FINITE DIMENSIONAL REPRESENTATION OF CLASSICAL CROSSED-PRODUCT ALGEBRAS

IGAL MEGORY-COHEN

The paper describes the structure of finite dimensional representations of B_T , the crossed-product algebra of a classical dynamical system $(\alpha_T, \mathbb{Z}, C(X))$ where T is a homeomorphism on a compact space X. The results are used to describe the topology of $\operatorname{Prim}_n(B_T)$ and to partially classify the hyperbolic crossed-product algebras over the torus. One of the main results is that the number of orbits of any fixed length with respect to T is an invariant of B_T . A consequence of that is that the entropy of T is an invariant of B_T , for T a hyperbolic automorphism on the m-torus.

Introduction. The purpose of this paper is to study finite dimensional representations of classical crossed-product algebras. The results are used to describe the primitive ideal space of these algebras and partially classify them. The first two sections deal primarily with finite dimensional representations of B_T , the crossed-product algebra B_T of a classical dynamical system of the form $(\alpha_T, \mathbb{Z}, C(X))$ where T is a homeomorphism on a compact space X. In $\S1$ we study the general form of an irreducible *n*-dimensional representation of B_T . We show how to adjoin an orbit of length n to each such representation. The idea of adjoining an orbit to each finite dimensional representation is then further explored in $\S2$. We show that the number of connected components in $Prim_n(B_T)$ is equal to the number of orbits of length *n* with respect to T. A consequence of this result is that the entropy of T, for T a hyperbolic automorphism on T^m , is an invariant of B_T . In §3 we investigate the classification of the B_T 's corresponding to automorphisms on the 2-torus.

Preliminaries. For any integer *n* we define $E_n: B_T \to C(X)$ to be the (continuous) transformation that takes *C* in B_T to its *n*th "Fourier" coefficient f_n , see [1] for details. Symbolically, we write each *C* in B_T as $\sum f_n U^n$ where $f_n = E_n(C)$. Let $(\hat{\alpha}, T, B_T)$ be the *C**-dynamical system defined by the dual action $\hat{\alpha}_{\lambda}(C) = \sum \lambda^n U^n$, [2]. It is known that the Fejer sums of the function $\lambda \to \hat{\alpha}_{\lambda}(C)$ converge uniformly to

 $\hat{\alpha}_{\lambda}(C)$, see [3] for an elementary proof. In other words,

$$\sum_{|k| < N} \left(1 - \frac{|k|}{N} \right) f_k U^k \lambda^k \to \hat{\alpha}_{\lambda}(C)$$

uniformly in λ , and in particular for $\lambda = 1$,

$$\sum_{|k| < N} \left(1 - \frac{|k|}{N} \right) f_k U^k \to C.$$

1. Finite dimensional representations of B_T .

NOTATION. Let Y be a subset of X. Then by J_Y we denote the closed ideal in B_T generated by $\{f \in C(X); f|_Y = 0\}$.

LEMMA (1.1). If Y is an invariant set then

$$J_Y = \left\{ \sum f_n U^n \in B_T; f_n | Y = 0 \right\}.$$

Here $\sum f_n U^n$ stands for the element C in B_T whose $E_n(C)$ is equal to f_n .

Proof. Show $\{\ldots\} \subseteq J_Y$. Let $C = \sum f_n U^n$ be in B_T such that $f_n|_Y = 0$ for all n. Since the Fejer sums of C converge to C, as was mentioned in the preliminaries, it follows that C is in J_Y . Conversely, show that $J_Y \subseteq \{\ldots\}$. Note that the collection $I = \{\sum_{\text{finite}} f_n U^n; f_n|_Y = 0$ $\forall n\}$ is an ideal, not closed, in $K(\mathbb{Z}, C(X))$. Reason: If $f|_Y = 0$ then $(\alpha_T)^n(f) = f(T^{-n}(\cdot))$ is zero on Y since Y is invariant and therefore I is closed under multiplication. It is clearly closed under addition and scalar multiplication. Since $K(\mathbb{Z}, C(X))$ is dense in B_T it follows at once that the closure of I is an ideal of B_T . Therefore, the closure of I is exactly J_Y . Let $C = \sum f_n U^n$ be in J_Y and let $\{C_k = \sum f_n^k U^n\}$ in I be such that $C_k \to C$. From the continuity of E_n it follows that $f_n^k \to f_n$ for all n whence f_n is 0 on Y for all n.

