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RELATIVE WIDTH MEASURES AND
THE PLANK PROBLEM

R. J. GARDNER

A relative width measure in a convex body K in R" for a set 6 of
directions is a Borel probability measure in K such that the measure
of the intersection of K with each slab orthogonal to a direction in 6
is equal to the relative width of the slab. Such mmeasures are studied
in connection with the unsolved plank problem of Th. Bang.

0. Introduction. Tarski's plank problem was solved by Th. Bang [2]
when he showed that if a convex body K in R" is covered by a finite
number of slabs, the sum of their widths is at least the minimum width
of K. Bang conjectured that a stronger, and affine invariant, inequality
should hold; namely, that the sum of the relative widths of the slabs
is at least one (the relative width of a slab is its width divided by the
width of X in the same direction). This is still unsolved.

A relative width measure is a Borel probability measure in K such
that the measure of the intersection of K with any slab is precisely the
relative width of the slab. An example, known to Achmﬁ;dcs, 1$ not-
malized surface area measure in a ball in R an0ther is the projection
of this measure, normalized, in a disc in R If Such a measure exists
in K, then Bang’s conjecture is true for K. This observation has been
made several times in the literature, but does not seem to have been
thoroughly investigated.

We study these measures, always with Bang's conjecture in mind.
For this application, the measures need only have the relative width
property for directions corresponding to the covering slabs, and in fact
a reduction shows that we need only seek them for coordinate direc-
tions. Theore ]hshows ﬁhat mgas res with the ‘atter pr lalways
exist in R w ich generalizes t nown special case 0 s conh-
jecture for two slabs. However, Example 2 shows that even measures
with this weaker property do not generally exist for X in R*

Section 3 concerns measures with the relative width property for
infinite sets of directions. Here, using Fourier transform techniques
and particularly a method due to K. Falconer, we show (Theorem 3)
that measures with the relative width property for all directions do
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not exist in the ball in R" for n > 3. (After this paper was written, I
learned that G. Schwarz also proves this in [23].) In Th%or'elﬁ 4 %S
refine this result, and show that those in the disc in R? 3nd ball in
are essentially the only such measures. Sufficiently 'large’ infinite sets
of directions also guarantee uniﬁgcngsirmg% LEIANNE dividtho MICAS B
while in §4 we show that in R? 21¢ R

I thank Don Chakerian for many stimulating and helpful discus-
sions on Bang's plank problem, and for providing some useful refer-
ences; and L. Zalcman for supplying the case n = 3 of Theo-
rem 3,

1. Relative width measures and the plank problem. We shall write
int £ and dE for the interior and boundary of a set E, respectively.

Suppose K is a compact convex set in R”, and 6 is a direction
(which we identify throughout with the corresponding unit vector in
R"™). We denote by W/K, 6) the width of K in the direction 0 that is,
the distance between two hyperplanes which are orthogonal to § and
which support K. If AT is a fixed compact convex set, and H is a convex
set, the relative width of H in the direction 6, when W(K, 6) / 0, is

w(H, 6) = W{HnK, 6)/W{K, 6).

A slab orthogonal to 6 is the closed set between two hyperplanes
which are orthogonal to 6.

A measure is a non-negative set function, assumed countably addi-
tive unless otherwise stated. Let /z be a Borel probability measure in
the compact convex set K, and let O be a set of directions. We say
that p is a relative width measure in K for G if

#(SNK)=w(s 9

whenever § 15 a slab orthogonal to some 6 G G.

Suppose now that G = {6\..., &4} is a finite set of directions, K is
a compact convex set in R” and 5% is a slab orthogonal to 0, 1 < /< k.
It K ¢ VSi, is it true that J2iW(S, 6i) >~17 This is Bang's plank
problem (see [3]). It is an affine invariant form of Tarski's plank
problem [24], solved by Bang in [2] when he showed that the weaker
inequality

(1) ; W(S;NK,6;) 2 min{W (K, 6)}

holds.
It is not a new observation that relative width measures are relevant
to Bang's plank problem. This has essentially been noted by G. Hajds
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and A. Rényi [20], D. Ohmann [17] and J. W. Green [12], among
others. For, if # is a relative width measure in K for 0 = /6\..., 8;},
then

2 £>(S,DK) 2 w(K)=1=3 w(S,6) 21,

as required.

