FINITE DIMENSIONAL REPRESENTATION OF CLASSICAL CROSSED-PRODUCT ALGEBRAS

Igal Megory-Cohen

Abstract

The paper describes the structure of finite dimensional representations of B_{T}, the crossed-product algebra of a classical dynamical system $\left(\alpha_{T}, \mathbb{Z}, C(X)\right)$ where T is a homeomorphism on a compact space X. The results are used to describe the topology of $\operatorname{Prim}_{n}\left(B_{T}\right)$ and to partially classify the hyperbolic crossed-product algebras over the torus. One of the main results is that the number of orbits of any fixed length with respect to T is an invariant of B_{T}. A consequence of that is that the entropy of T is an invariant of B_{T}, for T a hyperbolic automorphism on the m-torus.

Introduction. The purpose of this paper is to study finite dimensional representations of classical crossed-product algebras. The results are used to describe the primitive ideal space of these algebras and partially classify them. The first two sections deal primarily with finite dimensional representations of B_{T}, the crossed-product algebra B_{T} of a classical dynamical system of the form ($\alpha_{T}, \mathbb{Z}, C(X)$) where T is a homeomorphism on a compact space X. In $\S 1$ we study the general form of an irreducible n-dimensional representation of B_{T}. We show how to adjoin an orbit of length n to each such representation. The idea of adjoining an orbit to each finite dimensional representation is then further explored in $\S 2$. We show that the number of connected components in $\operatorname{Prim}_{n}\left(B_{T}\right)$ is equal to the number of orbits of length n with respect to T. A consequence of this result is that the entropy of T, for T a hyperbolic automorphism on \mathbf{T}^{m}, is an invariant of B_{T}. In $\S 3$ we investigate the classification of the B_{T} 's corresponding to automorphisms on the 2 -torus.

Preliminaries. For any integer n we define $E_{n}: B_{T} \rightarrow C(X)$ to be the (continuous) transformation that takes C in B_{T} to its nth "Fourier" coefficient f_{n}, see [1] for details. Symbolically, we write each C in B_{T} as $\sum f_{n} U^{n}$ where $f_{n}=E_{n}(C)$. Let $\left(\hat{\alpha}, \mathbf{T}, B_{T}\right)$ be the C^{*}-dynamical system defined by the dual action $\hat{\alpha}_{\lambda}(C)=\sum \lambda^{n} U^{n}$, [2]. It is known that the Fejer sums of the function $\lambda \rightarrow \hat{\alpha}_{\lambda}(C)$ converge uniformly to
$\hat{\alpha}_{\lambda}(C)$, see [3] for an elementary proof. In other words,

$$
\sum_{|k|<N}\left(1-\frac{|k|}{N}\right) f_{k} U^{k} \lambda^{k} \rightarrow \hat{\alpha}_{\lambda}(C)
$$

uniformly in λ, and in particular for $\lambda=1$,

$$
\sum_{|k|<N}\left(1-\frac{|k|}{N}\right) f_{k} U^{k} \rightarrow C .
$$

1. Finite dimensional representations of B_{T}.

Notation. Let Y be a subset of X. Then by J_{Y} we denote the closed ideal in B_{T} generated by $\left\{f \in C(X) ;\left.f\right|_{Y}=0\right\}$.

Lemma (1.1). If Y is an invariant set then

$$
J_{Y}=\left\{\sum f_{n} U^{n} \in B_{T} ;\left.f_{n}\right|_{Y}=0\right\} .
$$

Here $\sum f_{n} U^{n}$ stands for the element C in B_{T} whose $E_{n}(C)$ is equal to f_{n}.

Proof. Show $\{\ldots\} \subseteq J_{Y}$. Let $C=\sum f_{n} U^{n}$ be in B_{T} such that $\left.f_{n}\right|_{Y}=$ 0 for all n. Since the Fejer sums of C converge to C, as was mentioned in the preliminaries, it follows that C is in J_{Y}. Conversely, show that $J_{Y} \subseteq\{\ldots\}$. Note that the collection $I=\left\{\sum_{\text {finite }} f_{n} U^{n} ;\left.f_{n}\right|_{Y}=0\right.$ $\forall n\}$ is an ideal, not closed, in $K(\mathbb{Z}, C(X))$. Reason: If $\left.f\right|_{Y}=0$ then $\left(\alpha_{T}\right)^{n}(f)=f\left(T^{-n}(\cdot)\right)$ is zero on Y since Y is invariant and therefore I is closed under multiplication. It is clearly closed under addition and scalar multiplication. Since $K(\mathbb{Z}, C(X))$ is dense in B_{T} it follows at once that the closure of I is an ideal of B_{T}. Therefore, the closure of I is exactly J_{Y}. Let $C=\sum f_{n} U^{n}$ be in J_{Y} and let $\left\{C_{k}=\sum f_{n}^{k} U^{n}\right\}$ in I be such that $C_{k} \rightarrow C$. From the continuity of E_{n} it follows that $f_{n}^{k} \rightarrow f_{n}$ for all n whence f_{n} is 0 on Y for all n.

