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GALOIS THEORY OF DIFFERENTIAL FIELDS
OF POSITIVE CHARACTERISTIC

KAYOKO SHIKISHIMA-TSUJI

The strongly normal extensions of a differential field K of positive
characteristic are defined. On the set G of all differential isomor-
phisms of a strongly normal extension N of K, a structure of an
algebraic group is induced. Correspondences between subgroups of G
and intermediate differential fields of N and K are studied.

0. Introduction. E. R. Kolchin established a Galois theory for dif-
ferential fields of characteristic zero (Kolchin [1]).

Galois groups of Picard-Vessiot extensions are algebraic matrix
groups, and those of strongly normal extensions are algebraic groups.
As general algebraic groups are well studied for arbitrary characteris-
tic, it has been quite desirable to develop a Galois theory for differ-
ential fields of positive characteristic to the level of Kolchin's work in
characteristic zero.

For differential fields of positive characteristic, however, such a the-
ory has been known only for Picard-Vessiot extensions, with the field
of constants of the ground differential field algebraically closed.

The purpose of the present work is to develop a theory of strongly
normal extensions, which are more general than Picard-Vessiot ex-
tensions. This permits us to construct the theory of Picard-Vessiot
extensions without restrictions and also to investigate more in detail
the properties of Picard-Vessiot extensions (Okugawa [2]).

To meet this purpose, we had to develop many basic properties of
differential fields of positive characteristic. The results of these works
have been already published elsewhere ([2], Shikishima [4] and Tsuji
(nee Shikishima) [5]).

As has been done by K. Okugawa [3], we adopt in this work the com-
mutative and iterative higher derivations of infinite rank, which are
more natural than the usual derivations. Under the usual derivations,
when the characteristic p is positive, the pth power of any element
in a differential field is a constant. This creates various irregularities.
For example in this case, there is no proper strongly normal extension
of a differential field.
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This paper has five sections. The conventions used throughout are
explained in § 1. In §2, we state some preliminary results on differential
isomorphisms. In §3, strongly normal differential extensions and their
Galois groups are studied. §4 is devoted to the fundamental theorems
of Galois theory. Finally, we provide two examples in §5.

1. Conventions. Throughout this paper, we denote a differential
field of positive characteristic p by K, and also a differential extension
field of K by N. Let Δ be the set of commutative and iterative higher
derivation operators of infinite rank <J, = {δ[V\v = 0 , 1 , . . . ) ( / £ / ) ,
where / is the set of indices. The set of derivative operators, namely,
the set of all products of finitely many distinct members of {δiv\ i € / ,
v > 0}, is denoted by θ . The algebraic closure of K in N is represented
by K° and the field of constants of N by C

For a given field M, we denote by Ma an algebraic closure of M, by
Ms the separable closure of M in Ma, and by A// the purely inseparable
closure of M in Ma. In the case where M is a differential extension of
K, the differential closure of M in Ma, that is, the largest differential
extension of M in Ma, is denoted by MA (see [4] or [5]). The field of
constants of M is denoted by Mc.

We fix once and for all a universal differential extension U of N&
(whence, of K) (see [4] and [2]). Whenever differential isomorphisms
of a differential field M are considered, they are tacitly assumed to be
"into U".

We mean the eth power of the characteristic p by p(e).

2. Differential isomorphisms. In this section, we give some results
which correspond to those of [1]-VI-1 and 2 in the case of positive
characteristic /?. In general, these results can be proved similarly to
the proofs of the corresponding results of [1], although we have to
be careful about separability and need some of the basic results of
[2] together with the following three lemmas. Lemma 1 is due to
Okugawa.

LEMMA 1. Let L be a differential field with N D L D K. IfN and L
are finitely generated differential extension fields of K (as differential
fields) and N is L-separable, then, for every differential isomorphism
φ of L over K, φ can be extended to a differential isomorphism ofN
over K.

