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FINITE DIMENSIONAL REPRESENTATION
OF CLASSICAL CROSSED-PRODUCT ALGEBRAS

IGAL MEGORY-COHEN

The paper describes the structure of finite dimensional represen-
tations of BT, the crossed-product algebra of a classical dynamical
system (a^,Z,C(X)) where T is a homeomorphism on a compact
space X. The results are used to describe the topology of Vnmn(BT)
and to partially classify the hyperbolic crossed-product algebras over
the torus. One of the main results is that the number of orbits of any
fixed length with respect to T is an invariant of BT. A consequence of
that is that the entropy of T is an invariant of BT, for T a hyperbolic
automorphism on the m-torus.

Introduction. The purpose of this paper is to study finite dimen-
sional representations of classical crossed-product algebras. The re-
sults are used to describe the primitive ideal space of these algebras
and partially classify them. The first two sections deal primarily with
finite dimensional representations of BT, the crossed-product algebra
BT of a classical dynamical system of the form (ar , 1, C(X)) where T
is a homeomorphism on a compact space X. In § 1 we study the general
form of an irreducible n-dimensional representation of BT. We show
how to adjoin an orbit of length n to each such representation. The
idea of adjoining an orbit to each finite dimensional representation is
then further explored in §2. We show that the number of connected
components in Prim^-flr) is equal to the number of orbits of length
n with respect to T. A consequence of this result is that the entropy
of T, for T a hyperbolic automorphism on Tm, is an invariant of BT-
In §3 we investigate the classification of the BT'S corresponding to
automorphisms on the 2-torus.

Preliminaries. For any integer n we define En: BT -* C(X) to be the
(continuous) transformation that takes C in BT to its nth "Fourier"
coefficient /„ , see [1] for details. Symbolically, we write each C in BT
as £ / „ £ / " where /„ = En{C). Let (a,T,BT) be the C*-dynamical
system defined by the dual action d^C) = £A"C/n, [2]. It is known
that the Fejer sums of the function X —» &x(C) converge uniformly to
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c*x(C), see [3] for an elementary proof. In other words,

\k\<N

uniformly in X, and in particular for X = 1,

|A:|<JV v N

1. Finite dimensional representations of BT.

NOTATION. Let Y be a subset of X. Then by JY we denote the
closed ideal in BT generated by {/ e C(X);f\Y = 0}.

LEMMA (1.1). If Y is an invariant set then

Here ^2fnU
n stands for the element C in BT whose En(C) is equal to

Proof. Show {...} C JY. Let C = £ fn Un be in BT such that fn\Y =
0 for all n. Since the Fejer sums of C converge to C, as was mentioned
in the preliminaries, it follows that C is in JY. Conversely, show that
JY C {...}. Note that the collection / = {£ f in i t e/„£/";/«Ir = 0
Vn} is an ideal, not closed, in K(l, C{X)). Reason: If f\Y = 0 then
(«r)"( / ) = f{T~n{-)) is zero on Y since Y is invariant and therefore
/ is closed under multiplication. It is clearly closed under addition
and scalar multiplication. Since K(I, C(X)) is dense in BT it follows
at once that the closure of / is an ideal of Bj. Therefore, the closure
of / is exactly JY. Let C = £ / „ £ / " be in JY and let {Ck = EfnUn}
in / be such that Q. —• C. From the continuity of En it follows that
fn -+ fn for all n whence /„ is 0 on 7 for all n. D

We need some characterization of the JY's which is invariant under
algebra isomorphism. This will be done by means of finite dimen-
sional irreducible representations of BT- The treatment of a general n-
dimensional irreducible representation of BT will be tailored after the
1-dimensional case which is described in what follows. Let p: BT —* C
be a non-degenerate representation. We know, [2], that p = n x W
for some covariant representation (n, W,C) of our dynamical system
(aT, 1, C(X)). Now, since n restricted to C(X) is a representation of
C(X) on C it is known to be of the form n(f) = f(xo) for some XQ in
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X. Also, since W is unitary it is given by powers of some k of absolute
value 1. The covariant condition implies that n{a\(f)) = Wn{f)W~x

for all / in C(X). As a result T~1XQ = XQ whence xo is a fixed point.
Conversely, given any k of absolute value 1 and XQ a n x e d point we

can construct a covariant representation (n, W, C) by defining n(f) =
f(x0) for all / in C{X) and W{n) = kn for all n in Z. We denote
the dependence of p on xo and k by /?XO,A- TO summarize, the pXo/s
describe all the irreducible 1-dimensional representations of BT-

