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ON THE VANISHING OF Hn{s/ysf*)
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The norm continuous Hochschild cohomology for a C*-algebra si
with coefficients in the dual space vanishes if either j / is nuclear or
si has no bounded traces. The norm continuous cyclic cohomology
for a C* -algebra with no bounded traces vanishes.

1. Introduction. There has been some success in computing
Hochschild cohomology groups for von Neumann algebras, especially
the result that any derivation on a von Neumann algebra is inner [11,
14]. We also have the results by Johnson, Kadison and Ringrose [10]
which through the work of Connes [4] can be phrased: The Hochschild
cohomology for an injective von Neumann algebra with coefficients in
a dual normal module vanishes. Conversely Connes has proved [5],
that this property actually characterises the injective von Neumann al-
gebras. Recently E. G. Eίfros and the present authors have computed
some cohomology groups and shown that the completely bounded co-
homology vanishes if the module is an injective von Neumann algebra
which contains the algebra in question. If the algebra is a C*-algebra
and the coefficients come from another C*-algebra, very little is known
in general, and it is clear that in this case the bounded cohomology will
not vanish unless the algebra is very "nice" [8]. In the present paper
we will prove that the norm continuous Hochschild cohomology for a
C*-algebra si with coefficients in the dual space si* does vanish, if si
is nuclear or if si has no bounded traces. The result for nuclear C*-
algebras is not new, in the sense that it has been known to a number
of people. It follows relatively easily from the fact, that the double
dual of a nuclear C*-algebra is an injective von Neumann algebra [2].
The result for infinite C*-algebras is proved by methods which are
closely related to the techniques developed by Johnson, Kadison and
Ringrose [10] in order to reduce the norm continuous cohomology to
the ultraweakly continuous cohomology. Their results do not fit ex-
actly because J / * is not a dual normal module for the von Neumann
algebra si**. Despite this a modification of well-known techniques

55



56 ERIK CHRISTENSEN AND ALLAN M. SINCLAIR

gives a trick to base the proof which in essence goes like this. Let
φ : sik —• si* be a cocycle which has been reduced by coboundaries
to such an extent that there exist orthogonal elements x and y in the
unit ball of si for which φ(x) and φ(y) are orthogonal and 11 </>(.*) || and
||0(j>)|| both nearly attain the value \\φ\\. Since we have an l°° sum for
(x + y) and an P sum for (φ(x) + φ(y)) we get

\\Φ\\ > \\Φ(χ + y)\\ = \\Φ(χ)\\ + \\Φ(y)\\ > 2(\\φ\\ - a).

Hence 0 = 0 and the original cocycle is actually a coboundary.
We end the article by proving that the norm continuous cyclic co-

homology for a C*-algebra without bounded traces vanishes. We also
prove that the odd cyclic cohomology groups for a nuclear C*-algebra
all vanish, and that the even groups are all isomorphic to the space of
bounded traces on si.

We would like to thank the Science and Engineering Research Coun-
cil, U. K., and D. E. Evans for the invitations to visit Warwick in 1986
and 1987.

2. Notation and definitions. Let si be a C*-algebra, si* and J/**
denote the dual and the bidual of si. It is well known that these spaces
are Banach-j/ bimodules. In fact sf** is a von Neumann algebra and
the canonical embedding—π say—of si into si** is a *-isomorphism
of J / onto π(si)9 which is an ultraweakly dense subalgebra of sf**.
For si* the multiplications are given by

(αf)(b) = f(bα) and (fα)(b) = f(αb).

In order to be able to switch back and forth between forms on si and
multilinear mappings of si into si* we will fix the following notation.

2.1. DEFINITIONS. For a Banach space a? let Ck{si ,2?) denote the
Banach space of bounded k linear operators from si into 3?. For each

φ e C * ( J / , J / * ) , then ωφ e Ck+\sifC) is defined by

ωφ(α0,... ,αk) = {αo,φ(αlf... ,αk)).

Analogously for each ω € C ^ + 1 ( J / , C ) , φω e Ck(sitsi*) is given by

(αo. Φω(αx,..., αk)) = ω(α0,..., αk).

Following [13, Theorem 5.3, p. 402] we know that any form ω e
Ck+ι(si,C) has a unique extension to a separately ultraweakly con-
tinuous form on si**. For a von Neumann algebra 3% we will let

, C) denote the space of all separately ultraweakly continuous
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k + 1 linear forms on 31. For any form ω e Ck+X {s/, C) we will let ω
denote the unique form in Ck+x(sf**,C) which satisfies

ω(π(a0),..., π(ak)) = ω(a0,..., ak).