We need some characterization of the J_{Y} 's which is invariant under algebra isomorphism. This will be done by means of finite dimensional irreducible representations of B_{T}. The treatment of a general n dimensional irreducible representation of B_{T} will be tailored after the 1-dimensional case which is described in what follows. Let $\rho: B_{T} \rightarrow \mathbb{C}$ be a non-degenerate representation. We know, [2], that $\rho=\pi \times W$ for some covariant representation (π, W, \mathbb{C}) of our dynamical system $\left(\alpha_{T}, \mathbb{Z}, C(X)\right.$). Now, since π restricted to $C(X)$ is a representation of $C(X)$ on \mathbb{C} it is known to be of the form $\pi(f)=f\left(x_{0}\right)$ for some x_{0} in
X. Also, since W is unitary it is given by powers of some λ of absolute value 1. The covariant condition implies that $\pi\left(\alpha_{1}(f)\right)=W \pi(f) W^{-1}$ for all f in $C(X)$. As a result $T^{-1} x_{0}=x_{0}$ whence x_{0} is a fixed point.

Conversely, given any λ of absolute value 1 and x_{0} a fixed point we can construct a covariant representation (π, W, \mathbb{C}) by defining $\pi(f)=$ $f\left(x_{0}\right)$ for all f in $C(X)$ and $W(n)=\lambda^{n}$ for all n in \mathbb{Z}. We denote the dependence of ρ on x_{0} and λ by $\rho_{x_{0}, \lambda}$. To summarize, the $\rho_{x_{0}, \lambda}$'s describe all the irreducible 1-dimensional representations of B_{T}.

We now turn to a general irreducible n-dimensional representation of B_{T}. First we describe some such representations and then we show that those are the only ones up to equivalence of representations. Let Y be the orbit of some periodic point of period n. Fix some $\lambda=$ $\left\{\lambda_{y}\right\}_{y \in Y}$ where $\left|\lambda_{y}\right|=1$ for all y in Y. As in the 1-dimensional case we will show that corresponding to Y and λ there is an n-dimensional representation $\rho_{Y, \lambda}$ of B_{T}. The representation $\rho_{Y, \lambda}$ will be constructed via a covariant representation ($\pi, W, l^{2}(Y)$) of our dynamical system. Let $\left\{e_{y}\right\}_{y \in Y}$ be the natural basis in $l^{2}(Y)$. Then for all f in $C(X)$, we define $\pi(f)$ as follows. For all y in $Y, \pi(f) e_{y}=f(y) e_{y}$. The unitary representation W is defined via the unitary W, with some abuse of notation, as follows. For all y in $Y, W e_{y}=\lambda_{y} e_{T y}$. Note that with respect to the basis $\left\{e_{y}\right\}$ the unitary W is the product of the unitaries W_{0} and D, where W_{0} is the unitary taking e_{y} to $e_{T y}$ and D is the diagonal unitary having λ_{y} 's on the diagonal.

We check that the covariant condition is satisfied. Let n be an arbitrary integer. Then,

$$
\pi\left(\alpha_{n}(f)\right) e_{y}=\pi\left(f\left(T^{-n}(\cdot)\right)\right) e_{y}=f\left(T^{-n} y\right) e_{y}
$$

On the other hand, $W^{-n} e_{y}=\mu e_{T^{-n} y}$ for some μ of absolute value 1 . Therefore,

$$
\begin{aligned}
W^{n} \pi(f) W^{-n} e_{y} & =W^{n} \pi(f)\left(\mu e_{T^{-n} y}\right)=W^{n} \mu f\left(T^{-n} y\right) e_{T^{-n} y} \\
& =\left(\mu f\left(T^{-n} y\right)\right)\left(W^{n} e_{T^{-n} y}\right)=\left(\mu f\left(T^{-n} y\right)\right)\left(\mu^{-1} e_{y}\right) \\
& =f\left(T^{-n} y\right) e_{y}
\end{aligned}
$$

Finally, we need to show that $\pi \times W$ is irreducible. Since the algebra $M_{n}(\mathbb{C})$ is simple it is sufficient to show that $\pi \times W$ contains all the elementary matrices in $M_{n}(\mathbb{C})$. Since Y is a finite orbit T acts on it transitively. Therefore, each elementary matrix in $M_{n}(\mathbb{C})$ will be equal to $\pi(f) W^{m}$ for appropriate f and m.

