikBik φ 0 unless
J?# = 0. That is,

(3) if Aik φ 0 then ^ = 0 for j , / A: distinct.

Conjugate 4̂ and Bby P e GLn(C) so that 4̂ is in Jordan canonical
form. If A is diagonal we may assume that An φ A22, since A£CIn,
and so, conjugation of A and B with In + ce\ι changes A to an upper
triangular matrix with e\\A = c\e\\+ c2en for cz e C and c2 φ 0. We
may assume A has this form, since its Jordan form does if it is not
diagonal. Now, if n = 2 then since A\2 φ 0 we have J?12 = ̂ i = 0
and 2?π = B22 by (2), which is to say, B e C I2, finishing the proof.
If n > 2, conjugate A and 5 by P = /„ + (e23 H H ̂ 2/0 to obtain
4̂ and 5, where e\\A = c ^ π + c2(^i2 H 1" ̂ iw) Since A\j Φ 0 for

7 > 1, from (2) 2?i7 = l? 7 l = 0 and ϊ?π = ΪB7y, and using (3) gives
Bjk = 0 if j Φ k and k > 1. Thus 5 G C - lm proving the theorem
when char C φ2.

Assume now that char C = 2 and « > 2. As above, #(e/y, £// - βjj) e
C In, so computing the j-k entry gives

(4) AjiBjk + AjkBji = 0 for /, / /: distinct

and computing the k-i entry yields

(5) AjiBki + AkiBji = 0 for /, j , k distinct.

Just as in the char C Φ 2 case, we may assume that A is upper triangu-
lar and that enA - Ane\\+c{eχ2'\ \ e\n) with c Φ 0. We can also
assume that A\\ = B\\ = 0 by replacing A with A + A\\ln and B with
J? + BnIn. Using (5) for > / > 1 yields 0 = AjiBu + AuBji = CJB7/,

since ^ is upper triangular, and because c / 0 w e conclude

(6) Bji = 0 i f j > i > 1.

Now use (5) with j,k> \ and j Φ k to obtain 0 = AkjB\j + AijBkj,
or equivalently,

(7) c B k j = B X j A k j for j φ k a n d j , k > I.
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Still assuming j , k > 1 and j Φ k, by (4) 0 = AxkBxj + AXjBxk, and
since Axk = AXj = c Φ 0 we have B\j = J?^ = z for j,k > 1.
Substituting in (7) gives

(8) Bkj = c~λzAkj if j > 1 and A: ̂  /

Equations (4) and (5) hold for the conjugates A = P~ιAP and
~B = P~ιBP for P = In + yeXj, where y e C and 7 ^ 1. In particular
for l,j,k distinct, (5) yields

= Akj{BXj + y{Bxx + Bjj) + y2BjX)

+ (c + y(Axx + Ajj))(Bkj + yBkι).

This relation holds for all y e C, which is infinite, so the coefficient
of y must be zero. Now Axx = Bxx = 0 and Bkj = c~ιzAkj by (8), so
we may conclude that

(9) AkjBjj + cBkx + c~ιzAkjAjj = 0 if 1,7, k are distinct.

Since A is upper triangular, Akj = 0 if k> j \ so if k> 2, (9) implies
that Bkx = 0. When k = 2, take 7 = 3, multiply (9) by Blu and use

= 0 from (4) to get cB\χ = 0. Consequently

(10) ^ i = 0 if Λ: > 1.

Finally, using (4) with 1, j , k distinct gives

0 = AxkBXj + AXjBxk

= (c + yAjk)(BXj + y(Bxx + Bjj))

+ (c + y(Axx + Ajj)){Bxk + yBJk).

As above, the coefficient of y must be zero, which shows that cBjj +
zAjk + cBjk + zAjj = 0, and so by (8), Bjj = c~ιzAjj for j > 1. This
computation, together with (10) and (8) yields B = c~ιzA, so that
{/„, Λ B} is C-dependent, completing the proof of theorem.

We come now to our last main technical result, from which our
generalization of Posner's first theorem and the related results men-
tioned in the introduction will follow easily. Our approach is like that
in Theorem 2 or Theorem 3. The reduction to rings satisfying a GPI
using Theorem A is fairly easy, but the argument from that point to
the matrix case is considerably more involved. For convenience, we
first isolate a special case of Lemma 4 which will be useful to have.
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LEMMA 5. Let R be a prime ring and let f = [[xϊf A], B] e F(N, X).
Iff is a GPI for a nonzero ideal J ofR, then {1, A, B} is C-dependent,
and either AeC or B eC unless char 7? = 2 and A2, B2 e C.