Proof. There exist elements η\,... ,ηm of N such that N =

L(η\,..., ηm). Let p be the defining ideal of (η) = (η\,..., ηm) in the
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differential polynomial ring L{Y\,..., Ym} and pφ the prime differ-
ential ideal in (φL){Y\,...,Ym} which consists of all the differential
polynomials obtained from differential polynomials of p by applying
φ to the coefficients. Since p is L-separable, pφ is (^L)-separable.
Let ζι,..., ζr be elements of L such that L = K(ζχ ,...,ζr). Then,
φL = K(φζ\,..., φζr) is a finitely generated differential extension field
of K in U. By Theorem 4 of [2]-IV-4, U is a universal differential ex-
tension field of φL and hence, ρφ has a generic zero (*/') = (J/J , . . . , η'm)
with η'k G U (1 < k < m). Define the mapping Ψ of N = L(η)
onto (<pL)(ηf) as Ψ(A(η)/B(η)) = A*{η')IB*{η')9 where Λ(7), 5(Γ) G
L{F! , . . . , Ym} with 5(ι/) ^ 0 and, A*(Y) and 5^(7) are differential
polynomials obtained by applying φ to the coefficients of A(X) and
B(X), respectively. This mapping is well defined, and it is straight-
forward to show that Ψ is a differential isomorphism of N into U
extending φ. D

By Corollary 2 to Theorem 6 of [2]-IΠ-6, the following lemma can
be proved.

LEMMA 2. TV and Uc are linearly disjoint over Nc.

LEMMA 3. IfN is finitely K-separable {that is, finitely generated and
separable over K as afield), then the algebraic closure K° of K in N
is of finite degree over K, and N is finitely K®-regular (that is, finitely
generated and regular over K° as afield).

Proof. Since N is finitely ^-separable, K° is separably algebraic over
K and a differential subfield of N (see [2]). α

Let (xfj e J) and (x'pj £ /) be two families of elements of U with
a common set of indices / . If there is a differential homomorphism
φ over N of N{xy9j € / } onto N{xry9j e J} such that φ(Xj) = x'j
(j G / ) , then (x'j\j G /) is said to be a differential specialization of
(Xj'J eJ) over N.

Let (σyj G /) and (a'yj G /) be two families of differential iso-
morphisms of TV with a common set of indices / . It is easy to see that
the following three conditions are equivalent (cf. [1]-VI-1).

(a) (σ'jx j G /, x G N) is a differential specialization over N of
{θjX\j G /, X G N).

(b) (σ'jX'J G /, x G N) is a specialization over N of {θjX\j G /,
xeN).
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(c) The differential isomorphisms o^σ~x of σjN onto σjTV (j e J)
and id# are compatible, that is, there is a ring homomorphism h of
N[\Jjej OjN] onto N[\J €j σfjN] such that h is a common extension

of iάN and all of G'JQJ1 (j e J).

If these conditions are satisfied, then (σj y G J) is said to be a
specialization of {σyj G J) and, in this case, we use the notation
(Gj'J G J) —> (crj;7 G / ) . This specialization is called generic and de-
noted by (θj\j G /) <r+ {σ'j J G /) if {σyj G /) is also a specialization
of (a};./6/).

Let (x) = (Xk\k G /') be a family of elements of N such that
TV = K(x) = K(xk;k G / ' ) , where / ' is a set of indices. Then, (σ7;
j eJ) -> (uj- y G /) if and only if {σfjXk;j G /, A: G /') is a differential
specialization of {σjXk\j eJ,ke J1) over JV.

A differential isomorphism σ of N over AT is said to be isolated if
every differential isomorphism τ such that τ —> cr is a generic special-
ization of σ.

In the rest of this section, we assume that TV is finitely ^-separable.

PROPOSITION 1. (a) Ifσ is a differential isomorphism ofN over K,
then trdegN σN/N < XxάtgN/K. The equality holds if and only ifσ
is isolated.

(b) Ifσ1 is a specialization of a differential isomorphism σ ofN over
K, then trdeg TV σ'N/N < trdegN σN/N. The equality holds if and
only ifσ++ σ1.

(c) There exist finitely many isolated differential isomorphisms
σ\,...,σt of N over K such that every differential isomorphism of N
over K is a specialization of one and only one of them. IfN is K-regular,
then t = 1.

Proof. Since N is finitely AΓ-separable, there exist elements
z\,...,zn of N such that N = K(z\,...,zn). Let p be the defining
differential ideal of (z\,..., zn) in K{Z\,... ,Zn}. By Theorem 7 of
[2J-ΠI-8 and its corollary, we see the following facts; (1) Np is a per-
fect differential ideal of N{Z\,..., Zn} with finitely many TV-separable
components φ\,... ,φt (t is 1 if N is Λ>regular). (2) Every generic
zero of p is a zero of one and only one of φ i , . . . , 9βt. (3) For each k
(1 <k < ί), every generic zero of φk is a generic zero of p.

(4) dimφ^, that is, the transcendence degree of a generic zero of
φk over TV, is equal to dim p. The rest of the proof is similar to that
of Proposition 1 of [1]-VI-1. D
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Let L and M be two extensions of K. We say that L and M are
algebraically disjoint over K if algebraically independent elements of
L over K are also algebraically independent over M.