Next, we show that any n-dimensional representations of B_{T} must have, up to equivalence of representations, the form $\rho_{Y, \lambda}$ for some Y, λ
as described above. Let ρ be any irreducible representation of B_{T} on some n-dimensional vector space \mathbb{C}^{n}. Then, $\rho=\pi \times W$ for some covariant representation $\left(\pi, W, \mathbb{C}^{n}\right)$ of B_{T}. Since π reduced to $C(X)$ is a representation of that algebra, it is known that with respect to some orthonormal basis in \mathbb{C}^{n}, π is given by $f \rightarrow \operatorname{diagonal}\left(f\left(y_{0}\right), \ldots, f\left(y_{n-1}\right)\right)$. We index this basis by the y_{i} 's so that $\left\{e_{i}\right\}, 0 \leq i \leq n-1$, is the new basis. We may assume that the representation of π is with respect to this basis. Let Y be the collection $\left\{y_{0}, \ldots, y_{n-1}\right\}$. Note that for the time being we do not know that the y_{i} 's are all distinct.

First, we show that Y is invariant. Since $\left(\pi, W, \mathbb{C}^{n}\right)$ is a covariant representation then for all f in $C(X), \pi\left(\alpha_{1}(f)\right)=W \pi(f) W^{-1}$. If Y was not invariant under T then there would exist y in Y such that $T^{-1} y$ is not in Y. Choose f in $C(X)$ such that f is 0 on Y but is 1 on $T^{-1} y$. In that case $W \pi(f) W^{-1}=0$ but $\pi\left(\alpha_{1}(f)\right) \neq 0$-contradiction.

Next, we show that Y is an orbit. Note that a priori we do not know that the y_{i} 's are all distinct so that we also have to show that there is no duplication among the y_{i} 's. Let Y_{1} be the orbit of some arbitrary element y in Y. Let $\left\{i_{j}\right\}$ be a subsequence of $\{i\}$ such that the y_{i} 's are distinct and their union is Y_{1}. Also, let $H_{Y_{1}}$ be the linear subspace of \mathbb{C}^{n} generated by $\left\{e_{i,}\right\}$ and let f in $C(X)$ be such that f is 1 on Y_{1}. The definition of π implies that $\pi(f)$ is the orthogonal projection P onto $H_{Y_{1}}$ and moreover since Y_{1} is invariant $\pi\left(\alpha_{n}(f)\right)=\pi(f)$. Therefore the covariant condition implies now that P commutes with W^{j} for all j whence $H_{Y_{1}}$ is a reducing subspace for W. Since it is also a reducing subspace for $\pi(C(X))$ it follows that it is a reducing subspace for $(\pi \times W)\left(B_{T}\right)$ and as a result $H_{Y_{1}}=\mathbb{C}^{n}$. We may conclude that $Y=Y_{1}$ or in other words Y is an orbit and there is no duplication among the y_{i} 's.

We summarize the previous discussion in the following
Proposition (1.2). The $\rho_{Y, \lambda}$'s describe, up to equivalence of representations, all the irreducible n-dimensional representations of B_{T}.

In the next proposition we find a necessary and sufficient condition for two representations of the form $\rho_{Y, \lambda}, Y$ is fixed, to be equivalent. Note that the previous discussion let us identify the representation space with $l^{2}(Y)$.

Proposition (1.3). Let $\rho_{Y, \lambda}$ and $\rho_{Y, \mu}$, where $\lambda=\left\{\lambda_{y}\right\}$ and $\mu=\left\{\mu_{y}\right\}$, be irreducible n-dimensional representations of B_{T}. Then, $\rho_{Y, \lambda}$ is equivalent to $\rho_{Y, \mu}$ if and only if $\prod_{y \in Y} \lambda_{y}=\prod_{y \in Y} \mu_{y}$.

Proof. First assume that $\rho_{Y, \lambda}$ is equivalent to $\rho_{Y, \mu}$. Let U be the unitary in B_{T} induced by T and let $\left\{e_{y}\right\}$ be the natural basis in $l^{2}(Y)$, the representation space. Since $T^{n} y=y$, the definition of $\rho_{Y, \lambda}$ implies that

$$
\rho_{Y, \lambda}\left(U^{n}\right) e_{y}=\lambda_{y} \lambda_{T y} \cdots \lambda_{T^{n-1} \mid} e_{y}=\left(\prod_{y \in Y} \lambda_{y}\right) e_{y} .
$$

What follows is that $\rho_{Y, \lambda}\left(U^{n}\right)=\left(\prod_{y \in Y} \lambda_{y}\right) I$. Hence, $U^{n}-\left(\prod_{y \in Y} \lambda_{y}\right) I$ is in $\operatorname{ker}\left(\rho_{Y, \lambda}\right)$. Since we assumed that $\rho_{Y, \lambda}$ is equivalent to $\rho_{Y, \mu}$ it follows that $U^{n}-\left(\prod_{y \in Y} \lambda_{y}\right) I$ is also in $\operatorname{ker}\left(\rho_{Y, \mu}\right)$. But the above calculation also shows that $\rho_{Y, \mu}\left(U^{n}\right)=\left(\prod_{y \in Y} \mu_{y}\right) I$ whence the first half of the proposition follows. Conversely, assume that λ and μ satisfy $\Pi_{y \in Y} \lambda_{y}=\Pi_{y \in Y} \mu_{y}$. We need to find a unitary W in $B\left(l^{2}(Y)\right)$ such that $W \rho_{Y, \lambda} W^{-1}=\rho_{Y, \mu}$. Fix some y in Y. We then define W in the following way. We let $W e_{T^{\prime} y}=\alpha_{T^{i} y} e_{T^{\prime} y}$, for $0 \leq i \leq n-1$, where $\alpha_{y}=1$ and for $1 \leq i \leq n-1$,

$$
\alpha_{T^{\prime} y}=\prod_{j=0}^{i-1} \mu_{T^{\prime} y} \prod_{j=0}^{i-1} \lambda_{T^{\prime} y}^{-1} .
$$