For any φ e Ck(s*,j**) we will let φ e Ck(sf**,jtf*) be defined by
Φωφ- We remark that φ is uniquely determined by the fact that a)φ is
separately ultraweakly continuous on J / * * and extends ωψ.

We shall now turn to the special situation where si is a von Neu-
mann algebra. In order to keep this continuously present we will let
the algebra be denoted by 31. The predual of 31 is denoted by «#*
and it is well known [15] that ^ * = S? Θ/i «$?*, meaning that the
dual is an /^sum of the spaces of singular and ultraweakly continuous
functionals respectively. Similarly ^ * * is decomposed via a central
projection p in ^ * * such that &**p is isomorphic to 31 and all the
elements of c^* vanish on 31**{I —p). We will let Φ denote the isomor-
phism of 31 onto c^**p given by Φ(r) = pπ(r). The decomposition of
^ * = ^ e ^ ^ carries over to multilinear forms. For ω e CkJrX(3ί, C)
we define ωn e Ck+x{3l,C) by

ω"(r 0 , . . . , rk) = ω(Φ(r 0 ) , . . . , Φ(r^)).

For ω e Ck+ι (<&**, C) we define α/1 G Ck+x{βX) by the same for-
mula.

2.2. LEMMA. J/ω e Cfc+1(^P,C), then ωn e Ck+x{βX). Ifωe
Ck+ι(&,C), then ωn = ω and ω vanishes whenever any of the argu-
ments is of the form (I - p)x.

Proof. The mapping Φ is an isomorphism of 31 onto a central
summand in ^ * * and hence ultraweakly continuous. Furthermore
ω € C£+1(^**, C) so ωn = ω o Φ is ultraweakly continuous. Suppose
ω e CkJrX{3lX). There exists a net (^A)λ in the unit ball 3ί\ such
that π(eλ) converges ultrastrongly to p in 31**, hence in particular eλ

converges ultrastrongly to / in 31 and

ω w ( r 0 , . . . , rk) = l im l imω(π(e λ o r o )> •••> ^{eλkrk))

= l im ••limω(π(eλoro),..., π(eλjk)) = ω(r0,.... rk).
λo λk

We can now see, that the separately ultraweakly continuous func-
tional on ^ * * given by

ω(x0, . . . , * * ) -
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vanishes on n{β), hence it vanishes on ̂ ** . In particular if X/ =
(/ - p)Xi then

ω(x0, ...,Xi,...,xk) = ω(px0, . . . , /?x/,..., pXk) = 0.

Continuing the tour through the notation we will let
denote the set oϊ φ e Ck{&,&*) for which ωφ e Ck+ι(3?,C). For
φ e Ck{β,3l*) we define φn e Ck{β,^) by φn = φφφy. As an easy
consequence of Lemma 2.2 we have φn = φ for φ e C%{9Z,3l*). We
will close this section by proving a couple of results that show that
certain algebraic properties for a form ω are preserved by the normal
part ωn.

2.3. LEMMA. Ifψ c 31 and ω e Ck+{(<&, C) satisfies

ω(r 0 , . . . , nυ, ri+ϊ,..., rk) = ω(r0,..., r, , w / + 1 , . . . , rk)

for any r 0 , . . . , rk e & and any v e "V. Then

ωn(rQ,..., riX9 rM,..., r k ) = ω w ( r 0 , . . . , r/, x r / + 1 , . . . , r k )

for any X E F , the ultraweak closure ofΨ*, and any r 0 , . . . , rk e &.

Proof. As above we use the fact that there exists a net (eλ) in 3l\ such
that π(eλ) converges ultrastrongly to p in ̂ ** . Since ωn is spearately
ultraweakly continuous it is of course enough to prove the relation for
elements x G f . Now

= l i m l i m ω ( π ( r o ^ o ) , . . . , π(neλx), π{ri+ιeλι+ι),..., π(rkeλk))

= l im l im ω{rxeλi,..., neλιx, ri+1eλι,..., rkeh)

= l im • l i m ω(roeλo,..., rteλι, xri+ιeλι+ι ,...,rkeλk)
λo λk

= ωn(r0,...,ri,xri+ι,...,rk).

