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UNIQUENESS PROBLEM WITHOUT MULTIPLICITIES
IN VALUE DISTRIBUTION THEORY

SHANYU JI

Let Hi , //jt be hyperplanes in general position in Pm with m >
2. Let A\,... ,Ak be pure (n — 1 )-dimensional analytic subsets of C"
with codim At n Aj > 2 whenever / ^ j . Then any linearly non-
degenerate meromorphic maps / g,h: C" —> Pm with f\Aj = g\Aj =
h\Aj and w i t h / ' ( / / , ) = g~\H}) = h~\Hj) = A} for j = 1 , . . . ,k
satisfy Property (P) if k = 2>m + 1. Consequently such / , g, h are
algebraically dependent. If even n > rank / = rank g = rank h = m,
then k = m + 3 suffices.

1. Introduction. Since Polya's work [PI] in 1929, the uniqueness
problem in value distribution theory has been studied by Nevanlinna
[Nl], Cartan [Cl, C2], Fujimoto [Fl, F2], Schmid [SI], Smiley [S5,
S6], Carlson [D2], Drouilhet [Dl, D2] and Stoll [Sll]. One of the main
results, given by Fujimoto in 1979 [F2], is that if Hj are hyperplanes
in Pm in general position and vj are divisors on C" whose supports
have no common irreducible components for j = I,... ,m + 2 and if
W is the set of meromorphic maps / : C" -* Pm with f*(Hj) = Vj
for j = 1 , . . . , m + 2, (f*(Hj) is the pull-back of the divisor of Hj
on ~Pm by / ) , then W cannot contain more than m + 1 algebraically
independent maps. This theorem is in fact a generalization of the
Cartan-Nevanlinna theorem (i.e., take n = m = 1 and replace "alge-
braically dependent maps" by "maps" in the above theorem) in 1928.

In this paper, we shall give some analogous results which are without
multiplicities. For this kind of problem, Cartan declared [C2] that
there are at most two meromorphic functions / , g on C such that
f-l(dj) = g~l(cij) for four distinct aj € P1. Cartan's proof appears
to have a gap. But some of his original ideas are used in this paper.
We also need to use some of Shiffman's and Drouilhet's results [S3],
[D2].

Let Hi,... .H^be hyperplanes in general position in Pm given by

(1.1) a{
o

j)wo + --- + a{Jl
)wm = O

for j = \,...,k. Let A\,...,Ak be pure (n — 1)-dimensional ana-
lytic subsets of C" with codim Al• r\ Aj > 2 whenever / ^ j . Put
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A := A\ U • • • U Ak. Let F: Cn —*• Pm be a meromorphic map. Let

(1.2) 5?B(Cn,Pm,k)

:= {/: C" —• P m | / is a linearly non-degenerate

meromorphic map, /|^4 = .F|̂ 4

and f-\Hj) = Aj for j = I,...,k)

(for the definition of linearly non-degenerate, see §2) and

(1.3) 3?A(Cn,Pm,k):={fG3rB{Cn,'Pm,k)\rankf = m}.

We say that f.g.h e ^(C" ,Pm, k) satisfy Property (P) if for each
fixed p = (p0, ...,pm)e C™+1 := Cm+l - {0}, for all but at most four
values of / in the set { 1 , . . . , k}, there exist (A,-, fit, Uj) eC^ = C 3 -{0} ,
such that

(l 4) h(Pofo + --- + Pmfm) MijPQgQ + • • • + Pmgm)

4 ' V o + • • • + aiiVm 4 ° « > + ••• + « # * «
ViiPpho + • • • + pmhm) = Q

^ / z o + .-. + a ^ ^

where ( /0 , . . . , / m ) , (^0. • • •. gm), and (/z0,..., /im) are reduced repre-
sentations of/ , g, h, respectively, and a^\ ..., a$ are given by (1.1).
(The set of omitted values of / depends on p.)

Our main results are

THEOREM A. / / / , g, h e &A(C, P W . m + 3) with m>2, then f, g, h
satisfy Property (P). Consequently f, g, h are algebraically dependent.

THEOREMB. / / / , g,h e^B(Cn,Pm, 3/w+l) with m>2, then f, g, h
satisfy Property (P). Consequently f, g, h are algebraically dependent.

REMARK. By [Dl], if k > m + 3, ^ ( C " , P m , A;) contains at most
one map. By [S5, S6], if k > 3m + 1, J%(C", P w , k) contains at most
one map.

As generalization of Theorem A, we have Theorem C as follows.
Let V c PM be a connected complex submanifold with dim V =

m > 2. Assume that V is not contained in any hyperplane of P M .
Let H\,..., Hk be hyperplanes of T*M such that Dj := Hjf\V are pure
(m-1 )-dimensional smooth analytic subsets of V. Let D\,...,Dk have
normal crossings in V. Let A\,...,Ak be pure (n - 1)-dimensional
analytic subsets of C" with codim^, r\Aj > 2 whenever / / j . Put
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A := AiU- • -UAk. Suppose k is an integer such that Kv®{H\V)k~2 > 0
and k > 5, where Ky is the canonical bundle of V and H is the
hyperplane section bundle on PM. Let F: Cn —* V be a meromorphic
map. Let

(1.5)

:= {/: Cn —* V is meromorphic| r ank / = w,

/ M = F\A and / - 1 (/>,•) = A} for j = 1 , . . . , k}.

Since / : C" —• F can be regarded as / : C" —• P M by composing
with the inclusion map: V^ P M . So, ^ ( C , Kik) = ^ ( C , Kfc) n
^ ( C , P7^, Jk). We say f.g.he &c(Cn> V, k) satisfy Property (P) if / ,
g, h as maps in ^{C1 ,PM,k) satisfy Property (P).