We now turn to a general irreducible ^-dimensional representation
of Bj. First we describe some such representations and then we show
that those are the only ones up to equivalence of representations. Let
Y be the orbit of some periodic point of period n. Fix some k =
{ky}yeY where \ky\ = 1 for all y in Y. As in the 1-dimensional case
we will show that corresponding to Y and k there is an ^-dimensional
representation pY,x of Bj- The representation pY,x will be constructed
via a covariant representation (n, W,12(Y)) of our dynamical system.
Let {ey}yeY be the natural basis in 12(Y). Then for all / in C{X), we
define n{f) as follows. For all y in Y, n{f)ey = f(y)ey. The unitary
representation W is defined via the unitary W, with some abuse of
notation, as follows. For all y in Y, Wey = kyejy. Note that with
respect to the basis {ey} the unitary W is the product of the unitaries
WQ and D, where WQ is the unitary taking ey to ejy and D is the
diagonal unitary having A/s on the diagonal.

We check that the covariant condition is satisfied. Let n be an
arbitrary integer. Then,

n(an(f))ey = n(f(T-"(-)))ey = f{T~ny)ey.

On the other hand, W~ney = fier-^y for some ji of absolute value 1.
Therefore,

Wnn{f)W-ney =
= {nf{T-ny)){WneT-ny) =
= f(T-"y)ey.

Finally, we need to show that n x W is irreducible. Since the algebra
Mn(C) is simple it is sufficient to show that n x W contains all the
elementary matrices in Mn(C). Since 7 is a finite orbit T acts on it
transitively. Therefore, each elementary matrix in Mn(C) will be equal
to n{f)Wm for appropriate / and m.

Next, we show that any n-dimensional representations of Bj must
have, up to equivalence of representations, the form pyj for some Y, k
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as described above. Let p be any irreducible representation of Bj on
some n-dimensional vector space C". Then, p = n x W for some co-
variant representation (n, W,Cn) of Bj. Since % reduced to C(X) is a
representation of that algebra, it is known that with respect to some or-
thonormal basis in C", misgiven b y / —• diagonal(/(;yo), •••,/(}>«-1))-
We index this basis by the y,'s so that {ej}, 0 < / < n - 1, is the new
basis. We may assume that the representation of n is with respect to
this basis. Let Y be the collection {yo> • • •. y«-i}- Note that for the
time being we do not know that the yfs are all distinct.

First, we show that Y is invariant. Since (n, W,Cn) is a covariant
representation then for all / in C(X), n(ai(f)) = Wn{f)W~l. If Y
was not invariant under T then there would exist y in Y such that
T~xy is not in Y. Choose / in C(X) such that / is 0 on Y but is 1 on
T~ly. In that case Wn{f)W~x = 0 but n{ax(f)) ^ 0—contradiction.

Next, we show that Y is an orbit. Note that a priori we do not know
that the y,'s are all distinct so that we also have to show that there is
no duplication among the y,-'s. Let Yx be the orbit of some arbitrary
element y in Y. Let {/,-} be a subsequence of {i} such that the y^'s
are distinct and their union is Y\. Also, let HYi be the linear subspace
of C" generated by {e^} and let / in C(X) be such that / is 1 on
Y\. The definition of n implies that n(f) is the orthogonal projection
P onto HYl and moreover since Y\ is invariant n{an(f)) — n{f).
Therefore the covariant condition implies now that P commutes with
Wj for all j whence HYl is a reducing subspace for W. Since it is
also a reducing subspace for n(C{X)) it follows that it is a reducing
subspace for (K X W){BT) and as a result Hyx = C". We may conclude
that Y — Y\ or in other words Y is an orbit and there is no duplication
among the y,-'s.

We summarize the previous discussion in the following

PROPOSITION (1.2). The py,x's describe, up to equivalence of repre-
sentations, all the irreducible n-dimensional representations of Br-

In the next proposition we find a necessary and sufficient condition
for two representations of the form pY,x, Y is fixed, to be equivalent.
Note that the previous discussion let us identify the representation
space with 12(Y).