We need some characterization of the J_Y 's which is invariant under algebra isomorphism. This will be done by means of finite dimensional irreducible representations of B_T . The treatment of a general *n*dimensional irreducible representation of B_T will be tailored after the 1-dimensional case which is described in what follows. Let $\rho: B_T \to \mathbb{C}$ be a non-degenerate representation. We know, [2], that $\rho = \pi \times W$ for some covariant representation (π, W, \mathbb{C}) of our dynamical system $(\alpha_T, \mathbb{Z}, C(X))$. Now, since π restricted to C(X) is a representation of C(X) on \mathbb{C} it is known to be of the form $\pi(f) = f(x_0)$ for some x_0 in

350

X. Also, since W is unitary it is given by powers of some λ of absolute value 1. The covariant condition implies that $\pi(\alpha_1(f)) = W\pi(f)W^{-1}$ for all f in C(X). As a result $T^{-1}x_0 = x_0$ whence x_0 is a fixed point.

Conversely, given any λ of absolute value 1 and x_0 a fixed point we can construct a covariant representation (π, W, \mathbb{C}) by defining $\pi(f) = f(x_0)$ for all f in C(X) and $W(n) = \lambda^n$ for all n in \mathbb{Z} . We denote the dependence of ρ on x_0 and λ by $\rho_{x_0,\lambda}$. To summarize, the $\rho_{x_0,\lambda}$'s describe all the irreducible 1-dimensional representations of B_T .

We now turn to a general irreducible *n*-dimensional representation of B_T . First we describe some such representations and then we show that those are the only ones up to equivalence of representations. Let Y be the orbit of some periodic point of period n. Fix some $\lambda = \{\lambda_y\}_{y \in Y}$ where $|\lambda_y| = 1$ for all y in Y. As in the 1-dimensional case we will show that corresponding to Y and λ there is an n-dimensional representation $\rho_{Y,\lambda}$ of B_T . The representation $\rho_{Y,\lambda}$ will be constructed via a covariant representation $(\pi, W, l^2(Y))$ of our dynamical system. Let $\{e_y\}_{y \in Y}$ be the natural basis in $l^2(Y)$. Then for all f in C(X), we define $\pi(f)$ as follows. For all y in Y, $\pi(f)e_y = f(y)e_y$. The unitary representation W is defined via the unitary W, with some abuse of notation, as follows. For all y in Y, $We_y = \lambda_y e_{Ty}$. Note that with respect to the basis $\{e_y\}$ the unitary W is the product of the unitaries W_0 and D, where W_0 is the unitary taking e_y to e_{Ty} and D is the diagonal unitary having λ_y 's on the diagonal.

We check that the covariant condition is satisfied. Let n be an arbitrary integer. Then,

$$\pi(\alpha_n(f))e_y = \pi(f(T^{-n}(\cdot)))e_y = f(T^{-n}y)e_y.$$

On the other hand, $W^{-n}e_y = \mu e_{T^{-n}y}$ for some μ of absolute value 1. Therefore,

$$W^{n}\pi(f)W^{-n}e_{y} = W^{n}\pi(f)(\mu e_{T^{-n}y}) = W^{n}\mu f(T^{-n}y)e_{T^{-n}y}$$

= $(\mu f(T^{-n}y))(W^{n}e_{T^{-n}y}) = (\mu f(T^{-n}y))(\mu^{-1}e_{y})$
= $f(T^{-n}y)e_{y}.$

Finally, we need to show that $\pi \times W$ is irreducible. Since the algebra $M_n(\mathbb{C})$ is simple it is sufficient to show that $\pi \times W$ contains all the elementary matrices in $M_n(\mathbb{C})$. Since Y is a finite orbit T acts on it transitively. Therefore, each elementary matrix in $M_n(\mathbb{C})$ will be equal to $\pi(f)W^m$ for appropriate f and m.