THEOREM C. Iff, g,h e &b(Cn> V,k), then f, g, h satisfy Property
(P). Consequently f, g, h are algebraically dependent.

REMARK, (i) When V = VM, Theorem C is Theorem A.
(ii) By [D2], if Kv ® (H\V)K~2 > 0, then ^ ( C 2 , V,k) contains at

most one map.

The author would like to thank his advisor, B. Shiftman, for encour-
agement and assistance. The author also would like to thank Professor
W. Stoll for giving very careful and helpful corrections and suggestions
for my manuscript.

2. Preliminaries. We give or review some notions and definitions
(cf. [S7, S8]).

DEFINITION 2.1. (For meromorphic maps.)
(a) Let X and Y be connected complex manifolds. Let S be a

proper analytic subset of X. Then X - S is dense open in X. Let
f: X — S ^ Y be a holomorphic map. The closed graph of / is the
closure T(f) := {{x,f(x))\xeX-S} of the graph of / over X -
S in X x Y. Let n: T(f) -* X and / : T(f) -» Y be the natural
projections. The map / is said to be meromorphic on X if F( / ) is
analytic in X x Y and n is proper. Let #P be the cardinality of P.
The indeterminacy If := {JC G X\#f(n~l(x)) > 1} is analytic and
contained in S. Codim/y > 2. We can assume S = If. In this paper,
we always assume that Y is algebraic and compact.

(b) Let V be a complex vector space of dimension m + 1. Put
F» = V - {0}. Then C* = C - {0} acts by multiplication on F*.
The quotient space P(F) := V*/C* is the projective space associated
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to V. Let P: F* -*• P{V) be the residual map. If A C V, define
P(A) := {P(a)|0 ^ a e A}. Let S and X be as in (a). Let / : X -
S —> P(F) be a holomorphic map. Let * € X and U be an open
connected neighborhood of x. A holomorphic map 4>f'. U —»• F is
called a representation off at x if 0 / ^ 0 and if / ( z ) = P(0/(z)) for
all z € £/ - 5 with </>/(z) ^ 0. The representation is said to be reduced
if Codim 4>ZX (0) > 2. The map / is meromorphic if and only if there
is a representation at every point of X. The representation is global if
(/ = X. If X = Cn, there is a global reduced representation. So, maps
in ^ ( C . P " 7 , fc) have global representations.

(c) We have assumed that Y is an algebraic compact manifold. A
meromorphic map / : X —• Y is called algebraically non-degenerate if
the image of / is not contained in any proper analytic subset of Y. If
Y = Pm, then / is called linearly non-degenerate if the image of / is
not contained in any hyperplane of P w .

(d) Meromorphic maps fl,... ,fk of C" into any algebraic mani-
fold Y are called algebraically dependent if the image of the meromor-
phic map fx x • • • x fk: Cn —• Y x • • • x Y (k times) is contained
in some proper analytic subset of Y x • • • x Y {k times), where
(f1 x •••xfk)(z):=(fl(z),...,fk(z)) for generic points z in C".

(e) Let X be as in (a). Let <? be the sheaf of germs of holomorphic
functions on X. If x e X, let @x be the stalk of & over x, and mx

be the maximal ideal in &x. Let m£ be its j?th power with mx :— <?x.
Take 0 ^ / e &x, one and only one integer / /(/) > 0 exists such that
/ € mx - m ^ ' + l . Here /z(/) is called the zero-multiplicity of f.
Let t / c l b e open connected, / ^ 0 be holomorphic function on
U. Take any x e U and let /* G ̂  be the germ denned by / in &x.
Then /^(x) := /*(/*) > 0 is called the zero-multiplicity of f at x. The
function fA: C/ —>• Z is called the zero divisor of f.

A divisor v on X is an integral value function v: X —• Z such that
for every x e X there exists an open connected neighborhood U of x
and holomorphic functions g ^ 0 ^ /z on U with

Codim(^-1(0)n/?- I(0))>2,

such that v\U = nQ
g -n

Q
h. v = 0 is called the null divisor. If v is not the

null divisor, 51:— supp v is a pure (« - 1 )-dimensional analytic subset
of X where dimX = n. Let Reg(5') be the set of regular points of
S. Then v\ Reg(S) is locally constant. Let L be the set of irreducible
components of S. For each B e L, v\Reg(S) n B = p(v,B) ^ 0 is
a constant integer. We say that v > 0 if p{v,B) > 0 for all B e L.
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For any pure (n - l)-dimensional analytic subset A of X, there exists
a unique divisor vA such that vA \ Reg(A) = 1. Obviously vA > 0. The
locally finite sum

(2.1) « =
BeL

is called the analytic chain representation of v. If 0 < n e Z, the
divisor

(2.2) «(") := £ min(«, />(«,

is called the truncation ofv at level n.
Let / : X —• Y be meromorphic. Let v: Y —• Z be a divisor on F

with 5" = suppu. Assume that f{X) <£ S. Since Codim/y > 2, there
exists a unique divisor /*(i>) on X, called the pull-back divisor of w by
/ , such that for any pair of open, connected, non-empty subsets U of
X - If and W of Y with /(£/) C W, there are holomorphic functions
g $ 0 ̂  A on W with Codim(g-1(0)n/z-'(0)) > 2 and u| W = / * J - $ ,
thengof\U^ 0 ̂  A o/|C/, and f*(v)\U - (//Jo/ - fi°hof)\U.

DEFINITION 2.2. (For Nevanlinna theory.)