First note that if f is in $C(X)$ then $W \rho_{Y, \lambda}(f) W^{-1}=\rho_{Y, \mu}(f)$. Therefore, since B_{T} is generated by U and $C(X)$ it follows that in order to show that $W \rho_{Y, \lambda} W^{-1}=\rho_{Y, \lambda}$ it is enough now to prove that for $0 \leq i \leq n-1$

$$
W \rho_{Y, \lambda}(U) W^{-1} e_{T^{i} y}=\rho_{Y, \mu}(U) e_{T^{\prime} y}=\mu_{T^{\prime} y} e_{T^{i+1} y}
$$

Check the case $i=0$:

$$
W \rho_{Y, \lambda}(U) W^{-1} e_{y}=W \rho_{Y, \lambda}(U) e_{y}=W \lambda_{y} e_{T y}=\lambda_{y} \mu_{y} \lambda_{y}^{-1} e_{T y}=\mu_{y} e_{T y}
$$

Check the case $0<i<n-1$:

$$
\begin{aligned}
& W \rho_{Y, \lambda}(U) W^{-1} e_{T^{\prime} y}=W \rho_{Y^{2}}(U)\left(\prod_{j=0}^{i-1} \mu_{T^{\prime} y}^{-1} \prod_{j=0}^{i-1} \lambda_{T^{\prime} y}\right) e_{T^{\prime} y} \\
& \quad=W\left(\lambda_{T^{\prime} y}\left(\prod_{j=0}^{i-1} \mu_{T^{\prime} y}^{-1} \prod_{j=0}^{i-1} \lambda_{T^{\prime} y}\right) e_{T^{i+1} y}\right. \\
& \quad=\left(\prod_{j=0}^{i} \mu_{T^{j} y} \prod_{j=0}^{i} \lambda_{T^{j} y}^{-1}\right)\left(\lambda_{T^{\prime} y}\right)\left(\prod_{j=0}^{i-1} \mu_{T^{\prime} y}^{-1} \prod_{j=0}^{i-1} \lambda_{T^{\prime} y}\right) e_{T^{\prime+1} y} \\
& \quad=\mu_{T^{i} y} e_{T^{i+1} y} .
\end{aligned}
$$

Check the case $i=n-1$:

$$
\begin{aligned}
W \rho_{Y, \lambda}(U) W^{-1} e_{T^{n-1} y} & =W \rho_{Y, \lambda}(U)\left(\prod_{j=0}^{n-2} \mu_{T^{\prime} y}^{-1} \prod_{j=0}^{n-2} \lambda_{T^{\prime} y}\right) e_{T^{n-1} y} \\
& =W\left(\lambda_{T^{n-1} y}\right)\left(\prod_{j=0}^{n-2} \mu_{T^{\prime} y}^{-1} \prod_{j=0}^{n-2} \lambda_{T^{\prime} y}\right) e_{y} \\
& =\left(\lambda_{T^{n-1} y}\right)\left(\prod_{j=0}^{n-2} \mu_{T^{\prime} y}^{-1} \prod_{j=0}^{n-2} \lambda_{T^{\prime} y}\right) e_{y} \\
& =\left(\prod_{j=0}^{n-2} \mu_{T^{\prime} y}^{-1} \prod_{j=0}^{n-1} \lambda_{T^{\prime} y}\right) e_{y}=\mu_{T^{n-1} y} e_{y}
\end{aligned}
$$

The last equality follows from the hypothesis that $\prod_{y \in Y} \lambda_{y}=$ $\Pi_{y \in Y} \mu_{y}$.
2. The structure of $\operatorname{Prim}_{n}\left(B_{T}\right)$. In this section we use the description of irreducible representations of B_{T} to study the structure of $\operatorname{Prim}_{n}\left(B_{T}\right)$. The number of connected components of $\operatorname{Prim}_{n}\left(B_{T}\right)$ is proven to be equal to the number of orbits of length n.

Let ρ be a finite dimensional irreducible representation of B_{T}.
Notation. We denote by ρ_{λ} the composition $\rho \cdot \hat{\alpha}_{\lambda}$ where $\hat{\alpha}$ is the dual action.