By Proposition l(a), the following proposition can be proved.

PROPOSITION 2. A differential isomorphism σ ofN over K is isolated
if and only ifN and σN are algebraically disjoint over K.

Using Lemma 3, we can demonstrate the following proposition by
a proof that follows that of Proposition 2 of [1]-VΊ-1.

PROPOSITION 3. Let σ and σ1 be differential isomorphisms ofN over
K such that σ is isolated and N D σ'K° (whence σfK° = K°). Then we
have:

(a) N Π σN = K° n σK°.
(b) σ' is a specialization of a if and only ifσ coincides with a1 on

K°. When this is the case, N and σN are linearly disjoint over K°.

COROLLARY, (a) Let σ\,..., σt be isolated differential isomorphisms
of N over K such that every differential isomorphism of N over K is a
specialization of one and only one of them. Then the field of invariants
ofσi,... ,σt is K.

(b) Let σ be an isolated differential isomorphism of N over K. If
σ —• id AT, then the field of invariants ofσ is K°.

Proof, (a) Let a G N be an invariant of σ\,..., σt. Then, a is in
K° by Proposition 3 (a) and every differential isomorphism of N over
K leaves a invariant. Suppose that a is not in K. By Proposition
3 of [2]-V-2, there exists a differential isomorphism τ of K° over K
such that τa Φ a. By Lemma 1, τ can be extended to a differential
isomorphism of N over K. This is a contradiction.

(b) This is clear. π

A differential isomorphism σ of N is said to be strong if σ leaves
invariant every element of the field C of constants of N and the in-
clusions σN c N Uc and TV c σN Uc hold. The field of constants
of N σN is represented by C(σ). By Proposition 7 of [2]-III-7, it is
easy to see that a differential isomorphism σ of N over C is strong if
and only if N C(σ) = N σN = σN C{σ).
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PROPOSITION 4. If a is a strong differential isomorphism ofN over Ky

then trdegN-σN/N = trdeg C(σ)/C and C(σ) has finite transcendence
degree over C.

Proof. Since TV is finitely generated over K as a field, tr deg N σN/N
is finite. Since N-σN — N C(σ), the proposition follows from Lemma
2.

PROPOSITION 5. Each strong differential isomorphism of N can be
extended to a unique differential automorphism of N Uc over Uc.
Conversely, the restriction to N of each differential automorphism of
N - Uc over Uc is strong.

Proof. Let σ be a differential isomorphism of N over C By Lemma
2, σN and Uc are linearly disjoint over C. Hence, σ can be extended
to a unique differential isomorphism σ' of N Uc onto σN Uc over
Uc. When σ is strong, we have σN -Uc = N UC and σ' is a differential
automorphism of N Uc. The converse is clear. α

By virtue of this proposition, every strong differential isomorphism
of N is identified with the unique differential automorphism of N Uc

over Uc. This identification defines a canonical product of strong
differential isomorphisms of N.

PROPOSITION 6. Let σ and τ be two strong differential isomorphisms
ofN. Then, C(σ)C(στ) = C(σ)C(τ) = C(στ)C(τ) and C{σ~x) =
C(σ).

Proof. Using Proposition 7 of [2]—III-7, we can demonstrate this
proposition by a proof that follows that of Proposition 5 of [l]-VI-2.

PROPOSITION 7. Every specialization of a strong differential isomor-
phism ofN is strong.

Proof. Using Theorem 6 of [2]-ΠI-6, we can demonstrate this propo-
sition by a proof that follows that of Proposition 6 of [l]-VI-2.

REMARK. It follows from the way of the proof of Proposition 7 that,
if σ is a differential isomorphism of TV over C satisfying N c σN Uc

(respectively σN c N Uc)9 then every specialization τ of σ satisfies
N cτN Uc (respectively τN c N Uc).
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For a generic specialization σ' of a strong differential isomorphism
σ of N, there exists a unique differential isomorphism h of N σiV
onto N σ'iV over TV with fι(σx) = σ'.x (x e N). The restriction of
A to C(σ) is a field isomorphism of C{σ) onto C(σ') over C. This
isomorphism is said to be induced by the generic specialization and
denoted by Sσ>>σ.

The following Proposition 8, Proposition 9 and its corollary can be
demonstrated by proofs that follow those of Proposition 7, Proposi-
tion 8 and its corollary of [l]-VI-2.