{z € C | |z| = r}. B{r) := {z e C" | |z| < r}. rfc := (d - d)/4nV^l.
Let (OQ := ddclog\z\2 be the homogeneous metric form on C", and
<PQ := ddc\z\2 be the Euclidean metric form on C". Let a := dc log |z| A
tog"1 be the Poincare form on S(r). Let co be the Fubini-Study metric
form on P"~l given by P*w = <u0- Denote C? = C" - {0}.

(b) Let v be a divisor on C with S — supp v. For t > 0, the counting
function nv is defined by

Z ^)>
(2.3)

/
snB(t)

If n > 1, also ««(0 = fSnB,t) VCOQ~1+V(0). For 0 < s < r, the integrate
counting function is defined by

(2.4) N(v;r,s):=J\v(t)j.

If / : C" —>• 7 is a meromorphic map, and u is a divisor on 7 with
/(C") ^ suppv, and /*v is the pull-back divisor ofv by / , we abbre-
viate N(f*v;r, s) — Nf(v;r, s). If A is a pure 1-codimensional analytic
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subset of 7, abbreviate N(f*(vA);r,s) = Nf(A;r,s) and N(vA;r,s) —
N(A;r,s).

(c) Let / : C" —* 7 be meromorphic. Let L be a hermitian holomor-
phic line bundle over Y with a metric h. The characteristic function
of f is denned by

:=-^z2 f f*{ch) for f > 0,

(2.5) Tf(L;r,s) = Tf(L,h;r,s):= T Af(L;t)—, forO<s<r.
Js *

Let ;4/(Z,; 0) = limr_+0 Af(L; t). We also have

Af(L;t)^ f f*(ch)Acon
Q-l+Af(L;0), for * > 0,

Js(0

where C/, is the Chern form of the metric h (Note: Af{L; 0) = 0 if /
is holomorphic at 0).

If / : C" —• P w is meromorphic, and L is the hyperplane section
bundle H over Pm with the metric h := {ha := \za\

2/(\z0\
2-i h|zw|2)

on Ua}, where Ua := {[Zo : • • • : Zm]\Za ^ 0} for a = 0, . . . , m, then
C/, = co. We abbreviate Tf(H,h;r,s) — Tf(r,s).

(d) Let / : C" —>• Y, L, h be as in (c), 7 compact. The set of
all holomorphic sections in L over Y is a finite dimensional complex
vector space T(Y, L). Since Y is compact, we can select a hermitian
metric i on F(y,L) such that ||^(y)|U < \\s\\t for all s e T(Y,L) and
all y e Y. If y e Y, and a € P(H7, L)), then a = P(fl) with 0 ̂  a €
r(y,L) and

(2-6) o<l\y,a\\ktl:J^k<i
\\a\]i

is a well-defined function of y and a. Let a e P(r(7, L)) and as-
sume / ( C ) ^ supp//a, where /<« is the associated divisor of a. Then
||/, aWhj ̂  0 and the proximity function

(2.7) mAa;r) = mAa,L,h,i;r):= I log . o->0 exists.

If 7 = POT, and D is a hyperplane on J*m defined by ao^o + • • • +
amwm — 0, assume f(Cn) ̂  D, since D associates a unique element
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in P{T(Pm, H)), where H is as in (c),

(2.8) mf(D;r)

l«o/o
log

JS(r]
>0

: /*(,) ^ & (I/Ol2 + • "•"•"+ \fm\2)l'H\O0\2 + • • • + k

where </>y = ( /0 , . . . , / w ) is a reduced representation of / .
(e) The notation \\A(r) < B(r) means that there is some set E c

R+ with JE dr < oo, such that A(r) < B(r) for all r e R+ - £ ;
||limr_+oov4(r) = B means that there is some subset E c R+ with
fE dr < oo, such that limr^ooireR+-EA(r) = B; \\A(r) < o{\ogr) + B{r)
means that there is some subset E c R+ with fE dr < oo, and a
function 0 < e: R+ —• R+ with e(r) —•• 0 as r —• +00, such that
A{r) < e{r)\ogr + B{r) for all r € R+ - E.

(f) Sometimes we use C to mean a positive constant number which
is independent of r e R+.

3. Lemma of the logarithmic derivative. In 1925, Nevanlinna proved
the "lemma of the logarithmic derivative" [N2], [HI] in the form

(3.1) \\mf,,f{r) < 101og+7>(r) + lOlogr + 41og+log+(l/|/(0)|)

for meromorphic function / on C. The generalization for it on C"
was given by Vitter in 1977 [VI]. Shiffman [S4] gave a refined lemma
in which O(logr) is replaced by o(logr):

LEMMA 3.1 ([S4, Lemma 3.11]). Let F be a non-constant meromor-
phic function on C". Then for any i, 1 < / < n and 0 < s < r

(3.2) / log a<Clog+(Tf{r,s))

We need the following Lemma 3.2. The simplified proof of this
lemma given below is due to W. Stoll.

For Lemma 3.2, some preparation is needed.
V:={(zl,...,zn)eCn\zi ^ 0 } is open i n C . Since U = P~l(P(U)),

the image U := P(U) is open in P""1 and P""1 -U = P({0} x C""1)
is a hyperplane in P""1 . Now E := {1} x C""1 is an affine plane in
C of dimension n - 1 with E C U. The restriction P := P: E -* U
is biholomorphic. If z = P(z) G U, then z = (z\,...,zn) € U and
p-l(z) = z/2i. Let

(3.3) L:E^Cn
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be the inclusion map. Let w be the Fubini-Study form on P"~'. Then
L*(co0) = P*(co). Define

fiy:=(O,...,O,l,O,...,O)eCH.