Lemma (2.1). For any λ in $\mathrm{T}, \mu=\left\{\mu_{y}\right\}$ and Y a finite invariant set of T,

$$
\left(\rho_{Y, \mu}\right)_{\lambda}=\rho_{Y, \lambda \mu}
$$

Proof. For any f in $C(X),\left(\rho_{Y, \mu}\right)_{\lambda}(f)=\rho_{Y, \lambda \mu}(f)$; therefore we only need to check that $\left(\rho_{Y, \mu}\right)_{\lambda}(U)=\rho_{Y, \lambda \mu}(U)$. Let $\left\{e_{y}\right\}$ be the natural orthonormal basis in $l^{2}(Y)$. Then for any y in Y,

$$
\left(\rho_{Y, \mu}\right)_{\lambda}(U) e_{y}=\rho_{Y, \mu}(\lambda U) e_{y}=\lambda \rho_{Y, \mu}(U) e_{y}=\lambda \mu_{y} e_{T y}=\rho_{Y, \lambda \mu}(U)
$$

Proposition (2.2). Let $\rho=\rho_{Y, \lambda}$ be an n-dimensional irreducible representation of B_{T}. Then,

$$
J_{Y}=\bigcap_{\lambda \in \mathbf{T}} \operatorname{ker}\left(\rho_{\lambda}\right)
$$

Proof. Assume that $\rho=\pi \times W$. Let $C=\sum f_{n} U^{n}$ be in J_{Y}. By Lemma (1.1) the f_{n} 's are 0 on Y and hence the $\pi\left(f_{n}\right)$'s are all 0 . We noted in the preliminaries that

$$
\sum_{|k|<N}\left(1-\frac{|k|}{N}\right) f_{k} U^{k} \lambda^{k} \rightarrow \hat{\alpha}_{\lambda}(C)
$$

uniformly in λ. As a result,

$$
\sum_{|k|<N}\left(1-\frac{|k|}{N}\right) \pi\left(f_{k}\right) W^{k} \lambda^{k} \rightarrow \rho \cdot \hat{\alpha}_{\lambda}(C)=\rho_{\lambda}(C)
$$

for all λ in \mathbf{T} and therefore C is in $\bigcap_{\lambda} \operatorname{ker}\left(\rho_{\lambda}\right)$.
Conversely, let $C=\sum f_{n} U^{n}$ be in $\bigcap_{\lambda} \operatorname{ker}\left(\rho_{\lambda}\right)$. By Lemma (1.1) we need to show that f_{n} is 0 on Y for all n. Let $\left\{C_{k}\right\} \subseteq K(\mathbb{Z}, C(X))$ be such that $C_{k} \rightarrow C$. Since $\rho_{\lambda}\left(C_{k}\right) \rightarrow \rho_{\lambda}(C)$ uniformly in λ it follows by our hypothesis that $\rho_{\lambda}\left(C_{k}\right) \rightarrow 0$ uniformly. Therefore for all ξ, η in $l^{2}(Y),\left(\rho_{\lambda}\left(C_{k}\right) \xi, \eta\right) \rightarrow 0$ uniformly in λ. Let $\xi=e_{y}$ and $\eta=e_{y^{\prime}}$. Assume that for all $k, \sum a_{n}^{k} \lambda^{n}$ is the Fourier expansion of $\lambda \rightarrow\left(\rho_{\lambda}\left(C_{k}\right) e_{y}, e_{y^{\prime}}\right)$. Then, $a_{n}^{k} \rightarrow 0$ for all n. Let $C_{k}=\sum f_{n}^{k} U^{n}$ for all k. Then, $a_{n}^{k}=\left(\pi\left(f_{n}^{k}\right) W^{n} e_{y}, e_{y^{\prime}}\right)$. Since $f_{n}^{k} \rightarrow f_{n}$ for all n, it follows that $\left(\pi\left(f_{n}\right) W^{n} e_{y}, e_{y^{\prime}}\right)=0$. But $W^{n} e_{y}=\delta e_{T^{n} y}$, for some δ of absolute value 1. Therefore what we have shown is that for all n and for all y, y^{\prime} in $Y,\left(e_{T^{n} y}, \overline{f_{n}\left(y^{\prime}\right)} e_{y^{\prime}}\right)=0$. In particular if we pick $y=T^{-n} y^{\prime}$ we get that $f_{n}\left(y^{\prime}\right)=0$. Since n in y^{\prime} are arbitrary it follows that f_{n} is 0 on Y for all n.

Let $\left\{Y_{i}\right\}_{i \in I}$ be the set of all orbits of length n with respect to T. Assume that I is finite.

Notation. Let $F_{Y_{i}}=\left\{R \in \operatorname{Prim}_{\pi}\left(B_{T}\right) ; R \supseteq J_{Y_{i}}\right\}$.
By definition, $F_{Y_{1}}$ is closed in $\operatorname{Prim}_{n}\left(B_{T}\right)$. Also by Proposition (2.2) each R in $\operatorname{Prim}_{n}\left(B_{T}\right)$ is in one of the F_{Y} 's. Since the Y_{i} 's are mutually exclusive it follows that the $F_{Y_{i}}$'s are too. Consequently the $F_{Y_{i}}$'s are open and closed in $\operatorname{Prim}_{n}\left(B_{T}\right)$.