Since there seems to be some confusion about the status of Bang's
problem, we shall briefly survey attempts to solve it. In [17], D
Ohmann shows that it suffices to consider a convex body K in R"
covered by n slabs S\....S,, with 5, ‘orthogonal to the /th coordinate
axis. Further, a signed relative width measure is constructed in X for
these directions, but this is not enough for the implication (2), even
when fi(Sj n K) > O for each /. These and other remarks on the prob-
lem may be found in [4], where it is also shown that Bang's conjecture
is true for covers of K by two slabs. Other proofs of this special case
are given in [1] and [15]. hoA 1>

Let /, be the length of the longest chord of K para]}pl go dt, i =
\..,k. Then Bang's proof actually shows that ¥Y.r *
which is stronger than (1). According to a translation, the paper [14]
in Chinese only confirms this result, despite its title. Another attempt
in [18] breaks down; the error is pinpointed in the review by C. A.
Rogers cited under [18].

Lastly, we note variations in the proof of Bang's result ([6], [10],
special cases in [7], [9]) and the interesting paper of R. Alexander [1]
which relates Bang's problem for K a square to an unsolved problem
of Davenport.

We begin by considering those properties of pi necessary to derive
(2). We actvally only need ju to be finitely additive and to satisfy
fitS n K} € w(S5,6) for each slab § orthogonal to 6. Assuming only
this, we note that the support of // must l1e in X foaa strai htfor\iv
application to the plank pro?éem or if contains at lcast
two directions, and /z(R> , 1t 18 easy to find slabs S$i and
~2 orthogonal to any two of these directions such that X ¢ S\) S2
and fitS\ U §2) = ¢ < 1, from which we can only deduce that ¢ <
w(S\ 61) +w(S2, 62). Now the first two lemmas show that we lose no
generality in making our other stronger assumptions on fi.

LEMMA 1. Suppose fi is a finitely addinve Borel probability measure
in K, such that fitS n K) < w{S$,6) for all slabs § orthogonal to 6.
Then n(S DK) = w(§, 6) for all such slabs.
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Proof. Let S\ be any slab orthogonal to 6. We can find two dis-
joint slabs £2 and S3, both orthogonal to 6, with K ¢ V.$i and
52iW(Si,0) = I. Then

1 < ﬁ/*($ nK) < n{S: OK) + w(Ss, d) + w(.Ss, 6),

I

80 fi(Si nK} > I-w(S2, d)-w(Ss, 6) = w(S!,d), giving /i(Si AK) =
w(Si,6) as required.

LEMMA 2. Suppose n is a finitely addinve probability measure in K,
defined on the algebra si generated by sets SDK, where § is a slab
orthogonal to d, and 6 belongs to a fixed set O ofdirections. Suppose
also that fifS n K) = w(S, 6) for such sets. Then fi can be extended to
a relative width measure in K for G.

Proof. Let A e srf. Then A = UJA Aj, where for each { there is a
polytope Pi such that

(intP)NnKCcA; C PNk,

and moreover for each face of Pi there is a 6 ¢ © such that this face
is orthogonal to 6.

For each /, let Hi be a finite union of open slabs, each orthogonal
to some 6 € 0, such that

Pi-intP, ¢ Hi

and the sum of the relative widths of the slabs in Hi is less than e/m.
Let Q = (Pi -Hi)DK for each /, and C = (J£i Q. Then C is
compact, C ¢ 4, and

#(C) zp (UPmK) —u (UH;OK) > u(d) —¢,

where we have used the fact that P, n X, H, n ¥ and C all belong
to si.

This shows that fi is inner regular on J/ with respect to the compact
sets. By Henry's extension theorem [22, p. 51, Theorem 16], fi can be
extended to a countably additive Borel measure.

REMARKS, (i) The extension provided by Henry's theorem is unique
if the algebra si contains a base for the topology of R". This will be
the case if 0 contains # linearly independent directions. However,
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even if §f does contain a base, there may be more than one relative
width measure in K for 0 (see Theorem 5).

(ii) Given any set © of directions, we may of course define fi on the
sets $ n K of Lemma 2 by fi(S n K) = w(S, 6). However, /i may not
extend to the algebra sf; Example 1 shows this.