PROPOSITION 8. Let σ be a strong differential isomorphism ofN.
(a) Ifσ1 is a generic specialization of a and σ" is a generic special-

ization ofa1, then Sσ><>σ>Sσ>)σ = Sσ»>σ.
(b) IfS is a field-isomorphism over C ofC(σ) onto a subfield C of

Uc, then there exists a unique generic specialization σ' of σ such that

PROPOSITION 9. Let σ, σf, τ, τ' be strong differential isomorphisms
ofN.

(a) //(σ,τ) -> (σ',τ;), then (σ-χ,σ-χτ) -> (af~l,σ'~ιτf).
(b) Let σ <-* σ1 and τ <-• τ'. Then, (σ, τ) -> (σ'f τ') if and only if the

induced isomorphisms Sσ>>σ and Sτ>,τ are compatible.
(c) Let σ <-> a1 and τ <-> τ1. If a homomorphism h ofa subring ofUc

into another and the induced isomorphisms Sσ>>σ, Sτ>,τ are compatible,
then σ~{ +-> &~x and σ~ιτ —• σ'~xτ'\ when the latter specialization
is generic, h and the induced isomorphisms Sσι-\tσ-\, Sσ,-\τ,>σ-\τ are
compatible.

COROLLARY. Let σ, σ\ τ, τ' be differential isomorphisms ofN and
let σ, τ be strong.

(a)Ifσ-> σf, then σ~ι -* σ'~x. When the former specialization is
generic, then so is the latter and Sσ<,σ = Sσ—\$σ-\.

(b)Ifσ<r+ σ', τ ^ τ' and if the induced isomorphisms Sσ<>σ, Sτ>>τ

are compatible, then στ -> σ'τ1. When στ <-> σ'τf and h is a homomor-
phism ofa subring ofUc into another such that h, Sσ>f(J and 5τ/,τ are
compatible, h andSσ>τ>fστ are compatible.

3. Strongly normal differential extensions and Galois groups. We
denote the set of all differential isomorphisms of N over K by G(N/K).
For σ G G(N/K), the field of constants of N σiV is represented by
C(σ).
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We say that N is strongly normal over K if N is finitely ΛT-separable
and every differential isomorphism of N over K is strong. If N is
strongly normal over K, then the field of constants C of N coincides
with the field of constants Kc of K by Corollary (a) to Proposition
3. Moreover, by Proposition 5, we see that G(N/K) has a canonical
group structure.

It is easy to see that Picard-Vessiot extensions are strongly normal
extensions. No examples of strongly normal extensions which are not
Picard-Vessiot extensions are so far known however.

In the rest of this section, we assume that N is finitely ΛΓ-separable.

PROPOSITION 10. Let σ\,..., σt be isolated differential isomorphisms
ofN over K such that every element ofG(N/K) is a specialization of
one ofσ\ ,...,σt. IfC = Kc and σkN c N Uc (1 < k < t), then N is
strongly normal over K.

Proof Let σ be one of σ\,..., σt. By Proposition 2, N and σN are
algebraically disjoint over K and hence, N σN is finitely separable over
σN. Therefore, by Lemma 1, the differential isomorphism σ" 1 of σN
onto N can be extended to a differential isomorphism h of N σN
into U. Let τ be the restriction of h to N. Then, it is a differential
isomorphism of N. We see that h is a differential isomorphism of
N σN onto τN N over K with hN = τiV, h(σN) = N and h(C(σ)) =
C(τ). Since τ is a specialization of some σ^ and σ^N c N- Uc, we have
the inclusion τN c iV C(τ) by Remark to Proposition 7. Thus, iV =
h-ι(τN) ch~ι(N C(τ)) = σN C(σ). Therefore, σx,..., σt are strong
and, by Proposition 7, we see that every differential isomorphism of
iV over K is strong. D

PROPOSITION 11. Ifσ is a strong differential isomorphism ofN over
K, then C{σ) is finitely generated over C as afield. Moreover, ifσ is
isolated, then C(σ) is separable over C.