Next, we show that any *n*-dimensional representations of B_T must have, up to equivalence of representations, the form $\rho_{Y,\lambda}$ for some Y, λ

as described above. Let ρ be any irreducible representation of B_T on some *n*-dimensional vector space \mathbb{C}^n . Then, $\rho = \pi \times W$ for some covariant representation (π, W, \mathbb{C}^n) of B_T . Since π reduced to C(X) is a representation of that algebra, it is known that with respect to some orthonormal basis in \mathbb{C}^n , π is given by $f \to \text{diagonal}(f(y_0), \ldots, f(y_{n-1}))$. We index this basis by the y_i 's so that $\{e_i\}, 0 \le i \le n-1$, is the new basis. We may assume that the representation of π is with respect to this basis. Let Y be the collection $\{y_0, \ldots, y_{n-1}\}$. Note that for the time being we do not know that the y_i 's are all distinct.

First, we show that Y is invariant. Since (π, W, \mathbb{C}^n) is a covariant representation then for all f in C(X), $\pi(\alpha_1(f)) = W\pi(f)W^{-1}$. If Y was not invariant under T then there would exist y in Y such that $T^{-1}y$ is not in Y. Choose f in C(X) such that f is 0 on Y but is 1 on $T^{-1}y$. In that case $W\pi(f)W^{-1} = 0$ but $\pi(\alpha_1(f)) \neq 0$ —contradiction.

Next, we show that Y is an orbit. Note that a priori we do not know that the y_i 's are all distinct so that we also have to show that there is no duplication among the y_i 's. Let Y_1 be the orbit of some arbitrary element y in Y. Let $\{i_j\}$ be a subsequence of $\{i\}$ such that the y_{i_j} 's are distinct and their union is Y_1 . Also, let H_{Y_1} be the linear subspace of \mathbb{C}^n generated by $\{e_{i_j}\}$ and let f in C(X) be such that f is 1 on Y_1 . The definition of π implies that $\pi(f)$ is the orthogonal projection P onto H_{Y_1} and moreover since Y_1 is invariant $\pi(\alpha_n(f)) = \pi(f)$. Therefore the covariant condition implies now that P commutes with W^j for all j whence H_{Y_1} is a reducing subspace for W. Since it is also a reducing subspace for $\pi(C(X))$ it follows that it is a reducing subspace for $(\pi \times W)(B_T)$ and as a result $H_{Y_1} = \mathbb{C}^n$. We may conclude that $Y = Y_1$ or in other words Y is an orbit and there is no duplication among the y_i 's.

We summarize the previous discussion in the following

PROPOSITION (1.2). The $\rho_{Y,\lambda}$'s describe, up to equivalence of representations, all the irreducible n-dimensional representations of B_T .

In the next proposition we find a necessary and sufficient condition for two representations of the form $\rho_{Y,\lambda}$, Y is fixed, to be equivalent. Note that the previous discussion let us identify the representation space with $l^2(Y)$.

PROPOSITION (1.3). Let $\rho_{Y,\lambda}$ and $\rho_{Y,\mu}$, where $\lambda = \{\lambda_y\}$ and $\mu = \{\mu_y\}$, be irreducible n-dimensional representations of B_T . Then, $\rho_{Y,\lambda}$ is equivalent to $\rho_{Y,\mu}$ if and only if $\prod_{y \in Y} \lambda_y = \prod_{y \in Y} \mu_y$.

Proof. First assume that $\rho_{Y,\lambda}$ is equivalent to $\rho_{Y,\mu}$. Let U be the unitary in B_T induced by T and let $\{e_y\}$ be the natural basis in $l^2(Y)$, the representation space. Since $T^n y = y$, the definition of $\rho_{Y,\lambda}$ implies that

$$\rho_{Y,\lambda}(U^n)e_y = \lambda_y\lambda_{Ty}\cdots\lambda_{T^{n-1}y}e_y = \left(\prod_{y\in Y}\lambda_y\right)e_y.$$