Finally, we show that if $\{\operatorname{ker}(\rho)\} \in F_{Y_{i}}$, then the connected component of $\{\operatorname{ker}(\rho)\}$ includes $F_{Y_{i}}$. Fix ρ such that $\{\operatorname{ker}(\rho)\} \in F_{Y_{i}}$. Now, the function $\lambda \rightarrow\left\{\operatorname{ker}\left(\rho_{\lambda}\right)\right\}$ is continuous with respect to the Jacobson topology on $\operatorname{Prim}_{n}\left(B_{T}\right)$. Reason: $\rho_{\lambda}=\rho \cdot \hat{\alpha}_{\lambda}$ and $\hat{\alpha}_{\lambda}$ is continuous with respect to the pointwise topology. Therefore, $\lambda \rightarrow\left\{\operatorname{ker}\left(\rho_{\lambda}\right)\right\}$ is a continuous function from \mathbf{T} to $\operatorname{Prim}_{n}\left(B_{T}\right)$.

Conclusion. The connected component of $\{\operatorname{ker}(\rho)\}$ includes the set

$$
\left\{R \in \operatorname{Prim}_{n}\left(B_{T}\right) ; R \supseteq \bigcap_{\lambda} \operatorname{ker}\left(\rho_{\lambda}\right)\right\} .
$$

But by Proposition (2.2), $\bigcap_{\lambda} \operatorname{ker}\left(\rho_{\lambda}\right)=J_{Y_{⿱}}$ and therefore the connected component of $\{\operatorname{ker}(\rho)\}$ includes $F_{Y_{t}}$. Since the $F_{Y_{i}}$'s are open and closed it follows that the connected component of $\{\operatorname{ker}(\rho)\}$ is exactly $F_{Y_{i}}$.

We summarize the above discussion in the following theorem.
Notation. For any homeomorphism T we denote by $O(T)$ the set of all finite orbits of T.

Theorem (2.3). Let $\Theta: B_{T} \rightarrow B_{S}$ be an isomorphism. Let Y be a finite orbit with respect to T. Then, $\Theta\left(J_{Y}\right)=J_{Z}$ for some Z a finite orbit with respect to S having the same cardinality as Y. The correspondence $Y \rightarrow Z$ defines a set theoretic isomorphism Θ^{\prime} between $O(T)$ and $O(S)$. Moreover, $\left(\Theta^{\prime}\right)^{-1}=\left(\Theta^{-1}\right)^{\prime}$. Note that T and S may act on different spaces.

Proof. We know that the map $\operatorname{Prim}_{n}(\Theta): \operatorname{Prim}_{n}\left(B_{T}\right) \rightarrow \operatorname{Prim}_{n}\left(B_{S}\right)$, defined by $\{\operatorname{ker}(\rho)\} \rightarrow\left\{\operatorname{ker}\left(\rho \cdot \Theta^{-1}\right)\right\}$ is a homeomorphism. Therefore, the image of F_{Y} under $\operatorname{Prim}(\Theta)$ must be equal to some F_{Z} where Z is a finite orbit of S having the same cardinality as Y. Now, $\Theta\left(J_{Y}\right)=$ J_{Z} because $\Theta(\operatorname{ker}(\rho))=\operatorname{ker}\left(\rho \cdot \Theta^{-1}\right)$ and $\bigcap_{\left\{R ; R \in \operatorname{Prim}_{n}\left(B_{T}\right), R \supseteq J_{Y}\right\}} R=$ J_{Y}. Finally, Θ^{\prime} is a set theoretic isomorphism because $\operatorname{Prim}(\Theta)$ is a homeomorphism.

Theorem (2.4). Let ρ be an irreducible n-dimensional representation of B_{T}. Assume that T has finitely many orbits of length n. Then the connected component of $\{\operatorname{ker}(\rho)\}$ in $\operatorname{Prim}_{n}\left(B_{T}\right)$ is equal to

$$
\left\{\operatorname{ker}\left(\rho_{\lambda}\right) ; 0 \leq \arg (\lambda)<2 \pi / n\right\} .
$$

The number of connected components in $\operatorname{Prim}_{n}\left(\boldsymbol{B}_{T}\right)$ is equal to the number of orbits of length n.