Proof. By Proposition 4, C(σ) has finite transcendence degree over
C. Let y\,.-..,γs be a transcendence basis of C(σ) over C. Since
N and C(σ) are linearly disjoint over C, γ\,..., γs are algebraically
independent over N. As N σN = N C(σ) is finitely generated over
N, N - C(σ) is algebraic of finite degree, say r, over N(γ\,..., γs).
Every element of C(σ) is algebraic of degree not greater than r over
N(V\> >7s) a n d hence, over C(γ\,...,γs) by Proposition 6 of [2]-
IΠ-7. Therefore, C(σ) is algebraic of finite degree over C(γ\,..., γs).
Thus, C(σ) is finitely generated over C
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Assume moreover that σ is isolated. Then, by Proposition 2, N and
σN are algebraically disjoint over K. Since σN is finitely ^-separable,
N - σN is finitely iV-separable (see Theorem 8 and Proposition 26 of
[6]-I). N and C(σ) are linearly disjoint over C. Since the order of
inseparability i(C(σ)/C) of C(σ) over C (see [6]-I-8) coincides with
i(N - σN/N) = 1, C(σ) is separable over C. D

In the case where N is strongly normal over K, we have already
described the group structure of G(N/K). For the sake of simplicity,
this group will be denoted by G.

THEOREM 1. IfN is strongly normal over K, then G has a pre-C-set
structure {see [l]-V-2). This pre-C-set structure and the group structure
ofG define a C-group (i.e. algebraic group defined over C) structure on
G relative to the universal field Uc (see [l]-V-3). The dimension of the
C-group G equals the transcendence degree ofN over K.

Proof. We must verify the axioms of [l]-V-2 and 3.
For any σ e G, C(σ) is finitely generated over C by Proposition

11. The relation σ —> σ' (for σ,σf e G) is reflexive and transitive
by definition. For each pair σ, σ' e G with σ <-• σ', associate the
field-isomorphism Sσ*tσ over C. We can see that these data satisfy the
axioms AS1 and 2 by virtue of Proposition l(b), (c) and Proposition
8. Thus, C has a pre-C-set structure.

By Proposition 6, Proposition 9 and its corollary (a), (b), we can
verify the axioms AG1 and AG2(a), (c). In order to verify the axiom
AG3, let σ E G be isolated with σ —• id^; in particular, σ is generic
for the identity component of G over C. Since N is regular over K°,
so is σN over σK°. By Proposition 3, we see that σK° = K° and that
N and σN are linearly disjoint over K°. Therefore, JV σN = N -C(σ)
is iV-regular (see Theorem 5 of [6]-I-7). Since N and C(σ) are linearly
disjoint over C, we conclude that C(σ) is C-regular by Proposition 11.
Thus, AG3 is satisfied.

Now, we shall verify the axioms AG2(b) and (d). Let σ, σ;, T , T ' G ( ?

with σ -* σ1 and τ —• τ'. Since N is finitely ^-separable, there exist el-
ements z\,...,zn ofN such that N = K(zχ,..., zn) = K(zχ,..., zn).
Denote by p and q the defining ideals over N of (σ~xzXi..., σ~xzn)
and (τz\,..., τzn) in the differential polynomial rings N{X{,...,Xn}
and N{Yι,...,Yn} respectively. Then, by Theorem 7 of [2]-III-8
and Theorem 3 of [5], NAp and NAq have finitely ΛfΔ-regular compo-
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nents p i , . . . , pr and qi, . . . , qs respectively. Each differential ideal tkt =
(p*,q*) (l<k<r,l<t<s) of NA{XΪ9... ,Xn, Yu..., Yn} is p r i m e
and A^-regular (see Proposition 1 of [2]-IV-l), and it has a generic zero
( x [ k ' t ) . . . . . x ™ . y \ k ' t \ . . . . y i i k J ) ) w i t h x ™ , y ™ e U ( l < j < n).
Since (x[k'*\ . . . , x^) is a generic zero of xkt n NA{X\,..., Xn} = p^,
whence of p^ n N{XX,..., Xn} = p, (x[ktt\..., x^) is a generic spe-
cialization of (σ" 1 z\,..., σ~ι zn) over N and over K. Therefore, there
exists a strong differential isomorphism σ^1 of N over ,K with σ^1 z7- =

χ j M (i <j<n). Then, σ" 1 ^ σ^1 by Lemma 2. Similarly, there ex-
ists a strong differential isomorphism τkt of iV over K such that τ^z 7 =
y{k>t) ^i < j <n) and τ <-• τ^. By our assumption σ —• σ ; and Propo-
sition 9, we see that cr"1 —• σ'"1 and (σ'~λz\,..., a / - 1 z w ) is a zero of
p and hence, of some p^. Similarly, {τ'z\,..., τ'zn) is a zero of some
q,. Then, ( ( r / " 1 z i , . . . ,σ / " 1 z π ,τ / z i , . . . ,τ/zAί) is a zero of some tkt and
it is a differential specialization of (σ^1 z i , . . . , σ^1 zn, τ^zi,..., τ^z r t)
over iVΔ and hence, over iV. Therefore, we have (τ^, σ^t

λ) —• (τ;, σ7"1)
and, by Proposition 9, we see that (τ^ 1, τ ^ σ ^ 1 ) —• (τ '" 1 , τ ' ^ σ ' " 1 ) . If
σ^τ^ ^ σ'τ' and τ ^ —• τ', then the induced isomorphisms C(σktτkt) —•
C(σ'τ') and C(τ^) —• C(τ;) are compatible. This shows that the ax-
ioms AG2(b) and (d) are satisfied, since σ~ι —• σ'~ι whenever σ —• σ'.