What follows is that $\rho_{Y,\lambda}(U^n) = (\prod_{y \in Y} \lambda_y)I$. Hence, $U^n - (\prod_{y \in Y} \lambda_y)I$ is in ker $(\rho_{Y,\lambda})$. Since we assumed that $\rho_{Y,\lambda}$ is equivalent to $\rho_{Y,\mu}$ it follows that $U^n - (\prod_{y \in Y} \lambda_y)I$ is also in ker $(\rho_{Y,\mu})$. But the above calculation also shows that $\rho_{Y,\mu}(U^n) = (\prod_{y \in Y} \mu_y)I$ whence the first half of the proposition follows. Conversely, assume that λ and μ satisfy $\prod_{y \in Y} \lambda_y = \prod_{y \in Y} \mu_y$. We need to find a unitary W in $B(l^2(Y))$ such that $W\rho_{Y,\lambda}W^{-1} = \rho_{Y,\mu}$. Fix some y in Y. We then define W in the following way. We let $We_{T'y} = \alpha_{T'y}e_{T'y}$, for $0 \le i \le n-1$, where $\alpha_y = 1$ and for $1 \le i \le n-1$,

$$\alpha_{T'y} = \prod_{j=0}^{i-1} \mu_{T'y} \prod_{j=0}^{i-1} \lambda_{T'y}^{-1}.$$

First note that if f is in C(X) then $W\rho_{Y,\lambda}(f)W^{-1} = \rho_{Y,\mu}(f)$. Therefore, since B_T is generated by U and C(X) it follows that in order to show that $W\rho_{Y,\lambda}W^{-1} = \rho_{Y,\lambda}$ it is enough now to prove that for $0 \le i \le n-1$

$$W\rho_{Y,\lambda}(U)W^{-1}e_{T^{i}y} = \rho_{Y,\mu}(U)e_{T^{i}y} = \mu_{T^{i}y}e_{T^{i+1}y}.$$

Check the case i = 0:

 $W\rho_{Y,\lambda}(U)W^{-1}e_y = W\rho_{Y,\lambda}(U)e_y = W\lambda_y e_{Ty} = \lambda_y \mu_y \lambda_y^{-1}e_{Ty} = \mu_y e_{Ty}.$ Check the case 0 < i < n - 1:

$$\begin{split} W\rho_{Y,\lambda}(U)W^{-1}e_{T^{i}y} &= W\rho_{Y,\lambda}(U)\left(\prod_{j=0}^{i-1}\mu_{T^{j}y}^{-1}\prod_{j=0}^{i-1}\lambda_{T^{j}y}\right)e_{T^{i}y} \\ &= W(\lambda_{T^{i}y})\left(\prod_{j=0}^{i-1}\mu_{T^{j}y}^{-1}\prod_{j=0}^{i-1}\lambda_{T^{j}y}\right)e_{T^{i+1}y} \\ &= \left(\prod_{j=0}^{i}\mu_{T^{j}y}\prod_{j=0}^{i}\lambda_{T^{j}y}^{-1}\right)(\lambda_{T^{i}y})\left(\prod_{j=0}^{i-1}\mu_{T^{j}y}^{-1}\prod_{j=0}^{i-1}\lambda_{T^{j}y}\right)e_{T^{i+1}y} \\ &= \mu_{T^{i}y}e_{T^{i+1}y}. \end{split}$$

Check the case i = n - 1:

$$\begin{split} W\rho_{Y,\lambda}(U)W^{-1}e_{T^{n-1}y} &= W\rho_{Y,\lambda}(U)\left(\prod_{j=0}^{n-2}\mu_{T^{j}y}^{-1}\prod_{j=0}^{n-2}\lambda_{T^{j}y}\right)e_{T^{n-1}y} \\ &= W(\lambda_{T^{n-1}y})\left(\prod_{j=0}^{n-2}\mu_{T^{j}y}^{-1}\prod_{j=0}^{n-2}\lambda_{T^{j}y}\right)e_{y} \\ &= (\lambda_{T^{n-1}y})\left(\prod_{j=0}^{n-2}\mu_{T^{j}y}^{-1}\prod_{j=0}^{n-2}\lambda_{T^{j}y}\right)e_{y} \\ &= \left(\prod_{j=0}^{n-2}\mu_{T^{j}y}^{-1}\prod_{j=0}^{n-1}\lambda_{T^{j}y}\right)e_{y} = \mu_{T^{n-1}y}e_{y}. \end{split}$$

The last equality follows from the hypothesis that $\prod_{y \in Y} \lambda_y = \prod_{y \in Y} \mu_y$.