Then u i , . . . ,un is an orthonormal base of Cn. The dual base u \,..., u*n

of (C)* is orthonormal. Put «* := P(w*). Pick x e U. Then
e = (ex,...,en) - P " 1 ^ ) x E satisfies u\(e) = e\ = 1 and \e\ > 1.
Hence

(3.4) 1
\e\\u\\

Let F: Cn —• P1 be a non-constant meromorphic function. Then
S := supp iiQ

F U supp nf is empty or an analytic subset of pure dimen-
sion n - 1 in Cn, where /uf := ̂ ° _ , , fo--. = ( / i , /0) if «^F = (/o./i)
is a reduced representation of F. Then £o := {̂  ^ ^ICe c 5} has
measure zero in E. Take any e e E - EQ, a meromorphic function
Fe ^ 0 is defined by Fe{w) := F(we) for all K; € C. Obviously, if
e = {e\,..., en) e E - Eo then e\ = 1 and

(3.5) F'e{w) = ^ e ^ for all

The function ge :— Fg/Fe is meromorphic on C for each e G E - EQ.

LEMMA 3.2. For each 0 < s < r e R+, the integral

[ m& (°°; h
JeeE-Ef,

exists with

(3.6) f mg
Je€E-E0 \ \e\/

< C(log+ TF(r,s)) + o(logr).

vAw) 4 oo. ThenProof. Take ee£ -£ 0 and ioGC with 0
= {e\,...,en) and

X>7^7^)
dF
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or

log+ \ge(w)\ = log4 F'e{w)

(=1

dF

dF , ^ /EV \
—(we)/F(we)

\F(we)\-2

1

which implies

mgi, oo;

I;

By [Wl, p. 130, (2.12)] we have

(3.7) \og\e\L*(co"Q-l)(e)

1
log

A difFeomorphism <I>: £ x R(0,2^) —> £ onto a subset £ of 5(r)
is defined by 3>(e, 0) = rexp(\/^ld)e/\e\ such that £ is open in the
topology of S(r) and such that S(r) — E has measure zero. Then

JeeE-Eo 2n JO
log4

S(r)
a
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JeeE-E0 \ \e\/

OF

x=\
log4

)

then (3.6) is proved by applying Lemma 3.1.

4. Lemmas from Nevanlinna Main Theorems.

LEMMA 4.1. Let f e &b(Cn, V,k), Kv ® (H\V)k~2 > 0. Then for
0<s<reR+,

(4.1) 2Tf(H\V;r,s)<

+ C(log+Tf(r,s)) + o

In particular, ifV = Pm, i.e., f e3r
A(Cn,Pm,m + 3),

(4.2) 2Tf(r,s) < £ N(A;r,s) + C(log+ Tf(r,s)) + o(\ogr).

Proof. From [S4, Theorem 3.1] we have

(4.3) 2Tf(H\V;r,s)<

C(log+Tf(r,s))

where Rf is the ramification divisor of / which is defined in [S4, p.
73], or [D2]. By [D2, Lemma 3.2],

(4.4) ;r,s) - N(Rf;r,s) < C
7=1

where Nf(v;r,s) := N((f*v)^;r,s) (cf. (2.2)). Note that Nf{Hj\r,s)
- N{Ay,r,s); then (4.1) is proved by (4.3) and (4.4). •

LEMMA 4.2. Let f e i ^ (C \ Pm, 3m + 1). Then for 0 < s < r e R+,

(4.5)
3m+l

2Tf(r, s) < 2J 7V( ŷ; r, J) + C(log+ Tf{r, s)) + o(logr).
7=1
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Proof. From [VI, (5.5), (5.6), p. 103],

(4.6) [(3m + 1) - m - l]Tf(r,s) = 2mTf(r,s)

<log(\gl • • • g3m+l\/J) +logD + C,

where
(1) gi •= /o«o0 + •' • + fmdm, and a^],..., a% are given by (1.1),

for i = 1,...,3m + 1, and (fo,...,fm) is a reduced representation
of/.

(2) / := | | / A Da>f A • • • A Da-f\\ = det(Da'f)o<i<m,ao=Q, where
(0, a\,..., am) are nonnegative integers such that there exists a dense
open subset U of C", for any z eU, f(z), D°"f(z),...,Da>«f{z) are
linearly independent.

(3)

i^det *0l'o/'o

\Da'"fo/fo •• Da-fm/fmJ
From [F3, p. 255], we have

(4.7) f log(\gl---g3m+l\/J)<T
JS(r)
f
S(r)

3m+l

rf^ J2 Nf(Hj;r,s),

where
(1) By [F3, Proposition 4.5], &o always can be m for nondegenerate

meromorphic map from C into P w .
(2) By [F3, p. 250], the second inequality holds because

(4.8) Nf{r, s)M := N((f*Hj)^; r, s) (cf. (2.2))

With (4.6), (4.7) and (4.8),

2mTf(r, s) < Y, mNf(Hj; r,s)+ logD • a + C.

Apply Lemma 3.1 repeatedly to Js,, log/) • o, then (4.5) follows. D

LEMMA 4.3. For any n,me Z+, let f, g: Cn -»• Pm 6e linearly non-
degenerate meromorphic maps with f ^ g. Let D be any hypersurface
on Pm. Iff-l(D) - g~l(D) andf\f-l(D) = g\g~\D), then

(4.9) Nf(D; r, s) < Tf{r, s) + Tg(r, s) + C
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^

' • = '

Proof. See [D2, Lemma 3.4]. (Note: Lemma 3.4 in [D2] needs the
condition n > m, but this is seen to be unnecessary by checking the
proof.) D

LEMMA 4.4. Let f,g e i*g(C", Pm , k) with f £ g and with
k

27>(r, s)<^2 N(Aj; r, s) + C(log+ Tf(r, s)) + o(log r),

(4.10)

Then

(4.11)

(4.12)

2Tg(r, s)<}2 N(Aj; r, s) + C(log+ Tg(r, s)) + o(logr).
7=1

X\mJf(r,s) Tg{r,s) = 1.