Proof. From Lemma 4, the set of left coefficients {1,A,B, BA} of /
is C-dependent. If {1, A, B} is independent, then writing BA as a linear
combination of these and using Lemma 4 again gives the contradiction
{A,B} c C. Thus {l,A,B} must be C-dependent. If neither AeC
nor B e C, then [[x,4],Λ] is a GPI for / . When char7? = 2, this
is equivalent to [x, A2] forcing A2 e C, and so B2 e C also. When
chari? φ 2 replacing x with wv, for u,v e J shows [u,A][v,A] = 0,
and now replacing v with vu leads to [u, A]J[u, A] = 0 resulting in the
contradiction AeC, and so, proves the lemma.

THEOREM 6. Let R be a prime ring, L a noncommutative Lie ideal
ofR, and d,he Der(i?). Set g = [jcf, x\\ + [*?, xf] and f = [g} x3]. If
f is a GDI for L then either d = 0, h = 0, or chari? = 2 and either R
satisfies S4 or h = dc for c e C.

Proof. We assume throughout that d φθ,h Φ 0, and if chari? = 2
then i? does not satisfy S4. Let M be the nonzero ideal of i? satisfying
[M,M] c L given by Lemma 2. For any y,t e L use / to define a
multilinear GDI for Λf by setting

f(y. t) = 4
If {ίί, Λ} = W is independent modulo Inn(i?), apply Theorem A to
conclude that f{y,t\d,\) = [[[*i> *2L Λ ' ] is a GPI for i?. Using
Lemma 2, we have first that [[R,R],Lh] c Z, and then that h = 0,
since [[L, L], [L, L]]^ = 0. Thus, we may now assume that d £ Inn(i?)
and h = dc + ad(A) for c e C.

Let /(y, /) be /(y, ί) with each xf replaced with xfc + [x^ A]. Now
f(y, t) is a multilinear GDI for M, so Theorem A shows that /(y, ί)(Ai)
= [[[^1.^2! yΛ + y^^]^ ίl i s a G P I f o r R- A s above, it follows from
Lemma 2 that [[R,R],Lh+dc] c C and then that A + dc = 0. But
h = dc + ad(^), so 2dc + ad(A) = 0 results and either chari? = 2
and h = dc as claimed, or chari? / 2 and either a? e Inn(i?), a
contradiction, or c = 0 forcing 0 = h +dc = h, another contradiction.
Therefore, the theorem is proved unless d = ad(^ί), and by a similar
argument, h = ad(J?).

In / , replace xf with [Xi,A] and xf with [Xi,B] so that / is a
multilinear GPI for L. By Theorem 1, either RC = AfΛ(C) and
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/ is a GPI for [RC,R~C], or / is a GPI for QC. In the first case
N = RC = Mn{C), so A, B e RC and using Theorem 5 finishes the
proof: if chari? = 2 then {1, A, B} are C-dependent so d = 0, h = 0,
or h = dc, and if chari? ^ 2 then ^ G C or 5 G C. Consequently, we
may assume henceforth that / is a GPI for QC, and that RC is not
finite dimensional over C.

We shall finish the proof by showing that RC = H = Soc(i?C) is
finite dimensional, but first we need to know that H Φ 0; that is, that
f φθ. We claim that we may assume {1, A, B} is C-independent, and
so, C-independent. Otherwise, B = c\ + C2̂ 4 for c, G C and c2 ^ 0,
since we are assuming A g C and B £ C. If chari? = 2, then h =
ad(5) = dc2, finishing the proof, so assume chari? Φ 2. Substituting
in /, one gets the GPI f = 2c2[[[x{, A], [x2, A]], x3] for i?. Now fφO
in F(N, X) because A g C implies that X\Ax2Ax3 is a basis monomial
of f which cannot be canceled. Thus H Φ 0, f is a GPI for //, and
#' = [[χb A], [x2, A]] satisfies gf(H, H) c~CΓ\H = 0, using Lemma 2
and our assumption that H is infinite dimensional. In particular, for
any y e H [[x\,A], [y,A]] is a GPI for //, so from Lemma 5 either
AeC, forcing d = 0, or //* c C. Finally, ifHdcC then [/ί i/]^ = 0
and o? = 0 follows from Lemma 2. This contradiction establishes our
claim that {1, A, B} can be assumed to be C-independent.