PROPOSITION (1.3). Let pYtx andpYtti, whereX = {Xy} andn = {/uy},
be irreducible n-dimensional representations ofBr- Then, pYx is equiv-
alent to pYtll if and only ifUyer *y = NyeY t*y
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Proof. First assume that pYx is equivalent to pYlfl. Let U be the
unitary in BT induced by T and let {ey} be the natural basis in 12(Y),
the representation space. Since Tny = y, the definition of pY,x implies
that

pY,x(u")ey = ^Ty • ••^T'-tyey =

What follows is that pYx{Un) = (Uyer^y)1- Hence, Un - {Y[yeYXy)I
is in ker(pYx). Since we assumed that pYx is equivalent to pYfl it
follows that Un - (YlyeYXy)I is also in ker(pYfl). But the above cal-
culation also shows that pYll{Un) = {Y\y&Y P-y)I whence the first half
of the proposition follows. Conversely, assume that X and p. satisfy
YlyeY^y = YlyeY^y W e n e e d t 0 find a unitary W in B(12(Y)) such
that WpYXW~x = pY4l. Fix some y in Y. We then define W in the
following way. We let Wer>y = ctT'yeT'y, for 0 < / < n — 1, where
a^ = 1 and for 1 < / < n - 1,

r - l ( - 1
aT'y = \[^TJyY[^TXjy

7=0 ;=0

First note that i f / is in C(X) then ^ y ^ / ) ^ - 1 = />yiA,(/). There-
fore, since BT is generated by U and C(X) it follows that in order
to show that WpYXW~x = pYX it is enough now to prove that for
0 < i < n - 1

Check the case / = 0:

WpY,x{V)W'xey = WpYx(U)ey = WXyeTy = XyHyXyleTy = fiyeTy.

Check the case 0 < / < n — 1:

//-I i-I

lT e , yWpY,x{U)W-'eT,y = WpY,x(U) ]\pT)y HlTJy eT,
J\j=0 j=0

i-X i-X
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Check the case i = n — I:

( n-2 n-2

Y[rtyY[

7=0 7=0

( n-2 n-2

7=0 7=0

7=0 7=0

The last equality follows from the hypothesis that Flyer

2. The structure of Primn(^r). In this section we use the descrip-
tion of irreducible representations of Bj to study the structure of
Primn(i?7-). The number of connected components of Primn(i?7-) is
proven to be equal to the number of orbits of length n.

Let p be a finite dimensional irreducible representation of BT-
NOTATION. We denote by px the composition p • ax where a is the

dual action.

LEMMA (2.1). For any X in T, p. = {jiy} and Y a finite invariant set
ofT,

(Pr,nh =

Proof. For any / in C(X), {pY,n)x{f) = PY.Xfiif)', therefore we only
need to check that (PY.H)A(U) = PY,XH{U). Let {ey} be the natural
orthonormal basis in 12{Y). Then for any y in Y,

(pY,tx)x(U)ey = pY,n{W)ey = XpY^{U)ey = XpyeTy = py^iU). •

PROPOSITION (2.2). Let p = pY,\ be an n-dimensional irreducible
representation ofBT. Then,

JY = H ker(/?A).



( l - M ) n{fk)W
kkk - p • ax(Q = px(C)

CROSSED-PRODUCT ALGEBRAS 355

Proof. Assume that p = n x W. Let C - J^,fnU
n be in JY. By

Lemma (1.1) the /«'s are 0 on Y and hence the n(fnys are all 0. We
noted in the preliminaries that

E
\k\<N

uniformly in A. As a result,

E
\k\<N

for all A in T and therefore C is in
Conversely, let C = Y^fnUn be in ^\xksx(px). By Lemma (1.1) we

need to show that /„ is 0 on Y for all n. Let {Ck} C A:(Z,C(X))
be such that Q —• C. Since Px(Ck) —• /?;i(C) uniformly in A it fol-
lows by our hypothesis that Px(Ck) —»• 0 uniformly. Therefore for
all £, rj in 12(Y), (px{Ck)£,, rf) -* 0 uniformly in A. Let £, = ey and
t] = ey. Assume that for all k, J2an^n ^s the Fourier expansion of
A —> (px(Ck)ey,eyi). Then, a^ —»• 0 for all n. Let Ck = YlfnUn f ° r a ^
k. Then, a£ = ( ^ ( / ^ M ^ " ^ , ^ ' ) . Since fjf -* fn for all n, it follows
that (n{fn)W

ney, er) = 0. But Wney = <Jer»y, for some S of absolute
value 1. Therefore what we have shown is that for all n and for all y,
y' in Y, {eT-y,fn{y')Sy) = 0. In particular if we pick y = T~ny' we
get that fn(y') = 0. Since n in y' are arbitrary it follows that /„ is 0
on Y for all n. U

Let {Yj}jei be the set of all orbits of length n with respect to T.
Assume that / is finite.

