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A STOCHASTIC FATOU THEOREM FOR
QUASIREGULAR FUNCTIONS

BERNT 0KSENDAL

The following boundary value result is obtained: If φ is a quasireg-
ular function on a plane domain U with non-polar complement and
φ satisfies a growth condition analogue to the classical Hp -condition
for analytic functions, then there exists a uniformly elliptic diffusion
Xt such that for a.a. η e dU with respect to its elliptic-harmonic
measure the limit of φ along the ^/-conditional Xt -paths exists a.s.

It is proved that if U is the unit disc then convergence along the
^/-conditional Xt-paths implies the classical non-tangential conver-
gence. Therefore the result above is a generalization of the classical
Fatou theorem. As an application, using known properties of elliptic-
harmonic measure we obtain that there exists a > 0 (depending on φ)
such that for every interval J c dD there is a subset F C / of positive
α-dimensional Hausdorff measure such that the non-tangential limit
of φ exists at every point of F.

1. Introduction. The classical Fatou theorem states that if / is an
analytic function on the unit disc D = {z; \z\ < 1} in the complex
plane C and there exists p > 0 such that

(1.1) s u p ( i / \f(reιθ)\pdθ] < oc
r<\ \ 2 π J\z\=r J

then / has radial limits a.e. o n Γ = {z; \z\ = 1}, i.e.

(1.2) \\mf{reiθ) exists

for a.a. θ e [0,2π) w.r.t. Lebesgue measure. In fact, the limit exists
non-tangentially, for a.a. θ. (See for example Garnett [10].)

The purpose of this article is to generalize this result in two direc-
tions:

First, the analytic function / is replaced by a quasiregular function
φ. In this case it is known that the Fatou theorem in the strong form
above stating radial convergence almost everywhere (with respect to
Lebesgue measure) is false (see [16, p. 119]), so we are looking for an
appropriate modification of "almost everywhere".
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312 BERNT 0KSENDAL

Second, the domain D is replaced by any open subset U of C with
non-polar complement, i.e. such that

(1.3) Cb(C\£/)>0,

where CQ denotes logarithmic capacity. Of course, by considering the
second generalization we must find an appropriate replacement for
"radial" or "non-tangential" convergence. This is obtained by consid-
ering convergence along the conditional paths X? of a suitable uni-
formly elliptic diffusion Xt (depending on φ) for a.a. η e dD w.r.t. the
elliptic-harmonic measure μx = μx

υ of U for Xt. More precisely, the
process X1} in U has the property that

(1.4) limX; = η a.s. Px>η, for a.a. ηedU

w.r.t. μx and all x eU,

where ζ is the life time of Xf and Pxη is the probability law of
starting at x. And we prove:

THEOREM 3.2 {Stochastic Fatou Theorem). Suppose φ e ^R

for some p > 0, i.e. φ is a quasiregular function on U satisfying a
growth condition similar to the Hp-condition (1.1) (e.g. it suffices to
have Area(0(t/)) < oo). Then for allxeU

(1.5) limφ(X?)

exists a.s. Px>η for a.a. η e dU w.r.t. μx.

In the special case when U = D we show that the a.s. convergence
(1.5) of φ at a point η G dD implies the non-tangential convergence of
φ at η (Theorem 4.1). Thus Theorem 3.2 is indeed a generalization of
the Fatou theorem. As an application, combining Theorems 3.2 and
4.1 with metric properties of elliptic-harmonic measure we obtain the
following:

COROLLARY 5.2. Suppose φ e H^R(D) for some p > 0. Then there
exists a > 0 (depending only on φ) such that in every interval J c dD
there is a subset F c J of positive a-dimensional Hausdorff measure
such that the non-tangential limits ofφ exist at every point ofF.

Results like this corollary have been known to experts for some
time, but it seems to be difficult to find them stated explicitly in the
literature.
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The results of this paper are related to those in the paper by Caf-
farelli, Fabes, Mortola & Salsa [5], There it is proved that a positive
solution u in a Lipschitz domain G in W of the equation Lu — 0
in G (where L is a uniformly elliptic second order partial differential
operator) has non-tangential limits a.e. on dG with respect to the el-
liptic harmonic measure corresponding to L. So their result implies
in particular that the same holds for a quasiregular function φ on a
Lipschitz domain in the plane (n = 2) provided that the real and imag-
inary parts of φ are both positive (or bounded). The purpose of this
paper is to show that for a quasiregular function φ the same conclu-
sion can be obtained under much weaker conditions on φ if we use
a different approach: The idea is to consider φ directly (not its real
and imaginary parts separately) and apply a stochastic method. The
key to this method is the fact (see [17]) that there exists a uniformly
elliptic diffusion Xt (depending on φ) which is mapped into a time
change of (2-dimensional) Brownian motion by φ. Thereby we also
obtain the generalized stochastic Fatou theorem above, Valid without
any conditions on the boundary of the domain.