Observe next that f φ 0 since X\Ax2Bx^ is a basis monomial of
F(N, X) appearing in /. Hence i? does satisfy a nonzero GPI, so H Φ 0
and /( i/ 3 ) = 0. As in the last paragraph, using Lemma 2, g(H,H) c
H Π C = 0, so g is a GPI for //. We claim next that for some h e i/,
[/z, ̂ 4] and [h, B] are C-independent. If not, then when [h, B] Φ 0,
[h, A] — c[h,B] for some c = c(h) e C. Rewriting g gives g(x\,h) =
\[xhA± cB], [h, B]]9 a GPI for i/, and from Lemma 5 [ U ] G C +

CA + C5. Thus [iί B] is at most 3-dimensional over C. Clearly,
[iί 5] c He for an idempotent e e i/, so the infinite dimensionality of
i/ and LitofFs theorem enable us to find an idempotent e' e H - {0}
orthogonal \o_e. Therefore, 0 = [H,B]e' = [H2,B]ef = [H,B]Hef,
forcing B e C and contradicting h Φ 0. Our claim is established.

Fix y G H so that y^ and j ^ are C-independent and note that
yd, yh G H by Lemma 1, so for some idempotent e G H,yd,yh G ei/.
By our assumption on i ί i/(l - e ) = {ί G i/|te = 0} ^ 0. For all £ G i/
and v G i/(l - e) - {0}, 0 = vg{t, y) = vί(i4yA +5y r f ) - wίo^ - v^y^,
so v^(x!, y) is a GPI for i/ and we may conclude from Lemma 4 that
{yΛ, yd, Ayh +Byd} is C-dependent. From our choice of y, it follows
that Ayh + Byd = cxy

h + c 2 j^ , i f e i t h e r vA φ 0 or vB φ 0. Setting



IDENTITIES AND POSNER'S THEOREMS 293

A — A- c\ and B = B - Cι, it is clear that d = ad(v4) and h = ad(ΪB),
so our choice of y is unaffected by replacing A and B by A and B.
However, now Ayh + Byd = 0, so computing vg(t, y) again shows
that vAxxy

h + vBx\yd is a GPI for 77 and we obtain vA = 0 = v7?
from Lemma 4. Hence, there is no loss of generality in assuming
vA = vB = 0 for all v G 77(1 - e). Since from Lemma 1 Ax e H for all
x G 77, we get from 7/(1 - e)Ax = 0, that Ax = ^ x e 77, resulting in
(Λ - eA)H = 0, and so Λ = eΛ G //. Similarly, 5 E / / and by LitofΓs
theorem A,Be eHe for some idempotent e e H. Using the infinite
dimensionality of 77, choose F', a nonzero idempotent orthogonal to
e, and consider the identity -e'g(x\>e'x2) = e'x2{B[x\f A] + A[x\,B])
for H. Since 77 is a simple ring, 5[xi,v4] + ̂ 4[xi, B] = Bx\A + Ax\B-
(BA + AB)x\, is a GPI for 77, which is impossible by Lemma 4 and
the independence of{l,A,B}. This contradiction completes the proof
of the theorem.

As an immediate consequence of Theorem 6 one can obtain the gen-
eralization of Posner's first theorem to Lie ideals in any characteristic,
as well as the related results mentioned earlier.

THEOREM 7. Let R be a prime ring, L a noncommutative Lie ideal
ofR, and d,h e Der(7?) - {0}. 7/7? does not satisfy S4 when char 7? = 2,
then:

(i) ifdh e Lie-Der(L, 7?) then char 7? = 2 and h = deforce C;
(ii) ifdh e Der(L, 7?) then char 7? = 2 and h = dc for c e C;

(iii) ίfLdh c Z then char 7? = 2, h = dc for c e C and dh = 0;
(iv) if[[L, A], B]cC for A,BeN, then either AeCBeQor

char 7? = 2 , { U , 5 } is C-dependent, and A2, B2 e C; and
(v) if [A, Ld] cCforAeN, then either A e C or char 7? = 2,

d = ad(A)c for c eC, and A2 e C.