2. Existence of relative width measures. Here and throughout X de-
notes linear Lebesgue measure in R".

Suppose K is a convex body in R” and 6 is a direction. Let / be
a chord of K meeting the two supporting hyperplanes to X which are
orthogonal to 6. Define /i in X by /(B) = X{B n /)//1(/). Cleatly n is
a relative width measure in X for {#}.

If r is a relative width measure in K for ©, and 4> is a nonsingular
affine transformation, therﬁ(}s a corresponding relative width measure
in ¢j}(K). Define fzant o0 ) by

(n¢~")(B) = u(¢™'(B))

for each Borel set B in MA"). If 6 e ©, and /f is a hyperplane or-
thogonal to 6, then O(//) is a hyperplane orthogonal to some directi
6. If 8 = {~":0e ©}, it is easy to see that n<j)~‘E 1s a relative Wl(ﬁﬁ
measure in <f)}K) for ©'.

THEOREM 1. Let Kbea convex body in R" and 6\ 6i two directions.
Then there is a relative width measure in K for {61,62}.

Proof. It n > 2, let P be the span of the directions 6\ and 92 and let
*F denote projection onto P. Let £ be any Borel subset of K for which
*¥ is a bijection from E to *F(X) (such a set exists; see [16, 4D.13]).
If /7 is a relative width measure in *RAT) for {0j, }» define /i in A by

A(B) = u(Y(BNE))

for Borel sets B ¢ K. Then /i is a relative width measure in K for
{#1, #2}- So it suffices to consider the case n = 2,

By using an affine transformation, and the remarks preceding this
theorem, we may assume that 6\ and 62 are parallel to the coordinate
axes, and K is contained in the unit square / and meets all its sides.
Let al, <2 be the x-coordinates of any two points in the intersections
of dK with the bottom and top sides of /, respectively, and b\ b~ the
y-coordinates of any two points in the intersections of dK with the
right and left sides of /, respectively. The four points so obtained
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form the vertices of a quadrilateral Q ¢ K (which may degenerate to
a triangle).
We consider two cases.

Case () D\ < b2 and &\ < @, or B\ > by and a, .
ls/<4, be the sides of Q (wh1ch cannot in this case be ge‘gcﬁ@lla{e')

labelled clockwise with N\ the segment joining the points (a\ 0) and
(0,62). Let m be the line segment joining the points fa\d\) and

(az, by). For Borel sets B in K define

H{B) = [0,M(5 n h¥k(h)] + [axl - boypsB p P2 AR)]
+1{(1 = a2)(1 = BB N i)/ A(5)]
+[(1 = a)bjA(B N 1s)/A(l4))
+ [(az — a))(by = b))A(B Nm)[A(m)].

Of course, // is the sum of suitable multiples of k restricted to the
line segments /; and m. To check that JU is a relative width measure in
K for the coordinate directions is now simply a matter of computation.

Case (i) B\ 2 b2 and a2 » d\ (01' b\ < b and a =z
1 < / < 4, be the sides of Q as in Case (i). Sincé m m y no {3&

contained in @, and even if it is, # as defined above does not work,
we use instead the two diagonals d\ (joining (a\0) and (as1)) and
d> (joining (0,62) and (\bV)).

We seek non-negative multiples a,; and /%7 of k normalized on /; and
dj, respectively, such that the sum of these measures is the required
relative width measure.

Assuming b\ 2 b2 and a; » g\ and considering slabs of the form
{x, v 0 <x < ¢ ¢ £ a\) we see that the equation

(2
hal BFRS =1
2 + +ﬂ2

must be satisfied. Slabs of the form {(x,y). &\ < x <¢, ¢ < a2} and

{(xy) ar <x <, ¢ < 1)} yield similar equations, and we obtain
three more by looking at horizontal slabs. In addition, we require

Zaf+2ﬂj=l

for a probability measure.
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The equations can be solved by setting fi = Q or p, = 0, If fix =
we obtain:

»

a, = a]b]bz/Al,
a = ayl-byyl- -b2)/A,,
a; = (l-a2)(1-b, )\ ~b2)/A;,

014 = (1 - ajb,pys

b= (bx -byfapp p
Oxth -D2)aabop -p
where Ai = by + ayp, by ? 2\ -bi)-a xa
These are the solutions r}‘ ﬂw s%goﬁd (%actof" k%n Lﬁ?y Aﬁler.ﬁairA
/72 is non-negative. If not, we set p, = 0, obtaining solutions for a-
from those above by interchanging ax and b, ¢, 5pd b,
«4. We also get

and

and a2 and

fix = {a; Aamyp - a, . ab - -

where A is the expression correspondmg to A Zfﬂénoﬂﬁg’dhc Secbnd
factor in the numerator of p: by T, we see that T, +T = 0, so that
Px>0ifr; < 0.

far = a; and b, = p, ‘
where O reduces to a mangc %qgf ge %81\? as(lgbo]\)xccg%%%[%grga

measure is supported by the boundary of the triangle.