Proof. From (4.10) and Lemma 4.3,

k

7=1

So,

(4.13)

1 <

< 1 +

By (4.10),

(4.14)

(4.15)

+ C(log+ Tf[r, s) + log T+(r, s)) + o(logr)

Tf(r,s) + Tg{r,s) + C(log+ ^ ( r , J ) + log+ Tg(r,s))

+ o(\ogr).

+ Tf(r, s) + log+ Tg(r, s)) + o(logr)]

lim Tf(r, s)
/ 7=1

;r,s) < 1/2 and

/,r.s)<l/2.
7 = 1
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Apply (4.15) to (4.13), we obtain (4.11). Then apply (4.11) to
(4.13), we obtain (4.12). D

COROLLARY 4.5. Let f,g e 9r
A(Cn,Vm,m + 3) (respectively

l), or9£{Cn,V,k)) with f £ g. Then

m+3

7 = 1

N(Aj-r,s) Tf{r,s) = 2,
/

lim Y* N(Ar, r, s) / TAr, s) = 2, or
/•—»oo *—' I J

7=1

(4.16)

(resp.

(4.17)

(4.18)

(4.19)

5. Proof for holomorphic curves. In this section, we prove Theorem
B when n = 1. Although this case is only for holomorphic curves, the
method of proof will be essentially used for the remaining cases of
Theorems A, B and C.

LEMMA 5.1. Let n.m.k e Z+. Let Sr
B(Cn,Fm,k) £ 0. Then there

exists a dense subset 3° c Cf+i, such that for any p = (po,..., pm) €
J5, the hyperplane Hp defined by PQWQ H h pmwm = 0 satisfies

(5.1) Codim \jAjnf-l(Hp)\ >2 for all f " ,PW ,k).

Proof. For any irreducible pure (n -1)-dimensional component a of
U j = , A j t s e t K a : = { ( x 0 , . . . , x m ) e C m + l \ x Q f 0 ( z ) + ••• + x m f m ( z ) = 0
for all z € a}, where (f>f = ( /o, . . . , fm) is a reduced representation of
/ G &b(Cn, Pm, k). Ka is independent of the choice of / for f\A =
F\A. Ka is a complex vector subspace of Cm + 1 with d i m ^ < m.

Let K := \JaKa. Then K is a union of at most a countable num-
ber of m-dimensional complex vector subspaces in Cw + 1 . Let & :=
Qm+\ _ ^ Then & meets the requirement of the lemma. •
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Now for any n, m, k e Z+ and for f,g,h^9r
B{Q,Vm,k), let & be as-

sociated to «^s(C,Pw, k) as in Lemma 5.1, and take/? = {Po,--- ,pm) €
3°. Take / e {1,..., k}. We define a meromorphic function p o n C
by

F G H
(5.2) p = <p(f, g, h, p, i) := det I F'/F G/G H'/H

w h e r e

f F = F ( / , / ? , i ) : = ( a j ° / o + • • • + atffm)/(pofo + ••• + Pmfm),
( 5 . 3 ) j G = G ( ^ , / ? , / ) : = ( 4 ° ^ o + • • • + a{m]gm)/(pogo + ••• + p m g m ) ,

[ H = H { h , p , i ) : = ((%% + ••• + a { ^ h m ) / ( p o h o + ••• + p m h m ) ,

w h e r e <f>f = ( f o , . . . , f m ) , 4>g = ( g o , - - - , g m ) , <$>h = { h \ , . . . , h m ) a r e
reduced representations of / , g, h, respectively, and (a^,..., a$) is
defined in (1.1).

Sometimes we define

(5.4)

H(f) a^fo + --- + aijl
)fm, etc.

LEMMA 5.2. Let f, g, h € 9B{C, Pm, 3m + 1). Assume

for some p e & and some i € { 1 , . . . , 3m + 1}. Then for 0 < s < r,

(5.5)
Tf(r,s)

Proof. First we prove

3m+l

(5-6) U

For any a e Aj with j / /, j e { 1 , . . . , 3m + 1}, because the A^
are disjoint in C for k = l , . . . , 3m + 1 and (5.1), we know that
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F(a) = G(a) = //"(a) e C*. Then from (5.2), we have

(5.7) p(a) =

( }

Next we show that if b e Aj, then

(5.9) <p(b) ^oc.

When w is near b in C, F(w) — (w — b)k'F*(w), F*(b) ^ 0; G(w) =
(w-b)k'-G*(w), G*{b) ̂  0; H(w) = {w-b)kiH*{w), H*{b) ± 0, where
integers k\, kj, k^>\. Then (p{b) ̂  oo follows from (5.2).

Since <p ^ 0 and (5.6) and the First Main Theorem,

(5.10) 2 _

By (5.2), (5.3) and (5.9), all the poles of <p must be the ones of F,
G, H. Hence

(5.11) N<p{oo\r,s) < Np{oo\r,s) + NG(oo;r,s) + iV#(oo;r,.s).

By Lemma 3.1,
(5.12) ||mp(oo;r) < mF(oo;r) + mG(oo;r) + mH(oo;r)

+ C(log+ TF(r, s) + log+ TG(r, s) + log+ TH(r, s))
+ o(lo$r).