2. The structure of $\operatorname{Prim}_n(B_T)$. In this section we use the description of irreducible representations of B_T to study the structure of $\operatorname{Prim}_n(B_T)$. The number of connected components of $\operatorname{Prim}_n(B_T)$ is proven to be equal to the number of orbits of length n.

Let ρ be a finite dimensional irreducible representation of B_T .

NOTATION. We denote by ρ_{λ} the composition $\rho \cdot \hat{\alpha}_{\lambda}$ where $\hat{\alpha}$ is the dual action.

LEMMA (2.1). For any λ in T, $\mu = {\mu_y}$ and Y a finite invariant set of T,

$$(\rho_{Y,\mu})_{\lambda} = \rho_{Y,\lambda\mu}.$$

Proof. For any f in C(X), $(\rho_{Y,\mu})_{\lambda}(f) = \rho_{Y,\lambda\mu}(f)$; therefore we only need to check that $(\rho_{Y,\mu})_{\lambda}(U) = \rho_{Y,\lambda\mu}(U)$. Let $\{e_y\}$ be the natural orthonormal basis in $l^2(Y)$. Then for any y in Y,

$$(\rho_{Y,\mu})_{\lambda}(U)e_{y} = \rho_{Y,\mu}(\lambda U)e_{y} = \lambda\rho_{Y,\mu}(U)e_{y} = \lambda\mu_{y}e_{Ty} = \rho_{Y,\lambda\mu}(U). \quad \Box$$

PROPOSITION (2.2). Let $\rho = \rho_{Y,\lambda}$ be an n-dimensional irreducible representation of B_T . Then,

$$J_Y = \bigcap_{\lambda \in \mathbf{T}} \ker(\rho_\lambda).$$

Proof. Assume that $\rho = \pi \times W$. Let $C = \sum f_n U^n$ be in J_Y . By Lemma (1.1) the f_n 's are 0 on Y and hence the $\pi(f_n)$'s are all 0. We noted in the preliminaries that

$$\sum_{|k| < N} \left(1 - \frac{|k|}{N} \right) f_k U^k \lambda^k \to \hat{\alpha}_{\lambda}(C)$$

uniformly in λ . As a result,

$$\sum_{|k| < N} \left(1 - \frac{|k|}{N} \right) \pi(f_k) W^k \lambda^k \to \rho \cdot \hat{\alpha}_{\lambda}(C) = \rho_{\lambda}(C)$$

for all λ in **T** and therefore C is in $\bigcap_{\lambda} \ker(\rho_{\lambda})$.

Conversely, let $C = \sum f_n U^n$ be in $\bigcap_{\lambda} \ker(\rho_{\lambda})$. By Lemma (1.1) we need to show that f_n is 0 on Y for all n. Let $\{C_k\} \subseteq K(\mathbb{Z}, C(X))$ be such that $C_k \to C$. Since $\rho_{\lambda}(C_k) \to \rho_{\lambda}(C)$ uniformly in λ it follows by our hypothesis that $\rho_{\lambda}(C_k) \to 0$ uniformly. Therefore for all ξ, η in $l^2(Y)$, $(\rho_{\lambda}(C_k)\xi, \eta) \to 0$ uniformly in λ . Let $\xi = e_y$ and $\eta = e_{y'}$. Assume that for all $k, \sum a_n^k \lambda^n$ is the Fourier expansion of $\lambda \to (\rho_{\lambda}(C_k)e_y, e_{y'})$. Then, $a_n^k \to 0$ for all n. Let $C_k = \sum f_n^k U^n$ for all k. Then, $a_n^k = (\pi(f_n^k)W^n e_y, e_{y'})$. Since $f_n^k \to f_n$ for all n, it follows that $(\pi(f_n)W^n e_y, e_{y'}) = 0$. But $W^n e_y = \delta e_{T^n y}$, for some δ of absolute value 1. Therefore what we have shown is that for all n and for all y, y' in Y, $(e_{T^n y}, \overline{f_n(y')}e_{y'}) = 0$. In particular if we pick $y = T^{-n}y'$ we get that $f_n(y') = 0$. Since n in y' are arbitrary it follows that f_n is 0 on Y for all n.

Let $\{Y_i\}_{i \in I}$ be the set of all orbits of length *n* with respect to *T*. Assume that *I* is finite.