It follows that Bang's conjecture is true for two slabs, and so Theo-
rem 1 can be regarded as a generalization of this known result. In fact,
only Case (i) of Theorem 1 is needed for this. To see this, suppose

K¢ 5 U S, where S, and §, are slabs orthogonal to the coordinate
axes. Let R = 5. n S, and let Q be the guadnlatcral obtained by
drawing tangent lines to the convex hull of K and R at the vertices
of R. Now Q0 ¢ S, US>, and we may assume ¢ is inscribed in the
unit square. Then @ is as in Case (i) of Theorem 1. Since @ is wider
than K in the coordinate directions, the existence of a relative width
measure in @ gives the result for K

In fact, the measure from Case (1) of Theorem 1 was found by
analyzing the proof of Bang's conjecture for two slabs in [15].

In view of the difficulty of finding a relative width measure in X
for two directions, it is surprising that there are convex bodies which
have el isesetsder ks sl sripess
unreasonable to expect all convex bodies to support such measures,
but the point is that by Ohmann’'s reduction of Bang's problem, we
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only require a relative width measure in a convex body K in R" for
the n coordinate directions. However, we show in Example 2 that this
may not exist, even when n = 3.

The proof of the following lemma is a slightly modified version of
([8], Theorem 3), due to K. Falconer, which deals only with absolutely
continuous //.

LEMMA 3. Suppose K is a compact convex set in R", O is a set of
directions, and JU is a relative width measure in Kfor ©. Let the centroid
of K with respect to the density dfi be at the origin, and the support
function of K be k(d). Then there is a second-degree homogeneous
polvnomial p(6) such that kg(éx)h =P f 6) for al?é 5(%{

Proof. Let 6 € ©, let L be the line through the origin in the direction
8, and suppose that v is the projection of fi on L. Since // is a relative
width measure in K for {6}, we have

v = (k(0) + k(=0)"" Az,

where Xi is A restricted to L. Now if/ is a ridge function'—a function
on K which depends only on x » 6 = ¢ for all x ¢ K—then

! fxdfi(x)= 1 ftdu(t)
JK J-H(-O)

k(6)
= (k(8) + k(-0 / )ﬂr)dr.

J:k(-6

Since the centroid of K with respect to dff is at the origin, we have

0= | adiu(x)] 6=, f (xOMdh(x)

= (k(6) +k{-6) | 1

J-k(-6)
giving k{6) = k{-6).
Taking second moments, we get O3,

(o) dr =
7 e g duin) = k) + ko) O T
JK J-k(-O)
The left-hand side is a second-degree homogeneous polynomial in
6 = {6\..., 6,), giving the result.

EXAMPLE 1. A convex body 7'in R2 with no relative width measure

for a certain set of three directions,
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Let T be the triangle with vertices at the origin, (0,1) and (1,0),
and 9 the set of directions orthogonal to the edges of T. Suppose ju
were a relative width measure in T for 0, and let ¢ be the centroid
of T relative to dfi. From Lemma 3 we require only the fact that if
t{6) is the support function of T with respect to ¢, then #8) = t{—6)
for 0 € 0. From the coordinate directions, we get ¢ = fj, ), which
contradicts #6) = f(—d) for 6 orthogonal to the hypoteneuse of T.

EXAMPLE 2. A convex body U/ in R with no relative width measure

for the three coordinate directions. . . L

Let U be the tetrahedron in R’ with vertices at the origin, (1,0,0),
(0, 1,0) and (0, 0,1). If a relative width measure /i with centroid ¢
existed, then, as in Example 1, using the x- and y-directions, ¢ —
(\\a) for some a > 0. Since ¢ e U, a = 0, contradicting symmetry
of the support function at ¢ in the z-direction.