Proof. The only part that was not proven is that the component of $\{\operatorname{ker}(\rho)\}$ in $\operatorname{Prim}_{n}\left(B_{T}\right)$ is equal to $\left\{\operatorname{ker}\left(\rho_{\lambda}\right) ; 0 \leq \arg (\lambda)<2 \pi / n\right\}$. By Proposition (1.2) we know that ρ is equivalent to some $\rho_{Y, \mu}$, where Y is an orbit of length n and $\mu=\left\{\mu_{y}\right\}$, and the discussion preceding Theorem (2.3) shows that the connected component of ρ is equal to
$F_{Y}=\left\{R \in \operatorname{Prim}_{n}\left(B_{T}\right) ; R \supseteq J_{Y_{t}}\right\}$. Therefore, what is left to show is that for any $\nu=\left\{\nu_{y}\right\}, \operatorname{ker}\left(\rho_{Y, \nu}\right)$ is equal to $\operatorname{ker}\left(\rho_{\lambda}\right)$ for some λ such that $0 \leq \arg (\lambda)<2 \pi / n$. By Proposition (1.3) the class of $\rho_{Y, \nu}$ is dependent only on $\prod_{y \in Y} \nu_{y}$ and by Lemma (2.1) $\rho_{\lambda}=\left(\rho_{Y, \mu}\right)_{\lambda}=\rho_{Y, \lambda \mu}$. Therefore we are done because for $\{\lambda ; 0 \leq \arg (\lambda)<2 \pi / n\}$ the range of the function $\lambda \rightarrow \prod_{y \in Y} \lambda \mu_{y}$ is \mathbf{T}.
3. Partial classification of hyperbolic crossed-product algebras. We now specialize to the case $X=\mathbf{T}^{m}$ and T an automorphism on \mathbf{T}^{m}.

Notation. Denote by $N_{p}(T)$ the cardinality of the set $\{x \in X$; $\left.T^{p} x=x\right\}$ and by $O_{p}(T)$ the cardinality of the set of all periodic points of period equal to p.

Definition. An automorphism T is called hyperbolic if it has no eigenvalue of unit modulus.

Theorem (3.1). A partial classification of the B_{T} 's. Let T and S be hyperbolic automorphisms on tori not necessarily of the same dimensions. If the algebra B_{T} is isomorphic to B_{S}, then for all $p \geq 1$, $N_{p}(T)=N_{p}(S)$. In particular, T and S must have the same entropy.

Proof. If $\Theta: B_{T} \rightarrow B_{S}$ is an isomorphism then it induces a homeomorphism between $\operatorname{Prim}_{n}\left(B_{T}\right)$ and $\operatorname{Prim}_{n}\left(B_{S}\right)$ for $n \geq 1$. Since the number of connected components is a topological invariant it must be the same for $\operatorname{Prim}_{n}\left(B_{T}\right)$ and $\operatorname{Prim}_{n}\left(B_{S}\right)$. On the other hand we know that the number of connected components in $\operatorname{Prim}_{n}\left(B_{T}\right)$ is equal to the number of orbits of length n. Therefore, $O_{n}(S)=O_{n}(T)$. Note that $N_{n}(T)$ is not quite the number of periodic points of period n because it includes all points of period m for m which divides n. But $N_{n}(T)$ can be recovered from the $O_{m}(T)$'s simply because

$$
N_{n}(T)=\sum_{\{m \geq 1 ; m \mid n\}} O_{m}(T) .
$$

Let $\sigma(T)=\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ be the spectrum of T and $\sigma(S)=\left\{\mu_{1}, \ldots, \mu_{l}\right\}$ be the spectrum of S. Recall that $N_{p}(T)=\left|\operatorname{det}\left(T^{p}-I\right)\right|$, [4]. By the above discussion we know that if B_{T} is isomorphic to B_{S} then for all $p,\left|\operatorname{det}\left(T^{p}-I\right)\right|=\left|\operatorname{det}\left(S^{p}-I\right)\right|$. Now,

$$
\left|\operatorname{det}\left(T^{p}-I\right)\right|=\prod_{i=1}^{k}\left|\lambda_{i}^{p}-1\right| .
$$

Fix some $\varepsilon>0$. Note that we can make the following estimations. If $\lambda \in \sigma(T)$ and $|\lambda|>1$ then for p sufficiently large,

$$
(1-\varepsilon)|\lambda|^{p} \leq\left|\lambda^{p}-1\right| \leq(1+\varepsilon)|\lambda|^{p}
$$

and if $\lambda \in \sigma(T)$ and $|\lambda|<1$ then for p sufficiently large,

$$
(1-\varepsilon) \leq\left|\lambda^{p}-1\right| \leq(1+\varepsilon) .
$$

Denote by Λ the quantity $\prod_{\left\{i ;\left|\lambda_{1}\right|>1\right\}}\left|\lambda_{i}\right|$. By the above estimation,

$$
(1-\varepsilon)^{k} \Lambda^{p} \leq N_{p}(T) \leq(1+\varepsilon)^{k} \Lambda^{p} .
$$

Repeating the above calculation for S we get that for any fixed $\varepsilon^{\prime}>0$ and for p sufficiently large

$$
\left(1-\varepsilon^{\prime}\right)^{\prime} M^{p} \leq N_{p}(S) \leq\left(1+\varepsilon^{\prime}\right)^{l} M^{p}
$$

where M is analogous to Λ. Claim: Λ must be equal to M. Proof: Assume without loss of generality that $\Lambda<M$. Then for any positive $\varepsilon, \varepsilon^{\prime}$

$$
(1+\varepsilon)^{k} \Lambda^{p}<\left(1-\varepsilon^{\prime}\right)^{l} M^{p}
$$

for p sufficiently large. The last inequality implies that $N_{p}(T)<$ $N_{p}(S)$-contradiction. We have completed the proof since the entropy of an automorphism T is equal to $\log (\Lambda),[4]$.