2. Conditional uniformly elliptic diffusions. Let (Xt(ω),Ω,Px)
(where / > 0, ω e Ω, x e U) be a uniformly elliptic diffusion in
an open set C/cR 2 with generator

(2.1) Λ / = div(αV/).

Here a = [α ί ;] is a symmetric 2 x 2 matrix where each element α, 7 =
dij(x) is a bounded measurable function and there exists M < oo such
that

i 2

(2.2) ±\ξ\2 < Σ *ij<itj < M\ξ\2 for all x e U, ξ e R2

The constant M is called the ellipticity constant of the diffusion.
For example, Xt may be obtained as the Hunt process associated to
the Dirichlet form

(2.3) &(u,υ)= ί VuτaVυdx; u,veC

where dx denotes Lebesgue measure (Fukushima [9]).
Assume that U has a nonpolar complement. Then

(2.4) τυ = τ£ = inf{ί > 0; Xt £ U}
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(the first exit time from U) is finite a.s. Px, and we can define the
harmonic measure μx = μx>u for X as follows:

(2.5) μXfU(F) = P*[Xτυ e F], Fc dU.

It is well known that the Harnack principle holds for such operators
A, i.e. for all x there exists a neighbourhood W 3 x and C < oc such
that

(2.6) ^ < ψ± < C for all y e W.
C ~ dμx ~

Fix XQ € U and put

(2.7) K{x, η) = ^-{η); x € U, η<EdU.

Let //• = L2(U,dx) and let Γ r: H -* H be the transition opera-

tors of X, killed when it exits from U, i.e. (Ttf){x) = Ex[f(X,)]

(¥ Ex[f{Xt) • χ{t<τv}]; t > 0, f € H). Fix η e dU such that

k(x) d= K(x, η)>0 for all x e U and define H = L2(U;k2{x)dx).
Let Tj1: H ^ Hbe given by

(2.8)

Then {Γ^} is a symmetric, strongly continuous contraction semigroup
on H (since {ΓJ is on H), with generator ^4/ = A[kf]/k and corre-
sponding Dirichlet form

(2.9) V*{u, v) = -(iκf t;)Λ = - ( ^ ) .

= -(A(ku), kv)H = ^{ku, kv)

for u,v e

This form is regular and

(2.10) g"*(u,υ) = - ίA(ku)kvdx = 0

if u is constant in a neighbourhood of supp[v], for a.a. η G 917 w.r.t.
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The property (2.10) can be proved as follows: For all g e Cg°(l7),
/ G Co(dU) we have

= / fin) (I Vgτ(x)a(x)VxK(x,η)) dμXo{η),
JdU \Ju /

ί Vgτ(x)a(x)Vx(f f(η)K(x,η)dμXo(η))dx
JdU \Jdu J

since f(x) = fdUf(η)dμx(η) is the ^4-harmonic extension of / to
U. So g(g,K(',η)) = -(Ak,g) = 0 a.e. (μXo), as claimed. It also
follows that Ak = 0. Therefore k is Holder continuous ([7], [15]). We
conclude that for a.a. η e dU w.r.t. μXo there exists a Hunt process
(X?((o),Ω,Px>η)t>otωeΩ> whose generator is A. Moreover, from the
property (2.10) of &η we know that X^ is ^-continuous and no killing
of X*l occurs inside U (see [9]). We let ζ = ζu denote the life time
of Xf. The process Xf will be called the conditioning of the process
Xt with respect to η (or, more precisely, with respect to the ^4-kernel
function k{x)).

The next result justifies the name "conditional" for the process Xf:
(Ex>η and Ex denotes expectation w.r.t. the measures Pxη and Px,
respectively). We refer the reader to [2, Lemma 4] for a proof.