Many examples such as those above could be obtained in the, same
way. Let us note, however, that there are convex bodies in R* V1thout
relative width measures for the coordinate directions, to which Lemma
3 cannot be applied. One such is the regular octahedron centered
at the origin, with axes in the coordinate directions. This has all
the required symmetry, and another proof is needed to show that
there is no measure; we omit this here. Despite the non-existence
of a relative width measure for this regular octahedron or for the
tetrahedron in Example 2, Bang's conjecture is true for 3 slabs covering
these polyhedra orthogonal to the coordinate directions. To see this,
apply Bang's theorem in its stronger form menticoned in § 1.

3. Existence and uniqueness for infinite 0. In this section we apply
Fourier transform techniques to study the existence and uniqueness of
relative width measures in convex bodies for infinite sets of directions.

THEOREM 2. Let Kbea compact convex set in R, and 0 a (necessar-
ily infinite) set ofdirections with the property that each analytic function
on R" vanishing on each line through the origin parallel to some 6 e 0,
is identically zero. Then ifft is a relative width measure in K for ©, fi
is unigue.

Proof. Suppose //;, / = 1,2, are relative width measures in X for
0. Let fif be the Fourier transform of fij, Then for </eR" with
dAN=6€0andx* 6 =t we have

v adfii(x) = (K6) + k(-6)y | rHE) <T-Wdt.
pidy= 1 e
JR» J-k(-e)
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‘ ‘ d 1s a ridge function. Here
as in the proof of Lemma 3, since e~

we are assuming that K contains the origin, and kf6) is the support
function of K. It follows that jiMd) = piiid) for each d on a line
through the origin parallel to some 6 e 0. It is known (see [5, p. 272])
that p,j 1s analytic, so by our assumptions fi\ - fij is identically zero.
Since a measure is uniquely determined by its Fourier transform [5,
Theorem 8.2.4], the result follows.

2, any infinite set of directions satisfies the condi-

REMARK. In R ) .
3 more 1s required, as easy examples show;

tions of Theorem 2. In R
however, a set of directions which is infinite in each of an infinite set
of planes would do.

The following result was first proved in [23], in the language of
probability theory.

THEOREM 3. There is a relariv&wids;h neﬁs re v, in g‘hefung bal] B
in R" for the unit sphere, §"~b the set of all airections,” ifand only if
n=2or3.

Proof. Let d € R", dAd\ = 6 and x = 6 = t. Then the Fourier
transform ¥, of v, must satisfy

bufd)=f e-"Blx) =\ [ gmi

_ f(sin|d|)/|d} (IQII#O),
"1 (4| =0).}).

#
For n = 2, this is the Fourier trp,q;l?orm of(ﬂg nction
0*02 il
{ (1=1"1
0 (W>1),

so that vi is the measure with this density function (and is therefore
absolutely continuous with respect to Lebesgue measure in R

For n = 3, it is known (see, for example, [11, p. 199]) that £3 is
the Fourier transform of the distribution di\\ - I)/4n, so that zZ3 is
normalized surface area measure in 27>

If # > 3, the Fourier transform of v, is known, since it appears in
the solution of the wave equation [11, pp. 197-9], and is a distribution
of higher order and not a measure. However, a more straightforward
way to see that no measure exists for # > 3 is as follows. Suppose

V. to exist, and let // be the projection of v, onto any 3-dimensional

g(x) =
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coordinate plane L, so that for Borel sets B in L, we ggv&ﬁ@,) se
Hn(B X r".3). Then fi is a relative width measure in

that l{x = VT, l:y "lf"hcorcm 2. By the above, the supporgof {f fiey;in S
so the ort of v, j i in (S o .

R X {S}Llpgnd hencé 11 %Ogct)%lr%qga}g ﬁ“g'perplane. This is impossible,

since v, must vanish on each hyperplane.

The above theorem uses ideas of K. Falconer [8, Theorem 3] forn =
2 and 3. The existence of v> and VT, have long been known. Indeed,

42 is the projection of (1/3/2), and that 13 has the right properties was
observed by Archimedes!