NOTATION. Let FYi ={Re P r i m e r ) ; R 2 JYi}.

By definition, FYl is closed in Prim^/Jr). Also by Proposition (2.2)
each R in Prim^U^) is in one of the Fy,'s. Since the 7,'s are mutually
exclusive it follows that the Fy:'s are too. Consequently the FY's are
open and closed in Prim,, (.67-).

Finally, we show that if {ker(p)} € FYi, then the connected compo-
nent of {ker(p)} includes FYi. Fix p such that {ker(p)} e FYi. Now,
the function A —• {ker(px)} is continuous with respect to the Jacobson
topology on Prim,, (#7-). Reason: px = p • &x and ax is continuous
with respect to the pointwise topology. Therefore, A —> {ker(p^)} is a
continuous function from T to Prim,,(i?r)-
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Conclusion. The connected component of {kev(p)} includes the set

| R € Phmn(BT);R D f|ker(^) 1.

But by Proposition (2.2), f]x ker(/?A) = JY, and therefore the connected
component of {ker(p)} includes FY,. Since the Fy's are open and
closed it follows that the connected component of {kev(p)} is exactly
FY,.

We summarize the above discussion in the following theorem.

NOTATION. For any homeomorphism T we denote by O(T) the set
of all finite orbits of T.

THEOREM (2.3). Let 0 : Bj —»• Bs be an isomorphism. Let Y be a
finite orbit with respect to T. Then, Q(Jy) = Jz for some Z a finite orbit
with respect to S having the same cardinality as Y. The correspondence
Y —• Z defines a set theoretic isomorphism & between O(T) and O{S).
Moreover, (0')"1 = (0~') ' . Note that T and S may act on different
spaces.

Proof. We know that the map Primn(0): Phmn(BT) -* Frimn(Bs),
defined by {ker(p)} —• {kev(p-Q~1)} is a homeomorphism. Therefore,
the image of Fy under Prim(0) must be equal to some FZ where Z
is a finite orbit of S having the same cardinality as Y. Now, &(Jy) =
Jz because 0(ker(/?)) = ker(p • 0 " 1 ) and f]{R;RepTimn{BT),RDjY} R =
Jy. Finally, 0 ' is a set theoretic isomorphism because Prim(0) is a
homeomorphism. •

THEOREM (2.4). Let p be an irreducible n-dimensional representa-
tion of Bj. Assume that T has finitely many orbits of length n. Then
the connected component of{ker(p)} in Primn(i5r) is equal to

The number of connected components in ¥rimn(BT) is equal to the
number of orbits of length n.

Proof. The only part that was not proven is that the component of
{ker(/?)} in Vxim.n{BT) is equal to {ker(/?A);0 < arg(A) < 2n/n}. By
Proposition (1.2) we know that p is equivalent to some py:fl, where
Y is an orbit of length n and n = {ny}, and the discussion preceding
Theorem (2.3) shows that the connected component of p is equal to
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FY = {R € Pnmn{BT);R D JY,}. Therefore, what is left to show is
that for any v = {vy}, kev{pYu) is equal to ker(/)^) for some A such
that 0 < arg(A) < 2n/n. By Proposition (1.3) the class of pYv is
dependent only on \[yeY vy and by Lemma (2.1) pk = (pYlfl)x = PY,XH-

Therefore we are done because for {A; 0 < arg(A) < 2n/n} the range
of the function A —• Y\yeY kfiy is T. n

3. Partial classification of hyperbolic crossed-product algebras. We
now specialize to the case X = Tm and T an automorphism on Tw .

NOTATION. Denote by NP(T) the cardinality of the set {x G X;
Tpx = x} and by OP(T) the cardinality of the set of all periodic
points of period equal to p.

DEFINITION. An automorphism T is called hyperbolic if it has no
eigenvalue of unit modulus.

THEOREM (3.1). A partial classification of the BT's. Let T and S
be hyperbolic automorphisms on tori not necessarily of the same di-
mensions. If the algebra Bj is isomorphic to B$, then for all p > 1,
NP{T) = NP(S). In particular, T and S must have the same entropy.