Note TF(r, s) < Tf(r, s) + C, etc. Note / ^ g because <p ^ 0, so we
can apply the Corollary 4.5. By (5.10), (5.11), (5.12) and (4.19),

2 Y. NWj;r,s) < 3Tf(r,s) + o(logr) + C(log+ Tf(r,s)).

Then by (4.6) we prove (5.5). •
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LEMMA 5.3. Let ^B{C,Pm,k), &>, p e &>, i e {\,...,k}, fg,h e
m,k), <p = <p(fg,h,p,i), F = F(fp,i), G=G(g,p,i),H =

H(h, p, i) be as in (5.2), (5.3). Assume k>2. Then

(5.13) <p = 0 o- There is constant {X, fi, v) e C* such that

(,14) £ + § + £ - *
Proof Set a := \/F, p := 1/(7, y := l/H. Since

I/a \/p 1/7 \ , / 1 1 1
= det | -a ' /a -/?'//? -y'/y I = ^ det a 0 y

and a ^ oo, 0 ^ oo, y ^ oo for / , g, h are linearly non-degenerate,
put

/I 1 1\
A := det a /? y .

V"' 0' 7'7
Thus (5.13) is equivalent to

(5.15) v A = 0.

By Wronsky determinant, (5.14) is equivalent to

a P y
(5.16) det ( a' P' y' j = 0.

a" p" y".

It suffices to prove (5.15)o(5.16).
For (5.16)=>(5.15): By the definition of ^ ( C , P W , k) and k > 2,

H\A = G\A = H\A £ 0, so k+n+v = 0 from (5.14). So (5.16)<^(5.14)
=> (5.15) is obvious.

Assume (5.15). If (a,p,y) = C( l . l . l ) , where £ is a meromor-
phic function, (5.16) is obvious; if not, then (a', /?', y') = p(\, 1,1)4-
t](a, p, y), where p, r\ are meromorphic functions. Differentiating,
we conclude that (a", P", y") is a linear combination of (a, p, y) and
(a',P',y'). •

The proof of Theorem B when n = 1.
(1) Let fg,h e 3r

B(C,Pm,3m + 1). Let &> be associated to
J ^ ( C , P w , 3 m + 1) as in Lemma 5.1.
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It suffices to show that for each p e &, for all but at most four
G { 1 , . . . , 3m + 1} (here the condition m > 2 is used),

h + t o I VA= o

holds for some constant (A,-, Hi, vt) e C\, where F(f, p, i), G(g, p, i),
H{h, p, i) are defined as in (5.3).

In fact, assume that the statement above has been proved, we prove
that / , g, h satisfy Property (P) as follows: for any p - (p0,.... pm) e
C™+1, since 9° is dense in C™+1 by Lemma 5.1, we choose a sequence
of Pt e S6 with pt —• p as t —» oo. For each pt, by the assumption, for
all but at most four i E {I,..., 3m +1} (the exceptional set depends
on 0,

a 1 «>. ^ . , Pt, . vu _ n
(.J.loJ ~FT7 n + 7̂ 7 ^ + 7777 rr = U

F{f,pt,i) G{g,pt,i) H{h,pt,i)

for some constant {kt.,iiti,vti) € C^. We assume

(5.19) MaxflAJ, \ntl\, \vh\) = 1 for all t and i.
By taking a convergent subsequence of {pt} if necessary, we can as-
sume that

(i) There is an exceptional set Ap c { 1 , . . . , 3m + 1} which consists
of at most four numbers and is independent of t, such that for any
pt, and any / e { 1 , . . . , 3m + 1} - Ap, (5.18) holds for some constant
(X,,,fitl,vtl)eCl

(ii) At, —• A/, fit, —> Pi, vti —> Uj for each i e { 1 , . . . , 3m + 1} - Ap as
t —* oo.

Because (5.19), (A,-,//,-,!/,-) e C*. Just let f -+ oo in (5.18), we have
proved (1.4), i.e., / , g, h satisfy Property (P).

(2) Now suppose that the statement (5.17) is not true. Then there
exist p e 3° and / ] , . . . , /5 € { 1 , . . . , 3m + 1}, such that there is no
constant (A, /z, v) e C^ so that

A ft v _
F{f,p,is) G(g,p,is) H(h,p,is)

for 5 = 1,2,3,4,5. By Lemma 5.3, (p{f,g,h,p,is) ^ 0 for s =
1,2,3,4, 5. Then by Lemma 5.2,

\jxnN{Ais;r,s)ITf{r,s)>\, for 5 = 1,2,3,4,5.
r—+oo ^
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So,

3w+l

£ N{Aj;r,s)ITf{r,s)
7=1
3m+l

7=1 r^°°

but this is contrary to (4.17). D

6. Lemmas for <pae. For proving Theorems A, B and C, we make
some preparation in this section. Since §5, we assume n > 2 through
§6, §7.

Let n,m,ke Z+ with k > 2, and let / , g, h e 9h{Cn, Pm, k). Let
3? be associated to 5%(C", P w , k) as in Lemma 5.1. Take p e & and
/ G {\,... ,k}. Suppose that there is no constant (X,fi,u)eCl, such
that

(6.1) F G ^

where F = F( / , />, /), G = G(^, p, /), H = //(/?, p, i) are defined by
(5.3).

Let

K := K(f, g, h, p, i) := {F = 0} U {l/F = 0} U {G = 0} U {l/G = 0}

U {H = 0} U {1/7/ = 0} U {F = G} U {G = H} U {i/ = F} .