LEMMA 2.1. Let g\,...,gk be boundedBorelfunctions on U. Then

3. A stochastic Fatou theorem. Let φ be a quasiregular function in
U, i.e. φ € ACL2 (φ is absolutely continuous on a.e. straight line and
with partial derivatives in Lj20C) and

(3.1) \ φ ' ( x ) \ 2 < K J φ ( x ) f o r a . a . x e U

for some constant K, where φ' = [dφi/dXj]; 1 < /, j < 2 and Jφ =
det(0') is the Jacobian. See [13] for information about quasiregular
functions. In [17] it is proved that there exists a uniformly elliptic
diffusion Xt (depending on φ) such that the process φ{Xt)\ t < τ is a
time change of Brownian motion in C. More precisely, define

= fJφ(Xs)Jo
(3.2) βt = / Jφ{Xs) ds, at = inf{j; βs > i),
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and let (Bt, Py) be a Brownian motion in C. Then

Γ3 3Ϊ B ίΦiXa'); t < β τ '

is again a Brownian motion in C. Here φ* = ]imt->τ φ(Xt)9 which
exists a.s. on {βτ < oo}.

From now on we let Xt denote this special process associated to φ
and as before we let X^ denote its conditioned process, defined for
a.a. η G dU. We will assume that φ satisfies one of the following two
growth conditions (3.4), (3.5):

LEMMA 3.1. Let 0 < p < oo. The following are equivalent

(3.4) sxφEx[\φ{Xσ)\p]<oQ for each xeU,
σ<τυ

the sup being taken over all Xrstopping times σ < τ\j.

(3.5) Ex[βPl2] < oo for each xeU.

Conditions (3.4), (3.5) are satisfied if

(3.6) £'[τj(J)] < °o for each yeφ(U),

where iφ(u) ^s t ^ e fiΓst e χ i * time from φ(U) of Brownian motion in C.
Condition (3.6) holds if

(3.7) Area0(C/)<oo.

REMARK. Note that condition (3.4) coincides with the classical i/ p -
condition (1.1) in the special case when φ is analytic and U = D. We
therefore define H^R(U) as the set of quasiregular functions φ on U
satisfying (3.4).

Proof of Lemma 3.1. (3.7) => (3.6). This follows from the esti-
mates of Aizenman and Simon [1] of the moments of the exit time for
Brownian motion.

(3.6) => (3.5). Since the process Bt in (3.3) is a Brownian motion
and obviously Bt e φ(U) for t < βτ it is clear that

(3.8) βτ < τφ{u)

and therefore (3.6) => (3.5).
(3.5) =• (3.4). First note that by (3.3) we have

(3.9) Ex[\φ(Xσ)\P] = E«x>[\Bββ\P] <
U<β<
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The Burkholder-Gundy inequalities state that

317

(3.10) sup\Bt\
p

t<T

for all stopping times T, where ~ means that the ratio is bounded
and bounded below by constants (only depending on p and y and the
dimension (here 2)). See for example [4]. It was pointed out by B.
Davis that these inequalities also hold for the so-called quasistopping
or Markov times [6, p. 304], which include the random times βσ above.
By (3.9) and (3.10) for T = βσ we see that (3.5) => (3.4).

Conversely, by Doob's martingale inequality we have that

(3.11) Ey
sup \Bt\

p

t<βa

Ey[\Bβσ\
p]

for all p > 1. To obtain this relation for all p > 0 for Brownian
motion in the plane we proceed as in [8, p. 156-157]:

Let p > 0 and assume for simplicity that y = 1. Then since the
probability that Bt hits 0 is 0, we may define a pathwise logarithm
Gt = \o%Bt such that GQ = 1 a.s. Then Gt is a martingale and so is

Ht = epG</2,

since z —> ez is analytic. So by Doob's martingale inequality we have

sup \Bt\
p

t<βa

sup|#,|2

U<βσ

which proves (3.11) for all p > 0. Thus we have obtained that

(3.12) Ex[\φ{Xσ)\P]~E^x\βPl2\ forall/>>0,

and the equivalence of (3.4) and (3.5) follows.
Now assume that φ satisfies (3.4). Let U^ c c U be an increasing

sequence of open, relatively compact subsets of U such that U =
UΓ=i uk and put xk = τ*k. Then by (3.2), (3.3) and (3.12) we have,
for k < m