Proof. If 0 : BT —• B$ is an isomorphism then it induces a home-
omorphism between Frimn(BT) and Primn(.Bs) for n > 1. Since the
number of connected components is a topological invariant it must be
the same for Fhmn(BT) and Pnmn(Bs). On the other hand we know
that the number of connected components in Prim«(fir) is equal to
the number of orbits of length n. Therefore, On(S) = On{T). Note
that Nn{T) is not quite the number of periodic points of period n
because it includes all points of period m for m which divides n. But
Nn(T) can be recovered from the OOT(T)'s simply because

Nn(T) = J2 °m{T).
{m>\;m\n}

Let a(T) = {Ai,..., Xk} be the spectrum of T and a(S) = {fii ,...,/*/}
be the spectrum of S. Recall that NP{T) = \ det(7^ - 7)|, [4]. By the
above discussion we know that if Bj is isomorphic to Bs then for all
p, | det(r" - 7)| = | det(SP - 7)|. Now,

k

i=\

Fix some e > 0. Note that we can make the following estimations.
If A G o(T) and |A| > 1 then for p sufficiently large,

(1 - s)\A\p < \W - l\ < (I + e)\A\p
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and if k e o{T) and \k\ < 1 then for p sufficiently large,

( l - e ) < | ^ - l | < ( l + g ) .

Denote by A the quantity ri{ru,|>i} l̂ /l- By the above estimation,

(1 - e)kAp < NP(T) < (1 + e)kAp.

Repeating the above calculation for S we get that for any fixed e' > 0
and for p sufficiently large

(1 - e')lMp < NP(S) < (1 + e')lMp

where M is analogous to A. Claim: A must be equal to M. Proof:
Assume without loss of generality that A < M. Then for any positive
8 fi'

(l+e)kAp <(l-e')lMp

for p sufficiently large. The last inequality implies that NP(T) <
NP(S)—contradiction. We have completed the proof since the en-
tropy of an automorphism T is equal to log(A), [4]. •

What can be now deduced about the classification of the crossed-
product algebras over the 2-torus. Note that if T is an automorphism
on the 2-torus then the equation for its characteristic polynomial, re-
garded as a linear transformation on the plane, is

x2 - trace(T)x + det(T) = 0.

From this relation we deduce that if T and S have the same trace
and determinant then they have the same eigenvalues and conversely.

In the last section we showed that the entropy of T is an invariant
of Bj. Since the product of the eigenvalues of T is 1 in absolute value
it follows that if BT = Bs then

Let us make the following notations. Let 8 — det(r), S' = det(,S),
T = trace(T) and %' — trace(5). Since the eigenvalues of T and S are
real we now have that

r ± VT 2 - AS __ T' ± sK1 - 43'
2 ~ 2 "

Claim. The above equation for the eigenvalues implies that |T| = |T'|
and T2 - 4<5 = (T')2 - 43'. Therefore also <5 = S'. Proof: Recall that
the eigenvalues of hyperbolic automorphisms are irrational, [5]. In
general, if k, I, m, n are integers and m + y/n, k + \Tl are irrational
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numbers satisfying m + y/n — k + v7 then m = k and n = I. Reason:
s/n = (k-m)+Vl and therefore n = {k-m)2+l+2{k-m)\fl. Ifk^m
then \fl is rational whence k + \/l is also rational—contradiction.

Can we furthermore deduce that trace(r) = trace(5')? From the
last section we know that | det(r" - / ) | = | det(5" - 7)| for all n > 1.
Observe that

| det(r - / ) | = | det(T) + 1 - trace(7)|.

Therefore if det(T) = det(S) = 1 then | 2 - T | = | 2 - T ' | . Since |T| = |T'|
it follows that T = T'.

We may summarize the above discussion in the following

COROLLARY (3.2). Let T and S be hyperbolic automorphisms on the
2-torus. IfBT = Bs then:

(i) det(r) = det(S),
(ii) |trace(r)| = |trace(5)|.
//det(r) or det(S) is equal to 1 then
(iii) trace(T) = trace(.S').

REMARKS. In the case det(T) = det(S) = -1 it is not true that
BT = Bs implies that trace(T) = trace(5"). Example: Let T be a
hyperbolic automorphism having determinant —1. Let S = T~l. Note
that trace(S) = -trace(r) but BT s BT-< = Bs.
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