NOTATION. Let $F_{Y_i} = \{R \in \operatorname{Prim}_{\pi}(B_T); R \supseteq J_{Y_i}\}$.

By definition, F_{Y_i} is closed in $\operatorname{Prim}_n(B_T)$. Also by Proposition (2.2) each R in $\operatorname{Prim}_n(B_T)$ is in one of the F_{Y_i} 's. Since the Y_i 's are mutually exclusive it follows that the F_{Y_i} 's are too. Consequently the F_{Y_i} 's are open and closed in $\operatorname{Prim}_n(B_T)$.

Finally, we show that if $\{\ker(\rho)\} \in F_{Y_i}$, then the connected component of $\{\ker(\rho)\}$ includes F_{Y_i} . Fix ρ such that $\{\ker(\rho)\} \in F_{Y_i}$. Now, the function $\lambda \to \{\ker(\rho_\lambda)\}$ is continuous with respect to the Jacobson topology on $\operatorname{Prim}_n(B_T)$. Reason: $\rho_\lambda = \rho \cdot \hat{\alpha}_\lambda$ and $\hat{\alpha}_\lambda$ is continuous with respect to the pointwise topology. Therefore, $\lambda \to \{\ker(\rho_\lambda)\}$ is a continuous function from T to $\operatorname{Prim}_n(B_T)$.

Conclusion. The connected component of $\{\ker(\rho)\}$ includes the set

$$\left\{R\in\operatorname{Prim}_n(B_T); R\supseteq\bigcap_{\lambda}\operatorname{ker}(\rho_{\lambda})\right\}.$$

But by Proposition (2.2), $\bigcap_{\lambda} \ker(\rho_{\lambda}) = J_{Y_{i}}$ and therefore the connected component of $\{\ker(\rho)\}$ includes $F_{Y_{i}}$. Since the $F_{Y_{i}}$'s are open and closed it follows that the connected component of $\{\ker(\rho)\}$ is exactly $F_{Y_{i}}$.

We summarize the above discussion in the following theorem.

NOTATION. For any homeomorphism T we denote by O(T) the set of all finite orbits of T.

THEOREM (2.3). Let $\Theta: B_T \to B_S$ be an isomorphism. Let Y be a finite orbit with respect to T. Then, $\Theta(J_Y) = J_Z$ for some Z a finite orbit with respect to S having the same cardinality as Y. The correspondence $Y \to Z$ defines a set theoretic isomorphism Θ' between O(T) and O(S). Moreover, $(\Theta')^{-1} = (\Theta^{-1})'$. Note that T and S may act on different spaces.

Proof. We know that the map $\operatorname{Prim}_n(\Theta)$: $\operatorname{Prim}_n(B_T) \to \operatorname{Prim}_n(B_S)$, defined by $\{\ker(\rho)\} \to \{\ker(\rho \cdot \Theta^{-1})\}$ is a homeomorphism. Therefore, the image of F_Y under $\operatorname{Prim}(\Theta)$ must be equal to some F_Z where Z is a finite orbit of S having the same cardinality as Y. Now, $\Theta(J_Y) =$ J_Z because $\Theta(\ker(\rho)) = \ker(\rho \cdot \Theta^{-1})$ and $\bigcap_{\{R; R \in \operatorname{Prim}_n(B_T), R \supseteq J_Y\}} R =$ J_Y . Finally, Θ' is a set theoretic isomorphism because $\operatorname{Prim}(\Theta)$ is a homeomorphism. \Box

THEOREM (2.4). Let ρ be an irreducible n-dimensional representation of B_T . Assume that T has finitely many orbits of length n. Then the connected component of $\{\ker(\rho)\}$ in $\operatorname{Prim}_n(B_T)$ is equal to

 $\{\ker(\rho_{\lambda}); 0 \leq \arg(\lambda) < 2\pi/n\}.$

The number of connected components in $Prim_n(B_T)$ is equal to the number of orbits of length n.