Jφ(Xt)dt)
τk J

0

as k, m —> oo. Thus {Φ(Xτk)}k constitute a Cauchy sequence in LP(PX).
Let φ* be the limit of this sequence. With the convention that φ(Xt/\τ)
means φ* if t > τ we have that φ(Xt^) is a martingale in C, so with
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Gt = \ogφ(Xt), Ht = exp((/?/2) Gt) as above we get by Doob's mar-
tingale inequality

(3.13) Px \ sup \φ(Xt) - φ(Xτk)\p > λλ

= />*[sup \Ht-Hτk\
2>λλ

lτk<t<τ J

< γpE
x[\Hτ - Hτk\

2] = ypE
x[\φ* - φ(Xτk)\p] - 0

as k —• oo, for all λ > 0, where c is an absolute constant.
We are now ready to prove the main result of this paper:

THEOREM 3.2. Let U c C be open with C0(C\U) > 0 and let φ e
H£R(U) for some p > 0. Then

limφ(X?)

exists a.s. Pxη, for a.a. η e dU w.r.t. μXo.

Proof. With U^, τ> as above and λ > 0 consider

xr> f sup \φ(X?) - φ{XZ)\ > λ] dμx(η)

*•'[sup

> λ|Xτ])] (by Lemma 2.1)

= EX

= Px\sup \φ(Xt)-φ(XXk)\>λ]

-•0 as k-+ oo by (3.13).

So by bounded convergence

f lim P*« f sup \φ(X?) - φ(Xl)\ > λ) dμx(η) = 0.

Hence

Px'^ ί lim sup \φ(X?) - 0(^)1 > J = 0 for a.a. η.
[k^κx>τk<t<τ J

Since this holds for all λ > 0 we obtain the theorem.
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4. Conditional convergence implies non-tangential convergence. It is

natural to ask if the convergence of φ along the conditional paths X^
implies non-tangential convergence in the case when U is the open unit
disc D. We will prove that this is indeed the case. Thus the situation
is analogous to that for a harmonic function converging along the con-
ditional paths of Brownian motion, in which case the equivalence to
non-tangential convergence was first established by Brelot and Doob.
The proof in our case will adopt basic ideas of the proof of Brossard
in the Brownian motion case. See Durrett [8] for further references
and an exposition of Brossard's proof. We say that a real function u
on U is called A-harmonic (or Xt-harmonic) if

Au = 0 in U

in the sense of distribution. This is equivalent to the mean value
property

u(x) = Ex[u(Xτw)]

for all stopping times τ^, where W c c U.
The main result of this section can now be stated as follows:

THEOREM 4.1. Let u be an A-harmonic function in the open unit
disc D c C. Suppose

(4.1) \imu{X?{ω))

exists for a.a. ω e Ω w.r.t. Px'η, for some η e dD, x e D. Then this
limit is the same for a.a. ω and it coincides with the non-tangential
limit ofu at η.

We split the proof into several lemmas. If τ is a stopping time for Xt

and z G U we say that Xt(ω) makes a loop around z for 0 < t < τ if z
does not belong to the unbounded component oΐC\{Xt(ω); 0 < t < τ}.
A similar terminology is used for X?.

LEMMA 4.2. Let W c c U and let Kbea compact subset ofW. Then
there exists ε > 0 such that

(4.2) Px[Xt(ω) makes a loop around z; 0 < t < %w\ > ε

for all x,zeK.

Proof. We use the notation Dr{y) = {x\ \x - y\ < r}. Let x, z e K.
Then if r > 0 is small enough the z-component V of φ~ι(Dr(φ(z)))
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is a normal neighbourhood of z and φ~ι(φ(z)) n V = {z}. See Mar-
tio, Rickman and Vaisala [13]. Since K is compact we can choose r
independent of x and z. Since φ(dV) = d(φ(V)) we have

and therefore

coincides with the path of a Brownian motion

{Bt\ 0<t< τφ{v)}.

It is well known that Bt winds around φ(z) with positive probability
([8]). It follows that Xt9 when starting from F, winds around z with
positive probability before exiting from V. Since the probability that
Xt hits any neighbourhood of z before exiting from W is positive,
by "the communication property" of uniformly elliptic diffusions, the
lemma follows.

LEMMA 4.3. The same conclusion as in Lemma 4.2 holds for the
conditioned process X?.