The Hochschild coboundary operator

Δ : Ck-χ{M,M*) -* Ck{β,M*)

is given by

(Aφ)(rι,...,rk)
k-\

= nφ(r2, ...,rk) + Y^{-\γ
( = 1

+ (-l)kφ(rι,...,rk_ι)rk.
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LEMMA 2.4. Let φ e Ck~ι(3?,3?*); then A{φn) = (Aφ)n.

Proof, When looking at forms instead of operators and comparing
corresponding parts in the Hochschild development we find that we
have to show that the two forms γ and η defined below agree. Fix an
i € l,...,k. D e f i n e y G Q ω ( J , C ) by

y(ro> . ., rk) = ωn(rQ,..., nr^,..., rk).

ΌeήneμeCk+ι(3?,C)by

f*(r0,..., rk) = ω ( r 0 , . . . , nri+ι ,...,rk)

and define η e Ck+ι(3?,C) by η = μn. The A: + 1 linear form v on
^ * * given by

is seperately ultraweakly continuous on ^ * * and agrees with μ on
hence // = ι/ so

- rk) = v(pπ(r0),...,

= μ(pπ(r0),...,

2.5. LEMMA. Let srf be a C*-algebra and φ e Ck~ι(sf, J / * ) ;

φ = Aφin

Proof. As in the previous proof we have to compare k + 1 linear
forms on J / * * which are separately ultraweakly continuous and agree
on the ultraweakly dense subalgebra n{s/) of J / * * .

3. Cohomology for 31 with coefficients in ̂ * or«%. The results in §2
serve the purpose of making the averaging techniques used by Johnson,
Kadison and Ringrose in [10] available in this context although ̂ * is
not a normal 31 module and «$?* may not be a dual module. We follow
the notation from [13] and define

Zk(3t,3l*) = ker(Δ : Ck{3l,3l*) -> Ck+X {31,31*)),
k ί * ) = im(Δ : C * " 1 («#,.#*) -+ Ck{3?, <%*)),

l*) = Zk(3ί, 31*)/Bk (31,31!*).

In this section we are especially interested in separately ultraweakly
continuous mappings and following the notation in §2 we will denote
these spaces with a a as a subscript like Ck, Zk, Bk, Hk.
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3.1. PROPOSITION. Let p e Zk ψl, &*) and let ^ be an injective von
Neumann subalgebra of 31. Then there exists ξ e Ck~x{βy3l*) such
that Hill < 2k+x \\p\\ and (p - Aξ) is an $~ module map {cf. [3, §5]).

Proof. Suppose sf is a finite dimensional C*-subalgebra of 3$. Then
the unitary group in srf is compact, and it is possible to obtain Propo-
sition 3.1 with respect to J / instead of & through the techniques de-
scribed in [13, §4, proof of Theorem 4.3]. The si module property is
not written down explicitly in the formulation of [13, Theorem 4.3]
but the relations (4.3.2) and (4.3.3) in the proof are precisely the sf
module properties for the reduced cocycle. By Connes result [4] any
injective von Neumann algebra with separable predual is the ultraweak
closure of an increasing sequence of finite dimensional C*-subalgebras
{s/n). To any n we find ξn with \\ξn\\ < 2k+ι\\p\\ and (p - Aξn) is an
sfn module map which vanishes whenever any of the arguments are in
s/n. Since the sequence (ξn) is bounded we can use a Banach limiting
process and obtain a ^ o G C ^ " 1 ^ , ^ * ) such that (p-Aξ0) is a module
map with respect to the algebra s/0 = \Js/n. By Lemma 2.3 (p - Aξo)

n

is an & module map and by Lemma 2.4

(p - Aξo)
n = p - (Aξo)

n = p - A(ξ»).

The proposition follows if SF has separable predual. The problem of
generalizing this result to the case without separability conditions is
dealt with in [9, p. 309] in a similar context. The arguments there are
based on [7] and carry over word for word.

REMARK. The problems under consideration above are very much
of the same nature as those considered in the proof of Theorem 2.1
in [9] and it is also possible to use that theorem in the averaging pro-
cess above, but the real trouble is not so much the averaging method,
but rather the establishment of the fact, that the normal parts of the
coboundaries used also have the right properties.