Proof. The only part that was not proven is that the component of $\{\ker(\rho)\}$ in $\operatorname{Prim}_n(B_T)$ is equal to $\{\ker(\rho_{\lambda}); 0 \leq \arg(\lambda) < 2\pi/n\}$. By Proposition (1.2) we know that ρ is equivalent to some $\rho_{Y,\mu}$, where Y is an orbit of length n and $\mu = \{\mu_y\}$, and the discussion preceding Theorem (2.3) shows that the connected component of ρ is equal to

356

 $F_Y = \{R \in \operatorname{Prim}_n(B_T); R \supseteq J_{Y_i}\}$. Therefore, what is left to show is that for any $\nu = \{\nu_y\}$, $\operatorname{ker}(\rho_{Y,\nu})$ is equal to $\operatorname{ker}(\rho_{\lambda})$ for some λ such that $0 \leq \operatorname{arg}(\lambda) < 2\pi/n$. By Proposition (1.3) the class of $\rho_{Y,\nu}$ is dependent only on $\prod_{\nu \in Y} \nu_{\nu}$ and by Lemma (2.1) $\rho_{\lambda} = (\rho_{Y,\mu})_{\lambda} = \rho_{Y,\lambda\mu}$. Therefore we are done because for $\{\lambda; 0 \leq \operatorname{arg}(\lambda) < 2\pi/n\}$ the range of the function $\lambda \to \prod_{\nu \in Y} \lambda \mu_{\nu}$ is T. \Box

3. Partial classification of hyperbolic crossed-product algebras. We now specialize to the case $X = T^m$ and T an automorphism on T^m .

NOTATION. Denote by $N_p(T)$ the cardinality of the set $\{x \in X; T^p x = x\}$ and by $O_p(T)$ the cardinality of the set of all periodic points of period equal to p.

DEFINITION. An automorphism T is called hyperbolic if it has no eigenvalue of unit modulus.

THEOREM (3.1). A partial classification of the B_T 's. Let T and S be hyperbolic automorphisms on tori not necessarily of the same dimensions. If the algebra B_T is isomorphic to B_S , then for all $p \ge 1$, $N_p(T) = N_p(S)$. In particular, T and S must have the same entropy.

Proof. If $\Theta: B_T \to B_S$ is an isomorphism then it induces a homeomorphism between $\operatorname{Prim}_n(B_T)$ and $\operatorname{Prim}_n(B_S)$ for $n \ge 1$. Since the number of connected components is a topological invariant it must be the same for $\operatorname{Prim}_n(B_T)$ and $\operatorname{Prim}_n(B_S)$. On the other hand we know that the number of connected components in $\operatorname{Prim}_n(B_T)$ is equal to the number of orbits of length n. Therefore, $O_n(S) = O_n(T)$. Note that $N_n(T)$ is not quite the number of periodic points of period nbecause it includes all points of period m for m which divides n. But $N_n(T)$ can be recovered from the $O_m(T)$'s simply because

$$N_n(T) = \sum_{\{m \ge 1; m \mid n\}} O_m(T).$$

Let $\sigma(T) = \{\lambda_1, \dots, \lambda_k\}$ be the spectrum of T and $\sigma(S) = \{\mu_1, \dots, \mu_l\}$ be the spectrum of S. Recall that $N_p(T) = |\det(T^p - I)|$, [4]. By the above discussion we know that if B_T is isomorphic to B_S then for all p, $|\det(T^p - I)| = |\det(S^p - I)|$. Now,

$$|\det(T^p - I)| = \prod_{i=1}^k |\lambda_i^p - 1|.$$

Fix some $\varepsilon > 0$. Note that we can make the following estimations. If $\lambda \in \sigma(T)$ and $|\lambda| > 1$ then for p sufficiently large,

$$(1-\varepsilon)|\lambda|^p \le |\lambda^p - 1| \le (1+\varepsilon)|\lambda|^p$$

and if $\lambda \in \sigma(T)$ and $|\lambda| < 1$ then for p sufficiently large,

 $(1-\varepsilon) \leq |\lambda^p - 1| \leq (1+\varepsilon).$

Denote by Λ the quantity $\prod_{\{i;|\lambda_i|>1\}} |\lambda_i|$. By the above estimation,

$$(1-\varepsilon)^k \Lambda^p \leq N_p(T) \leq (1+\varepsilon)^k \Lambda^p.$$

Repeating the above calculation for S we get that for any fixed $\varepsilon' > 0$ and for p sufficiently large

$$(1 - \varepsilon')^l M^p \le N_p(S) \le (1 + \varepsilon')^l M^p$$

where M is analogous to Λ . Claim: Λ must be equal to M. Proof: Assume without loss of generality that $\Lambda < M$. Then for any positive $\varepsilon, \varepsilon'$

$$(1+\varepsilon)^k \Lambda^p < (1-\varepsilon')^l M^p$$

for p sufficiently large. The last inequality implies that $N_p(T) < N_p(S)$ —contradiction. We have completed the proof since the entropy of an automorphism T is equal to $\log(\Lambda)$, [4].