Proof. First note that by induction it follows from (2.8) that

(4.3) ^[ ί i ( ί ) " ft(^)]

= j ^ E*[gl{xtl)

for all 0 < tλ < t2 < < tk. Therefore, if W c c U then the law Px

:*
of Xf'η ϊoτt<τwis absolutely continuous with respect to the law Px

of Xt for t < τw with Radon-Nikodym derivative

ί 4 4 )

 dpXη - k(X^
1 ; dPx k(x) '

Since k is bounded away from 0 on W we conclude that Lemma
4.3 is a consequence of Lemma 4.2.

For Brownian motion Bt starting at the point x it is well known that
the scaled process Bt = x + r(Bt -x), t> 0, (where r > 0 is fixed) is
again a Brownian motion except for a time change. A uniformly ellip-
tic diffusion is not scaling invariant in the same strong sense. However,
scaling a uniformly elliptic diffusion always gives us another uniformly
elliptic diffusion (with a time change) with the same ellipticity con-
stant. Moreover, the conditioned process X? behaves similarly under
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scaling:

LEMMA 4.4 (Scaling lemma). Let 0 < r < 1, η e dD and define

(4.5) ξ(x) = rx + (I - r)η forxeD

and

Zt = ξ(Xt),ZΊ=ξ(X?); ί > 0 .

Then Zt is a uniformly elliptic diffusion with generator Aξ which satis-
fies

(4.6) (Aξf)(ξ(x)) = A(foξ)(χ)

Therefore

(4.7) Zt ^ Xrit {where ~ means "identical in law')

where Xt is the uniformly elliptic diffusion with generator

(4.8) χ

Moreover,

(4.9) χ

where Xη is the process obtained by conditioning Xt with respect to the
A'kernel koξ~K

Proof. By definition of Zt we have for / e CQ(D)

{Aξfmx)) m n *ifM*))-mχm m A[f 0 ξ]{x)

= div[αV(/ o ξ)](χ) = div[rα ((V/) o (ξ))](x)

= r2div[(aoξ-i).Vf](ξ(x)),

which proves (4.6) and (4.7).
Similarly, if A ? denotes the generator of Zj7 we get

which shows (4.9).
Before stating the next lemma we need some notation: For η e dD

and 0 < p < 1 let S = S^J/) denote the Sto/ίz domain associated to */
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and /?, i.e. Sp(η) is the interior of the convex hull of the circle \z\ = p
and the point η.

N2

For p < r < 1 put

Let L\, L 2 be the two lines connecting the point -η with the points
ηe±(\-r)i a n ( j j e t tfl9 N2 |3 e t h e segments of these lines which connect

K to

LEMMA 4.5. There exists a constant δ> 0 depending only on p and
the ellipticity constant M ofXt such that

Px'η[X? hits Kfor some t<ζ]>δ for all xeNxu N2.

Proof. Since the transition semigroup Tt

η on H given by (2.8) is
symmetric, the corresponding resolvent {t/<?}α>o trivially satisfies the
duality condition in Theorem VI. 1.4 in [3] (relative to the measure
dξ = k2dx).

Therefore, by Proposition VI. 4.3 in [3] we can write

(4.10) Px'η[X? hits K for some t < ζ] = / Gη(x, y) dλ(y),
JK

where Gη is the Green function of X1} and λ > 0 is the unique measure
on K with the property that

λ{K) = sup < v(K)\ v > 0 measure on K ,

ί G^(xf y) dv{y) < 1 for all x £ κ\ .

From (2.8) it follows that

(4 11) G«(xy)-G{x'y)k{y)
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where G is the Green function of Xt in D. Therefore

(4.12) P^IX? hits K for some t < ζ] = f G<^x^k^ dλ{y)
J k{x)

> jη—r / G(x, y) dλ(y), where a = infk.
k\X) JK K

The two positive functions u(x) = fκ G(x, y) dλ(y) and k(x) are A-
harmonic in D\K and they vanish on ΘD\{η}, so by the Comparison
Theorem (Theorem 1.4) of Caffarelli, Fabes, Mortola and Salsa [5]
combined with the Scaling Lemma 4.4 above and a conformal map
from D onto the half plane there exists a constant C\ depending only
on p and the ellipticity constant such that

where JCZ is the midpoint of iVz; / = 1,2. Combining (4.10)-(4.13) we
get that, with b = sup# k,

(4.14) Px>\Xn

t hits K for some t < ζ] > T ^ ί G(xit y) dλ(y)
k\Xi) JK

G\xi,y)dλ{y)
K

n\χn h i t s κ f o r s o m e t

for all x e Nh

By the Scaling Lemma 4.4 the last hitting probability in (4.14)
is bounded below by a positive constant only depending on p and
the ellipticity constant M. Moreover, if we use the interpretation of
k(z)/k(x) as the Radon-Nikodym derivative dμz/dμx of the two exit
distributions of Xt starting from z and x, we see that it follows from
the Scaling Lemma 4.4 that

b sup k

where Cι only depends on p and M. That completes the proof of
Lemma 4.5.