What can be now deduced about the classification of the crossedproduct algebras over the 2 -torus. Note that if T is an automorphism on the 2 -torus then the equation for its characteristic polynomial, regarded as a linear transformation on the plane, is

$$
x^{2}-\operatorname{trace}(T) x+\operatorname{det}(T)=0
$$

From this relation we deduce that if T and S have the same trace and determinant then they have the same eigenvalues and conversely.

In the last section we showed that the entropy of T is an invariant of B_{T}. Since the product of the eigenvalues of T is 1 in absolute value it follows that if $B_{T} \cong B_{S}$ then

$$
\{|\lambda| ; \lambda \in \sigma(T)\}=\{|\mu| ; \mu \in \sigma(T)\} .
$$

Let us make the following notations. Let $\delta=\operatorname{det}(T), \delta^{\prime}=\operatorname{det}(S)$, $\tau=\operatorname{trace}(T)$ and $\tau^{\prime}=\operatorname{trace}(S)$. Since the eigenvalues of T and S are real we now have that

$$
\frac{\tau \pm \sqrt{\tau^{2}-4 \delta}}{2}= \pm \frac{\tau^{\prime} \pm \sqrt{\tau^{\prime 2}-4 \delta^{\prime}}}{2} .
$$

Claim. The above equation for the eigenvalues implies that $|\tau|=\left|\tau^{\prime}\right|$ and $\tau^{2}-4 \delta=\left(\tau^{\prime}\right)^{2}-4 \delta^{\prime}$. Therefore also $\delta=\delta^{\prime}$. Proof: Recall that the eigenvalues of hyperbolic automorphisms are irrational, [5]. In general, if k, l, m, n are integers and $m+\sqrt{n}, k+\sqrt{l}$ are irrational
numbers satisfying $m+\sqrt{n}=k+\sqrt{l}$ then $m=k$ and $n=l$. Reason: $\sqrt{n}=(k-m)+\sqrt{l}$ and therefore $n=(k-m)^{2}+l+2(k-m) \sqrt{l}$. If $k \neq m$ then \sqrt{l} is rational whence $k+\sqrt{l}$ is also rational-contradiction.

Can we furthermore deduce that $\operatorname{trace}(T)=\operatorname{trace}(S)$? From the last section we know that $\left|\operatorname{det}\left(T^{n}-I\right)\right|=\left|\operatorname{det}\left(S^{n}-I\right)\right|$ for all $n \geq 1$. Observe that

$$
|\operatorname{det}(T-I)|=|\operatorname{det}(T)+1-\operatorname{trace}(T)| .
$$

Therefore if $\operatorname{det}(T)=\operatorname{det}(S)=1$ then $|2-\tau|=\left|2-\tau^{\prime}\right|$. Since $|\tau|=\left|\tau^{\prime}\right|$ it follows that $\tau=\tau^{\prime}$.

We may summarize the above discussion in the following
Corollary (3.2). Let T and S be hyperbolic automorphisms on the 2-torus. If $B_{T} \cong B_{S}$ then:
(i) $\operatorname{det}(T)=\operatorname{det}(S)$,
(ii) $|\operatorname{trace}(T)|=|\operatorname{trace}(S)|$.

If $\operatorname{det}(T)$ or $\operatorname{det}(S)$ is equal to 1 then
(iii) $\operatorname{trace}(T)=\operatorname{trace}(S)$.

Remarks. In the case $\operatorname{det}(T)=\operatorname{det}(S)=-1$ it is not true that $B_{T} \cong B_{S}$ implies that $\operatorname{trace}(T)=\operatorname{trace}(S)$. Example: Let T be a hyperbolic automorphism having determinant -1 . Let $S=T^{-1}$. Note that $\operatorname{trace}(S)=-\operatorname{trace}(T)$ but $B_{T} \cong B_{T^{-1}}=B_{S}$.

References

[1] D. P. O'Donovan, Weighted shifts and covariance algebras, Trans. Amer. Math. Soc., 208 (1975), 1-25.
[2] G. K. Pedersen, C^{*}-Algebras and their automorphism groups, London Math. Soc. Monographs 14, Academic Press, London, (1979).
[3] I. Megory-Cohen, Properties of hyperbolic crossed-product algebras, dissertation, University Microfilms International, (1985).
[4] P. Walters, An Introduction of Ergodic Theory, Springer-Verlag, New York, (1982).
[5] Z. Nitecki, Differentiable Dynamics, MIT Press, Cambridge, Mass., (1971).
Received June 8, 1987.