What can be now deduced about the classification of the crossedproduct algebras over the 2-torus. Note that if T is an automorphism on the 2-torus then the equation for its characteristic polynomial, regarded as a linear transformation on the plane, is

$$x^2 - \operatorname{trace}(T)x + \det(T) = 0.$$

From this relation we deduce that if T and S have the same trace and determinant then they have the same eigenvalues and conversely.

In the last section we showed that the entropy of T is an invariant of B_T . Since the product of the eigenvalues of T is 1 in absolute value it follows that if $B_T \cong B_S$ then

$$\{|\lambda|; \lambda \in \sigma(T)\} = \{|\mu|; \mu \in \sigma(T)\}.$$

Let us make the following notations. Let $\delta = \det(T)$, $\delta' = \det(S)$, $\tau = \operatorname{trace}(T)$ and $\tau' = \operatorname{trace}(S)$. Since the eigenvalues of T and S are real we now have that

$$\frac{\tau\pm\sqrt{\tau^2-4\delta}}{2}=\pm\frac{\tau'\pm\sqrt{\tau'^2-4\delta'}}{2}.$$

Claim. The above equation for the eigenvalues implies that $|\tau| = |\tau'|$ and $\tau^2 - 4\delta = (\tau')^2 - 4\delta'$. Therefore also $\delta = \delta'$. Proof: Recall that the eigenvalues of hyperbolic automorphisms are irrational, [5]. In general, if k, l, m, n are integers and $m + \sqrt{n}$, $k + \sqrt{l}$ are irrational numbers satisfying $m + \sqrt{n} = k + \sqrt{l}$ then m = k and n = l. Reason: $\sqrt{n} = (k-m) + \sqrt{l}$ and therefore $n = (k-m)^2 + l + 2(k-m)\sqrt{l}$. If $k \neq m$ then \sqrt{l} is rational whence $k + \sqrt{l}$ is also rational—contradiction.

Can we furthermore deduce that trace(T) = trace(S)? From the last section we know that $|\det(T^n - I)| = |\det(S^n - I)|$ for all $n \ge 1$. Observe that

$$|\det(T-I)| = |\det(T) + 1 - \operatorname{trace}(T)|.$$

Therefore if det(T) = det(S) = 1 then $|2 - \tau| = |2 - \tau'|$. Since $|\tau| = |\tau'|$ it follows that $\tau = \tau'$.

We may summarize the above discussion in the following

COROLLARY (3.2). Let T and S be hyperbolic automorphisms on the 2-torus. If $B_T \cong B_S$ then:

(i) det(T) = det(S), (ii) |trace(T)| = |trace(S)|. If det(T) or det(S) is equal to 1 then (iii) trace(T) = trace(S).

REMARKS. In the case det(T) = det(S) = -1 it is not true that $B_T \cong B_S$ implies that trace(T) = trace(S). Example: Let T be a hyperbolic automorphism having determinant -1. Let $S = T^{-1}$. Note that trace(S) = -trace(T) but $B_T \cong B_{T^{-1}} = B_S$.

References

- D. P. O'Donovan, Weighted shifts and covariance algebras, Trans. Amer. Math. Soc., 208 (1975), 1-25.
- [2] G. K. Pedersen, C*-Algebras and their automorphism groups, London Math. Soc. Monographs 14, Academic Press, London, (1979).
- [3] I. Megory-Cohen, *Properties of hyperbolic crossed-product algebras*, dissertation, University Microfilms International, (1985).
- [4] P. Walters, An Introduction of Ergodic Theory, Springer-Verlag, New York, (1982).
- [5] Z. Nitecki, Differentiable Dynamics, MIT Press, Cambridge, Mass., (1971).

Received June 8, 1987.

7231 Martwood Way San Jose, CA 95120