Finally, let σ be an isolated differential isomorphism of N over K
with σ —• idjv. Since iV and C(σ) are linearly disjoint over C, and N
and σTV are algebraically disjoint over K,

trdegC(σ)/C = trdegTV C(σ)/N = trdegiV σiV/7V

= trdegN/K.

The C-group G stated in Theorem 1 is called the Galois group of N
over K.

THEOREM 2. L ^ iV be strongly normal over K and let C be an
extension of C in Uc such that U is universal over (NC')A. Then,
NO is a strongly normal differential extension ofKO with the field of
constants O, and the Galois group G{NO/KO) is the induced (see [1]-
V-5) O-group of the C-group G, both these groups being identified with
each other by means of their canonical identifications with the group of
automorphisms ofNUc over KUC

Proof By [2]-III-6 and 7, it is easy to see that NO is finitely KO-
separable and that [KO)C = O.
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In order to prove that NO is strongly normal over KO, let σ be a
differential isomorphism of NO over KO. Since the restriction of σ
to N is strong,

σ(Nθ) = σN-σO cN'UcΌ = NO Uc.

Similarly, NO c σ(NO) Uc. Thus, M7' is strongly normal over KO.
By Theorem 1, G(NO/KO) is a C'-group.

It suffices then to prove that this C'-group G(NO/KO) is the in-
duced C'-group of the C-group G(N/K). If we denote by O(σ) the
field of constants of NO σ(NO), then

N C'(<7) = NO C'(σ) = NO σ(Nθ) = N σN σC' = N C(σ) C,

and C'(σ) = C(σ) C by Proposition 7 of [2]-III-7. The remaining
part of the theorem can be proved similarly to Theorem 2 of [l]-VI-3.

4. Fundamental theorems.

PROPOSITION 12. Let M be a differential subfield ofN and let L be
a differential extension field ofM. IfL is purely inseparably algebraic
over Mx then every element ofG(N/M) can be extended uniquely to an
element ofG(NL/L).

Proof. Since NL c NA, we see that U is universal over (NL)A by
Corollary to Lemma 1 of [2]-IV-2. Clearly G(L/M) = {idL}, and this
implies that G(NL/M) = G(NL/L). By Theorem 2 of [5], each differ-
ential isomorphism in G(N/M) can be extended to some differential
isomorphism in G(NL/M), and this extension is unique since NL is
purely inseparable over N. Thus, the proposition is established. D

The purely inseparably algebraic closure of a differential field M in
MΔ is denoted by M^ (see §2 of [5]). The field M^ is a differential
subfield of MA. The field of constants of M^ coincides with the purely
inseparably algebraic closure Q of C in Ca. Since the field of constants
of M is C, we have (MA)C = Ca by Theorem 1 of [5] and (M^c D Cf.
Since M^ is purely inseparably algebraic over Af, so is (Afoo)c over
C. Therefore, we have (Afoo)c = C, .

PROPOSITION 13. Let M be a differential field with N D M D K. If
N is strongly normal over Ky then NMoo is strongly normal over Moo.

Proof. By Theorem 4 of [5], NM^ is finitely M^-separable. If c
is a constant in NMoo, then since NM^ is purely inseparable over N,
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there is a positive integer e such that cp^ G N. Thus, cpW G Nc = C,
whence c e Q. Hence, we have (NMoo)c = Q = (Afoo)c Now let
σ € GiNMoo/Moo). The restriction σ|τv of σ to JV is in G(N/M) c
G(JV/iO. Therefore, σ{NMoo) = σN - M^ c NUC M*, = (iVMoo) ί/c,
and TVMoo cσN-UC'Moo = σiNM^) C/c. Since (NM^ = (M^,
it follows that iVAfoo is strongly normal over M^. D

Now, G(N/M) is a subset of G, which is a C-group. The group struc-
ture on G is induced by that of AxA(NUc/KUc). The C-set structure
was described above.