Proof, (i) As we indicated before Lemma 4, this assumption implies
that [xf, x\ ] + [xζ, x$] is a GDI for 7?, so the conclusion is immediate
from Theorem 6.

(ii) This follows from (i) since Der(L,7?) c Lie-Der(L,7?).
(iii) For all x,y e L, [xd,yh] + [xh,yd] = [x,y]dh - [xdh,y] -

[x, ydh] = [x,y]dh € Z, so the conclusion follows from Theorem 6,
except for dh = 0 when char7? = 2 and h = dc. But in this case
dh = d2c = D G Der(7?), because char7? = 2, so LD c Z, forcing
[L, L]D = 0 and 7) = 0 results from Lemma 2.
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(iv) Clearly / = [[[xlf A\ B], x2] is j i GPI for L, so by TheoremJ,
either / is a GPI for N, or RC = Mn(C) and / is a GPI for [RC, RC].
Set d = ad(^4) and h = ad(jB). In the first case, when / is a GPI for
N, we are done using R = L = N in (iii) above. In the second case,
A, B G RC so the result follows again from (iii) with RC replacing R
and [RJC, R~C] replacing L.

(v) Consider the GDI / = [[A,xf],x2] for L. If d & Inn(i?) then
/ = 0 forces AeC, and if / Φ 0 then using Theorem A forces AeC
again. Hence d = ad(2?) and the result follows from (iv).

Posner's first theorem for rings with involution. Unlike the situation
for Posner's second theorem, there is no full generalization of the first
theorem for T(I) or K(I) when R has an involution. Of course, from
our earlier example one must expect to exclude R = M2(C), but things
do not work well in general either, as our next example shows.

EXAMPLE. Let C be a field with char C Φ 2 and let R be the ring
of all countable by countable matrices over C having only finitely
many nonzero entries. One can consider each element of R to be A e
M2n{C), in the upper left corner, and so one can define an extended
symplectic involution * on R. In particular, if t e T(R) then tχ2 =
t2ι = 0, so if d = ad(e12), then Tdl = 0 although d2 Φ 0. A similar
example holds for K when T contains a nilpotent element. For C, the
complex numbers, let * be transpose on R. Then for d = ad(ί) where
t = (\ Jj) in the upper left corner, it follows that Kdl = 0, although
d2φ0.

These examples are typical in that if dh is a derivation on T or K
then d and h must be inner and R must satisfy a GPI. The justification
of this statement comprises the remainder of the paper.

Our next result is like Theorem 6 in that the hypothesis is implied
by different, but related, conditions on composites of derivations.

THEOREM 8. Let R be a prime ring with involution *, let J = /*
be a nonzero ideal of R, and assume that R does not satisfy S*. Let
d.he Der(iϊ) - {0}, g = [xf, x*] + [xh

v xd

2l and f = [g, x3]. Iff is
a GDI for K{J), then d,h e Inn(R) and R satisfies a nonzero GPI, or
char I? = 2 and h = dc for c e C.