LEMMA 4.6. There exists ε > 0 only depending on p, x and M such
that

Px'η[X? makes a loop around z\ 0<t<ζ]>ε

for all z e Sp.



324 BERNT 0KSENDAL

Proof, P u t L = L(z) = {ω; X? m a k e s a loop a r o u n d z;O<t< ζ}.

By the strong Markov property of X? we have

PX'"[L] = / pyi[L]Pχi[Xl e dy],
JK
/
KUN1UN2

where W = D\V, F is the closed set bounded by AT = JC(r), M, N2

and the arc of ΘD between ηe^ι'r^ and ηe^"r^ with r = 2(1 - |z|).
Since P x ? 7 [ ^ G ATU ̂  U N2] = 1 we get from Lemma 4.5

δ

inf
yeK

By Lemma 4.3 and Scaling Lemma 4.4 we have

NXUN2]).

yeK

Since ε and δ only depend on p and M, Lemma 4.6 follows.
The proof of Theorem 4.1 is now completed by following the main

idea of Brossard, as described in [8, p. 114-115]:
First we note that it suffices to prove the following:

(4.15) Suppose zn e Sp(η) for all n = 1,2,... and u(zn) —•

a e [-ex),oo] as n -+ oo. Then u{X?) -+ a. as t -• ζ a.s. Pxη.

Put

w = L(zn) = {ω; X^ makes a loop around zw; 0 < / < ζ}

and

G = p | I ( J Gk 1 = {ω; ω belongs to infinitely many Gn

9s}.
«=1 \A:=« /
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By the 0-1 law we have that Px η(G) is either 0 or 1. Since by Lemma
4.6

PX«(G) = lim Px i 11 I Gk ) > ε,
\k=n J

we conclude that PX'^(G) = 1.
Hence Xf'η(ω) winds around infinitely many zΛ's for a.a. ω. For

each such ω with the additional property that

limu(X?{ω))

exists, we get by the mean value property of u applied to the region
inside each loop around zn that

limu(X?(ω)) = lim u(zn) = a.
t—+ζ n—>oo

Hence (4.15) holds and the proof is complete.

5. Applications. Combining Theorem 3.2 and 4.1 we get

THEOREM 5.1. Suppose φ e H^R(D) for some p > 0. For x e D
let μ = μx be the elliptic-harmonic measure of the uniformly elliptic
diffusion Xt associated with φ. Then

lim φ(z)

exists non-tangentially for a.a. η e 3D with respect to μ.

Finally we point out how Theorem 5.1 can be combined with known
properties of elliptic-harmonic measures to obtain new results about
the boundary behaviour of quasiregular functions, even if we restrict
ourselves to results involving only non-stochastic concepts. For a > 0
let Λα denote the α-dimensional HausdorfF measure.

COROLLARY 5.2 (Non-stochastic Fatou theorem). Suppose φ e
H£R(D) for some p > 0. Then there exists a > 0 (depending only
on φ) such that in every non-empty, open interval J c dD there is a
subset F c J with Aa(F) > 0 such that φ has non-tangential boundary
limits at every point ofF.

Proof. As before we let Xt be the uniformly elliptic diffusion asso-
ciated with φ and we let μ be its elliptic-harmonic measure. Then by
the doubling property of μ [5], it follows that

(5.1) μ(J)>0
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for every non-empty open interval / in dD. On the other hand, it
follows from Lemma 3.4 in [12] that there exists a > 0 (depending on
the ellipticity constant) such that

(5.2) μ « Λα.

By Theorem 5.1 the non-tangential limit of φ exists a.e. μ on /,
hence by (5.1) and (5.2) on a subset F of J with Aa(F) > 0. That
completes the proof.

Acknowledgments. I am grateful to Olli Martio for his useful com-
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