3.2. THEOREM. Let 31 be a properly infinite or an injective von
Neumann algebra. Then Hk{β y3ί*) = 0 for any fceN.

Proof. Suppose first that 31 is injective and let / ί G Z j ^ f * ) . By
Proposition 3.1 there exists a ξ e Ck~ι(3?,3?*) such that (p - Aξ)
is an & module map. This means that there exists an ultraweakly
continuous functional φe<9?* (given by φ = (p - Aξ) (/,..., /)), such
that
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In particular φ is a trace, but we will not make use of that. Define
η G Ck~ι (31,31*) by η(r\,... ,rk_{) = (rλ '-rk_x)φ. If k is even, then
an easy computation shows that Aη = (p — Aξ) so p is a coboundary.
If k is odd then the condition A{p - Aξ) = 0 yields φ = 0 and p is a
coboundary in this case too. Let & denote a copy of 2?(/2(N)) in ^ in
the properly infinite case such that I& e SF c 31. Let p e Zk(£?,&*);
by Proposition 3.1 there exists a £ € C*"1 («$?,«£?*) such that (/? - Δ£)
is an ^ module map. Choose two isometnes υ and w in ^ such that
w * + ww* = / = v*v = w*w. Now to any ε > 0 we choose (k + 1)
operators r0,... ,rk in the unit ball 31 \ of 31 such that

For s = 0,..., fc define operators xs by x5 = vrsv* + wrsw*. Then
\\xs\\ < 1 and an easy application of the module property shows, that

, (p - Aξ){x{,..., xk)) = 2(r0, (/? -

Hence

so /? = Aξ, and the theorem follows.

COROLLARY 3.3. Let sf be a nuclear C*-algebra or a C*-algebra
without bounded traces. Then the bounded Hochschild cohomology for
srf with coefficients in sf* vanishes.

Proof. If sf is nuclear, then J / * * is injective [2]. If sf has no
bounded traces, then J/** is a properly infinite von Neumann alge-
bra. Let φ G Zk(j^,sf*)\ then following the notation in §2 φ extends
to φ e Z%(sf**,$/*). By the theorem there exists η e C%-I(jt?**,jzf*)
such that φ = Aη. Letting ξ G Ck~ι(s/,sf*) denote the restriction of
η to s/ we get φ = Aξ.

REMARK. In the case k = 1 the corollary is known to hold for
all C*-algebras; this was proved for 31 semifinite in [1] and in full
generality in [9].

4. Cyclic cohomology. In this article we have shifted back and forth
between (k+ l)-linear forms on a C*-algebra si and fc-linear mappings
from si to J / * . Suppose φ G Zk(s/,s/*)m

9 then by definition Aφ =
0. This relation implies the following identity for the corresponding
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form (Dφ

0 = ωAφ(a0,..., ak+ι) = (a0, Aφ(a{,..., ah+x))

k

1=0

This relation involves the first variable place twice and the rest once.
Since forms in general do not have a natural way of distinguishing
the role played by different entries it seems natural from the point of
view of the forms that the condition should be symmetric in some
sense. We have no idea of whether such considerations have been in
the mind of A. Connes [6], but it is a fact, that he has established the
cyclic cohomology theory, which is symmetric with respect to the role
played by the different entries in the forms. Following [6] we say that
a form ω e Ck+{(j*?,C) is cyclic iff

ω(aι,...,ak,ao) = {-l)kω(a0,a{,... ,ak).

A cochain in Ck(si,si*) is said to be a cyclic cochain if the cor-
responding (k + 1) linear form is cyclic in the sense defined above.
From [6] it follows that the cyclic cochains form a sub-complex of
the (norm continuous) Hochschild complex. The sets of cyclic cocy-
cles, cyclic coboundaries and cyclic cohomology groups are denoted
by Z%(si), B%(si) and H%{si). Moreover we have a long exact se-
quence established in [6] which relates the Hochschild and the cyclic
cohomology:

0 -> H$(A) - H°(J*,J**) - 0 -> H\

4.1. THEOREM. Ifsf is a C*-algebra without bounded traces, then
the norm continuous cyclic cohomology vanishes.

Proof. If si has no bounded traces then this is exactly the same
as saying that H$(A) = 0. By Theoem 3.2 Hn(s/,s/*) = 0 for n e
N. When this is put into the long exact sequence we get first that
H\{sf) = 0 and secondly that H^~l{sf) = Hn

λ

+\$f), n e N. The
theorem follows.

4.2. COROLLARY. If si is a nuclear C*-algebraf then the odd norm
continuous cyclic cohomology groups vanish and the even ones are all
isomorphic to the space of all bounded traces on si'.
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Proof, By Corollary 3.3 the Hochschild cohomology vanishes, and
we get as above that the odd groups all vanish, since

Furthermore the even groups are all isomorphic to

which in turn is just the space of bounded traces.
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