Since f,g,hare linearly non-degenerate and the assumption in (6.1),
K is a proper analytic subset of C.

Take a = (a , , . . . , an) e Cn - K. Since n > 2, let e = (ex,..., en) e
£ : = { 1 } X C " ~ ' (see §3). Then define a meromorphic function <pae =
(pae{f,g,h,p,i) onCby

f ae (Jae *+ae
(6.2) <pae := det | F'aeIFae OaeIGae H'ae/Hae J , where

1 1 1

(6.3) Fae(w) := F(a + we), etc.

LEMMA 6.1.

(6.4) <pae(0) = A i ( a ) + A2(a)e2 + --- + A n ( a ) e n ,
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where

G(a)
( _ DJF(a)
\ H{a) F(a)

forj = 1,...,« and Dj = —..

Proof. By (6.3), Fae(0) = F(a), and

F'ae{w) = DlF{a + we) + e2D
2F(a + we) + • • • + enD

nF(a + we),

so

(6.5) F'ae{Q) = D l F a e ( 0 ) + e 2 D 2 F a e ( 0 ) + • • • + e n D " F a e ( O ) .

Then by (6.2) and (6.5), we obtain (6.4).
Since a £ K, F(a) ̂  0, oo, G(a) / 0, oo, H(a) / 0, oo, so Aj(a) / oo

for j = \,...,n. u

LEMMA 6.2. There is no open subset U cC" - K such that

(6.6) (Pae(Q) = o for all a <E U and all e e E.

Proof. (1) Suppose that there is some open subset U cCn -K such
that <pae(0) = 0 for all a e U and all e e E. From Lemma 6.1, it
implies that Aj(a) — 0 for all a e U and for j = 1,... ,n. Since Aj
are meromorphic, we know

(6.7) Aj = 0 onC" for j = 1,. . . ,n.

We shall find a contradiction with (6.7).
(2) Consider An = 0. Write z = (z',zn)e C"~l x C. An = 0 means

F{z',zn) G{z',zn) H(z',zn) \

det
D"F(z',zn) DnG(z',zn) DnH{z',zn) = 0

F(z',zn) G(z',zn) H(z',zn)

1 1 1 )
forall(z',z«)GC".

For any (z1, zn) G C" — K, fixing z' G Cn~l, by the proof of Lemma
5.3 for F{z',-) ^ 0, G(z',-) £ 0, #(z' , •) ^ 0, there is constant
(A(z'),/2(z'),£(z')) e c3 such that

(6.8) /''(z'.z^) G(z',zn) H(z',zn)~ •

X(z') + ju(z') + u(z') = 0, for all zn G C.
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The second identity is because F\A = G\A = H\A ^ 0 for k > 2.
(3) Consider the equation on C",

X(z) fi(z) u(z)

( 6 . 9 ) j F(z) + G(z) + H(z) ~ '

For any z G Cn - K, we solve (6.9) to obtain

(6.10)

So, for any ^ ^ 0, we obtain a solution (A, /z, ẑ ) for (6.9) on Cn - K,
with [i ^ 0 and A ̂  0. If we fix v ^ 0 to be a meromorphic function,
then (X(z),fi(z), u(z)) is a solution for (6.9) on all of C", where X £ 0,
/z ^ 0 are also meromorphic functions.

Such (X,fi,v) is not unique, but for any z eC" - K,

are uniquely determined by (6.9) because of (6.10).
We want to prove that such X/v, fi/u, Xjn are constant on Cn from

(6.7), which is contrary to (6.1). Thus the lemma is proved.
(4) For any z = (z', zn) G C" - K, by (6.8) and the uniqueness

property in (3), assume v{z') / 0; then we have

X(z') _ X(z>, zn) ji{z<) _ Mz>, zn)

Thus

i.e., for any (z1, zn) G C - K, the meromorphic functions X/fi, v/ji,
XIv are independent of zn. So, they are independent of zn on C".

Repeating the same procedure for j = 1,...,«— 1, we prove that
, v/fi, X/v are independent of Zj for j = 1,...,«. D

7. Proof for Theorems A, B, C. As in §6, assume that n > 2.

LEMMA 7.1. Let f,g,h e i ^ (C" ) P
w ,m + 3) (respectively

n, P w , 3m + 1), or &c(C
n, V, k)). Let p G &>, where & is associat-

ed to &A(Cn,Pm, m + 3) (resp. ^b(Cn,Pm,3m+l), or i*t(C",V,k))
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and let i e {\,...,m + 3} (resp. { l , . . . , 3 m + 1}, or { 1 , . . . , A : } ) .
Let F = F(fp,i), G = G(g,p,i), H = H(h,p,i) be defined by
(5.3). Suppose that there is no constant (A, JX, u) e C» such that

(7.1) £ + £ + £=<).
For each b e Cn, define a bioholomorphic map £,b:C

n-* Cn by £b(z) =
z + b for all z eCn. Abbreviate Ajb = Cb

l(Aj) and fb = / o £b. Then
for almost every b G C" we have

(7.2)
1

l i m N(Ajb;r,s)/Tfh(r,s)>^, for 0 < s < r.
r—>oo

Proof. We only need to consider Sr
A(Cn,Pm, m + 3). For the cases

ofSr
B(Cn,Pm,3m+ 1), or^c(C",KA:), the proof is the same.

(1) By §6, there is a properanalytic subset K := K(f, g, h, p, i) e Cn

and a e C" - K and some e € E such that

(7.3) <Pae(0) / 0,

where q>ae = 9ae(f g, h, p, i) is denned by (6.2).
By taking w = (wi,..., wn) — a + {z\,..., zn) = a 4- z, we assume

a = 0. From Lemma 6.1, EQ := {e e E\<pGe(0) — 0} c E is a proper
linear variety, so

(7.4) Measure EQ = 0.