Proof. Set g* = [jcf - j/f, x\ - y\\ + [xh

λ - y\, x{ - y(] and /* =
[g*,Xi]. Suppose that {d, h} = W is independent modulo Inn(i?) and
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apply Theorem A to the G*-DI /* for / to get the G*-PI f*dhι) =
[[x\ - y\,Xj. - yi\,x{[ for i?. This implies that [K,K] c Z, forcing
R to satisfy £4 by Lemma 3, so that d and h cannot be independent.
Assume next that d & Inn(i?) and h = dc + ad(Λ) for c e C. In
/* replace expressions th with tdc + [t, A] and when chari? = 2 use
Theorem A again to conclude that /Λ χ χ, = [[x\ - y\, [xι - yi, A]], x3]
is a G*-PI for R. Thus [K,[K,A]] c ' C , which yields [[W],A] = 0
for V = [K, K], The subring generated by \VV\ contains a nonzero
ideal of R ([9] and [21]), unless R satisfies a polynomial identity.
In the first case, A e C, and in the second case RC = Mn(C). If
RC = Mn(C) and * is of the second kind then KC = RC, so using
f{*dι 1} one sees that [RC, [RC,A]] C C. But now [L,A] C C for the
Lie ideal L = [RQRC] and it follows that [[L,L],A] = 0 so A e C
by Lemma 2. When * is of the first kind, K{RC) = K(R)C, so using
f*d,ι 1) w e o b t a i n [fc [fc ^]] e C for all k e K(RC)9 and since A e RC
we may apply Theorem 3 to conclude again that A e C. Thus in all
cases A e C, so h = dc and we are finished if chari? = 2. Should
chari? ^ 2 then applying Theorem A again gives the G*-PI f?ddl\ =
2c[[x\ - y\, X2 - yι], X3] for i?, resulting in [K, K] c Z. This gives the
contradiction that i? satisfies S4, using Lemma 3. Therefore, we may
assume that d = ad(^) and, by a similar argument, h = ad(5). With
the obvious substitutions /* becomes a G*-PI for / . By Theorem A,
i? satisfies a nonzero GPI, completing the proof, unless /* = 0. But
/* = 0 implies g* = 0 which in turn gives g = 0, so applying Theorem
6 finishes the proof.

Using Theorem 8 we can obtain a partial extension of Theorem 7
to rings with involution.

THEOREM 9. Let R be a prime ring with involution, J = J* a nonzero
ideal ofR, and assume that R does not satisfy S4. Ifd, h e Der(i?) - {0}
and either dh e Lie-Όer{K(J), i?), dh e Όer(K(J), i?), or K(J)dh c Z,
then d,h e Inn(i?) and R satisfies a nonzero GPI, unless chari? = 2
and h = dc. When K{J)dh c Z, chari? = 2andh = dc, then dh = 0.

Proof. Each condition gives the identity of Theorem 8, so that the-
orem proves this one, except for the last statement. If chari? = 2,
then dh = d2c = De Der(i?), so K(J)D c C and D = 0 follows from
Theorem 3.

Our last result is a version of Theorem 9 for T(J). Now T(J) is a
Jordan ideal of S(R)9 which means that t o s = ts + st e T(J) for all
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t e T{J) and s e S(R). For d e End(R) we write d e JoV'Όcτ(AfR)
for A c i?, if (x o y)d = xd o y + x o yd for all x,yeA. Of course,
Der(Λ i?) c Jor-Der(Λ R).

THEOREM 10. Let R be a prime ring with involution which does
not satisfy S4, let J = J* be a nonzero ideal of R, and let d,h e
Der(i?) - {0}. If either dh e Joτ-Όer(T{J),R), dh e Όer{T{J),R), or
T(J)dh = 0, then d,h e Inn(R) and R satisfies a nonzero GPI unless
chari? = 2 and h = dc, in which case T(J)dh = 0 implies dh = 0.

Proof. We may assume chari? φ 2 since otherwise T(J) = K(J)
and Theorem 9 applies. Each condition implies that

and this yields xd o yh + xh o yd = 0 for all x, y e T(J). Set

f={4 + y{) o (4 + yhi) + i4 + vϊ) ° 14 + vil
and proceed as in Theorem 8. If {d, h} are independent modulo
Inn(i?) then / ( Λ Λ ) = (x{ + yx) o (x2 + y2) is a G*-PI for R, so t2 =
0 for all t e *S(i?) which easily gives a contradiction to R being
prime. Next, if d g Inn(i?) and h = dc + ad(^t) then the identity
/(^) = 2C(JCI + y\) o (χ2 + y2) for R forces c = 0 and h = ad(i4).
But now /(^j) = (x\ + y\) o ([x2 + y2>A]) is an identity for i?, and
so for RCS '= R{C n Γ(C)) c i?C. In particular [t2,A] = 0 for all
t e RC$. Since the span over C5 of {£2|ί G RC$} is a Jordan ideal
of S{RCS) = S(R)CS, it follows that this span contains T{I) for an
ideal / of RCS [12; Theorem 21.12, p. 71] and this forces A e C [12;
p. 59]. Consequently, d = ad(A) and h = ad(2?), so / is now a G*-PI
for J . If / Φ 0 then i? satisfies a nonzero GPI by Theorem A, whereas
if / = 0 then xfx% + x\x^ is an identity for R and we are finished by
applying Theorem 6.
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