We now show that even though N is not necessarily strongly normal
over the intermediate differential field M, nonetheless, G(N/M) is a
C-subgroup of G. It is easy to see that the field of constants of A ^ is
also C/. Thus, G^M^/Moo) and GiNK^/K^) are Q-groups. More-
over, the restriction homomorphism is an embedding of the C/-group
GiNMoo/Moo) into the Q-group G{NKQOIK00). This enables us, in-
deed, to identify GiNM^/Moo) with a C/-subgroup of G{NKOO/KOO).
The restriction homomorphism of G(NKOO/KOO) onto G(N/K) is a C/-
isomorphism, mapping G(NMOO/MOO) onto G(N/M). Thus, the latter
is a Q-subgroup of G. It follows that G(N/M) is a C-subgroup of G
([l]-V-6). So we have proved the following proposition.

PROPOSITION 14. Lei N be strongly normal over K and let M be a
differential field with N D M D K. Then G(N/M) is a C-subgroup

of a

If N is strongly normal over K, then we see by Theorem 2 that the
C-group G can be identified with the Cy-group G(N Cs/K Cs).

PROPOSITION 15. Let N be strongly normal over K, and H a C-
subgroup ofG. Let L and L' be the fields of invariants ofH in N and
in NCS respectively. Then:

(a) L1 and N are linearly disjoint over L.
(b) V = LCS.

Proof, (a) Let y\,...,y5+i be elements of L' which are linearly de-
pendent over N and any s elements of which are linearly independent
over N. Then, there exist nonzero elements X\,...9XS€LN such that
>s+i = Σ)y=i χjyj We prove that X\,...,xs are in L.

We set H' = {σ e H\σ is rational over Cs}. Suppose that there
exists an element a e H1 and r (1 < r < s) such that σxr φ xr\ say
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σx\ Φ X\. Since
s

ys+ι =σys+1 =

we have

7 = 1

and

(1) O =

7=1

where uj = (σXj -Xj)/(σxι - x{) e N σN = N C(σ) (1 < j < s). As
N - C(σ) is finitely TV-separable, there exists an element υ of N - C(σ)
such that TτN.C(σyN(υ) Φ 0. Multiplying (1) by v, we obtain

7=1

Let σi, . . . , σt be all the C-conjugates of σ. Then

7 = 1

and

7=1 \k=l J 7=1

Since
TTN.C(σ)/N(vUj) EN (1 < j < S)

and

we see that y\,... ,ys are linearly dependent over N, which yields a
contradiction.

Thus, we conclude that σXj = x} (I < j < s) for every σ E H1.
Set H" = {τ E G τxy = x7 (1 < 7 < 5)}. Then, //' c i/" and, by
Proposition 14, we see that H" is a C-closed subgroup of G (see [1]-
V). Since Hf is dense in H (see Corollary to Proposition 3 of [l]-V-7),
H c H" and *,- e L (1 < 7 < 5).

(b) Let {cy#,7 E /} be a linear basis of Cs over C. Then, each J E L '
is written in the form y = Σjej, ΠjCj with rtj E iV and a finite subset
/ ' of / . Thus, y and {cyj E /'} are linearly dependent over N. By
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part (a), they are linearly dependent over L and hence, there exist w,
Wj (j e J1) in L such that wy = Σjej,WjCj. Since {cyj e J} is
linearly independent over C, w cannot be zero and

This implies that L' c LCS and hence, Lf = LCS. D

THEOREM 3. Let N be strongly normal over K. Then:
(a) IfM is a differential field with N D M D K, then G(N/M) is

a C-closed subgroup of G. Moreover, the field L of invariants in N
ofG(N/M) is the purely inseparably algebraic closure in N of M and
G(N/M) = G(N/L).

(b) If H is a C'-closed subgroup ofG, then the field L of invariants
in N of H is purely inseparably algebraically closed in N and H =
G(N/L).

Proof, (a) By Propositions 12 and 13, NMoo is strongly normal
over MQO and G(NMoo/Moo) is C-isomorphic to the C-closed subgroup
G(N/M) of G. By Corollary (a) of Proposition 3, M^ is the field of
invariants in NMoo of G{NMoolMoo)\ hence every element of L is
purely inseparably algebraic over M. Since G(N/M) leaves invariant
every element of M and L is purely inseparably algebraic over M, we
see that L is the purely inseparably algebraic closure in N of M and
G(N/M) = G(N/L).

(b) Applying part (a) to the field L of invariants in N of H instead of
Λf, we see that G(N/L) is a C-closed subgroup of G and G(N/L) D H.