(2) For any e e E - EQ and for any j e {1,..., m + 3} with j / /,
we shall prove

(7.5) Iej c ^ ( 0 ) n ( ^ ) - ' ( O ) , where

(7.6) /,,- := w eC\weeAj-f-l(Hp)u \J Au

Ku<m+3

Assume Iej ̂  0. For any b e Iej, since Foe(b) = F(be) = Goe{b) =
G{be) = HOe(b) = H{be) e C* by definition (7.6), by using the proof
of Lemma 5.2 ((5.7), (5.8)), we can prove

<Poe(b) = <p'Oe(b) = 0.

So, (7.5) is proved.
(3) Now we estimate 2 Y,™=\,&i N(Aj'> r> s).
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Because p e & and Codim Atr n A}> 2 for i ^ j , we know that

Codim Aj n (J > 2, so

dt / ^ _ !
4;ns(t)

where

Therefore

|J

w+3

7=1.77'

•.• (7.4) and L*
is denned in (3.3)

The last inequality is because of (7.5) and the fact that if Iej = 0 ,
then N(Iej;r,s) = 0.

(4) For any e EE - Eo, we estimate TV^ (0; r/\e\,s/\e\) now.
If <pOe = const, since <pQe(0) ̂  0, N^c(0;r/\e\,s/\e\) = 0. So, we

consider 0>oe ̂  const. Then by the First Main Theorem,

R' W ^ (R' R R) + c

oo; ]i[' j i j j i j) + C

By (6.2) and as in (5.9), since q)Qe ^ const., all the poles of q>Qe must
be the ones of Foe, Goe, and HQe. Then
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Furthermore,

<

•2

log 6

oo; i j

So,

r ^ i H' Id
r s

\e\'\e\

(5) By (3), (4), and Lemma 3.2,

m+3
(7.7)

C(log+ 7>(/-, s) + log+

o(logr) + C

log+ TH(r, s))

By Corollary 4.5, and (7.7), the lemma for^(C", Pm, m+3) follows
as in the proof of Lemma 5.2. o

REMARK. If / , g, h, p are as in Lemma 7.1, suppose for distinct
// G {1 , . . . , m + 3} (resp. {1 , . . . , 3m + 1}, or {1 , . . . , k}), there are no
constant {kt,nt,vt) e C ,̂ such that

Fif.p.U) G(g,p,it) H(h,p,it)
^ = 0, f o r / = ! , . . . , 5.
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Then there is a G C", which is independent of t, so that under the new
coordinates system w = a + z,

]im N{Ai,;r,s)/Tf{r,s)>l:.

I n f ac t , f r o m §6, w e first c o n s i d e r ilf t h e r e i s a,\ G C " , a n d s o m e
ex <EE, <paiei(0) ± 0, where q>aie, = <paiet{fg,h,p,ii). By Lemma 6.1,
there are neighborhoods U\ of ai in C" and Fj of ei in E, so that
for all a e Ui, e & V\, ^ae(0) 7̂  0. Then, we consider ii, also from
§6, there is a2 G C/i and some e2 e Fj, ^ ^ ( 0 ) 7̂  0, and then go on
for t = 3,4, 5. So, we finally find some a e C", and e e E, such that

Proof of Theorems A, B anJ C. From Lemma 7.2 and the remark
above and as the proof of Theorem B when n = 1 in §5, Theorems A
and B are proved immediately.

For Theorem C, for f.g.h G &c{C", V,k), we can prove as above
that / , g, h satisfy Property (P). It remains to show that / , g, h are
algebraically dependent.

Since / , g, h satisfy Property (P) and k > 5, we can take p =
{p0,...,pm)eCf+1 and 1 G {1, . . . ,k} such that

( 7 . 8 ) (a{Q]w0 + ••• + a{ji}wM)/(powo + ••• + p M w M ) # c o n s t , a n d

MP(g) v P { h )

f o r s o m e ( A , / / , v ) e Cl, w h e r e P(f) = pofo + ••• + PM/M, Hi(f) =
4'Vo + ' •' + aMfM> etc., as in (5.4).

Let

Q(w, u, w) := XP(w)Hi{u)Hi{v)
+ uHi{w)Hi{u)P{v)

be a polynomial of C[«;o>..., wM;UQ,...,UM',VQ,...,%]. Note that

, 7 ,0 ) fi(»...,) .

Assume X ^ 0. Since K is not contained in any hyperplane in
we can choose u', v' e CM+l with P(w') G F and P(v') G F, such that
Hi{u') ^ 0, //,(^') ^ 0. Hence Q{-,u',v') ^ 0 by (7.10). For the
same reason as above we can choose w' G C M + 1 with T*(w') G V such
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that Q(w',u',w') ^ 0. This means { (P(U; ) ,P(M) ,P(V)) e V x V x
V\Q(w, u, v) = 0} is a proper analytic subset of F x F x V. Then
from (7.9), Q((f>f,4>g,(j>h) = 0, where 0y is a reduced representation
of / , etc., and therefore / , g, h are algebraically dependent. •

REMARK. Recently, Stoll has proved some closely related re-
sults [Sll] which implies that if f,g,h e 3r

A(Cn,Pm,m + 3), or
&B(Cn,Pm,3m + 1), or &~c(C

n,V,k), then / , g, h are not in general
position, hence / , g, h are algebraically dependent. Stoll applies the
First Main Theorem for exterior product [S10] to prove his theorems.
The method is very interesting.
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