THEOREM 4. Ler K be a convex body in R", and 0 a set ofdirections
as in Theorem 2. Suppose a relatve width measure n in K for 0
exists, the centroid of K with respect to d/x is ar the origin, and k{6)
is the support function of K. Then K contains a line segment I, or a
2-dimensional ellipse E or a 3-dimensional ellipsoid E, such that k{6)
agrees with the support function of I or E, respectively, for 0 ¢ 0, and
ix is either

(i) normalized linear Lebesgue measure in I, or

(i1) the canonical relative width measure in E obtained by a suitable

affine transformation ofv: or v*, respectively.

Proof. Lemma 3 shows that (d) = p(d) for 6 € 0, where p(6) is

a second-degree homogeneous polynomial in 6. It follows that k(6)
agrees with the support function of an m-dimensional ellipsoid for
6 € 0, for some m with 1 < m < n. (For the non-degencrate case
m = n, the proofis given in [19, p. 825, second paragraph]. In the de-
generate case, suppose p(8) contains only the variables 9., 0, for
m < n. Then there is an m-dilgen_siongl elligsoid E in R” whose"sup-
port function h(6) satisfies hz( ) = p(7). Now note that the support
function of E regarded as a subset of R" is still #{6).) By taki% an
affine transformation we may assume that this clligsoid is g Lnere-
fore fi has the relative width property in B” for 0, and even though
the support of n may a priori not lie inside B W€ may use Theo-
g:n; 2inal;3d3; 3e>t{(c):espeteiltlh?lgemdesgg)ngpactle/%alsse a’1?11 aiﬁnlfi lv\n;ﬁegg I?{féljzalé;]re%s
with the support function of a line segment for ¢ ¢ 0 and fi must be
normalized linear Lebesgue measure on this segment (this is the case
n = 1 in Theorem 3).
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Since the support of // must lie inside X, we see that X contains the
line segment, ellipse or ellipsoid, completing the proof.

Theorem 4 goes quite far in characterizing relative width measures
for infinite 0. Although constraints are also placed on K, it need

not actually be an cllﬂ)scud To see thj Sse let P be an infinite set of
directions in R which 1s sparse enough to allow the existence 0£ a

convex body K, containing B’ but different from B> Such that
6 ¢ 0. K and B:’z have common supporting lines parallel to 6.

4. Uniqueness for finite (). The results of §3 raise the question
whether certain finite sets of directions might force uniqueness of the
corresponding relative width measures. The next theorem uses a result
from the theory of Radon transforms to show that this is not so, at
least in dimensions two and three.

THEOREM 5. Let n = 2or3, andlet O be a finite set ofdirections in
R". Then there are two different relative width measures in B*1"

Proof. Let n z 2. Denote by H(r, 6) the hyperplane in R” orthog-
onal to ¢ at distance A from the origin. By [13, Proposition 7.6], if
K is any compact set there is a function / supported in K, infinitely
differentiate on K and not identically zero, such that

[ fix)dm(x) = O

*>H{t,0}
for all / and &8 e 0, where m is (n - 1)-dimensional Lebesgue measure
in the hyperplane H(t8).

To deal with the case n = 2, take K = B’ and let / be any such
function; then / is bounded, [/(x)| <« M say. Let g(x) be the density
function for the measyre v and note that g(x) »
(2 Tor 3C o e T TolioWS il R el

H{E)= flg(x)-(fix)/2nM))dx
J 2 which is

for Borel sets £ in B> tEen i is a Borel measure in B-

different from v,,
Let 6 G 0, and let § be the slab orthogonal to § bounded by the
hyperplanes H{A\d) and H(1;,8). Then

u(S) = fs gy dx — o fs f(x)dx

= uy(S) .2’3@ fa 7] flx)dm(x)dr = uy(S),

:d') N
so that 7 is a relative width measure in B° for Us as required.
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R B el of order 1 on

f fdi =0,
J,3.2.»111'(:,6'}

where X, is normalized linear measure in the circle s2C\H(% 0). (This
follows from [25, p. 100], which uses the expansion of / involving
Legendre polynomials.) Suppose that 0 = {6\..., 0*} is a finite set

%5 OFerders nay dimenston o+ T PhefiGr B LBy o

l b th i h ; lh . f d hth . S
algebra there is a spherical harmoniq fof ordge 1 such (sl (%2 pul

H{E)= [r1 . (I )M )dvs(x).
R -
The proof that fi is a relative width measure in i?’ for O which is
different from 13 now follows that from the case n = 2 above.

It remains open whether there is a relative width measure in B
n>4, for the coordinate directions (or any finite set of directions).
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