We now prove that H = G(N/L).
We can see that H can be regarded as a Q-subset (see [l]-V-3,

p. 227) of the Q-group G(NCa/KCa) = G(N/K), by the assumption
and Theorem 2. Let V be the set of invariants in NCa of H. Since
Ca = (Ca)S9 the equality H = G(NCa/L') can be established by the
same argument used in the proof of Theorem 3 of [l]-VΊ-4.

We prove that NCa is separable over ZΛ Let y\,...fys+\ be ele-
ments of V which are linearly dependent over (NCa)

p and any s of
which are linearly independent over (NCa)

p. Then, there exist s el-
ements a\,...,as of NCa such that ys+\ = Σ £ = 1 oLp

kyk. Set H" =
{σ G H\ σ is rational over Ca}. Each element τ of H" is a differential
automorphism of NCa over KCa; hence we see that

ys+\ = Σ^yyk Σ{τ<*k - ak)
pyk = o

k=l k=ϊ
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and τoik = ak (1 < k < s). Since the set {σ G G{NCaIKCa)\ σak = ak

(1 < k < s)} is (^-closed and H" is dense in // (see Corollary to
Proposition 3 of [l]-V-7), we have σak = ak for every σ e H and
hence, ak e L' (I < k < s).

Let H be regarded as a Q-subgroup (see [l]-V-3) of the C/-group
G(NCi/KQ) = G{N/K) and let L* be the set of invariants in NQ of
H. As (C/)j = Ca, Proposition 15 implies that V and NQ are linearly
disjoint over L* and L' = L*Ca. Since TVCα is finitely //-separable
over L', we see that NCi is finitely //-separable and hence, strongly
normal over L*. Therefore, by Theorem 2, we have

(2) G(NQ/L*) = G((NQ)Ca/L*Ca) = G(NCa/L') = K

By Proposition 13, iVLoo is strongly normal over L^ and G{NLOO/LOO)
= G(N/L) is a C-closed subgroup of G(N/K). When we regard H as
a C;-subgroup of G{NLOO/LOO), the field M of invariants in NLoo of
// contains Loo. Since iVLoo is purely inseparably algebraic over TV,
for each x e M, there is an integer e with x^^) e TV. Thus, we have
σ(χt>W) = (σx)p^ = xp^ for every σ e H and we have jt*W € L i.e.
x G Loo Therefore, we conclude that M = L^ , Loo 3 L* and L* is
purely inseparably algebraic over L Q . Then, by Proposition 12, part
(a) of the present theorem and (2), we have

G(N/L) = G(NQ/LQ) = G{NQ/L*) = H. π

By the proof of part (b) of Theorem 3, the following corollary is
obvious.

COROLLARY. Let N be strongly normal over K. If the field of con-
stants of the ground field K is perfect, then:

(a) If L is a differential field with N D L D K and L is purely
inseparably algebraically closed in N, then N is strongly normal over
L, G(N/L) is a C-subgroup ofG {see [l]-V-3) and the field of invariants
inN ofG(N/L) is L.

(b) If H is a C-subgroup ofG and L is the field of invariants in N of
Hy then L is purely inseparably algebraically closed in N, N is strongly
normal over L and H = G(N/L).

REMARK. In order that Theorem 3 has the usual formulation of
the fundamental theorem of Galois theory, some extra condition is
necessary (see Example 2 of §5 below). The condition C = C[ is such
an example.
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THEOREM 4. Let N be strongly normal over K. IfL is a differential
field with N D L D K and N is separable over L, then the following
four conditions are equivalent

(a) L is strongly normal over K.
(b) For every ae L-K, there exists a strong differential isomorphism

τofL over K such that τa Φ a.
(c) G(N/L) is a normal subgroup ofG.
(d) For every σ G G, the inclusion σL c LUC holds.
When these conditions are satisfiedf the sequence

(3) G(N/L) Λ <7 Λ G(L/K) -> {id}

is exact where i denotes the canonical embedding and φ is a homo-
morphism defined by φ(σ) = σ\^ (σ E G). Moreover, φ becomes a
C-homomorphism.

Proof. First, assume that (a) is satisfied. Then, the field of invariants
of G(L/K) in L is K (see Theorem 3) and (b) is satisfied.

Next, assume that (b) is satisfied. If we denote by Z the normalizer
of G(N/L) in G(N/K), then Z is a C-closed subgroup of G(N/K) con-
taining G{N/L) (see [1]ΛMO). Let M be the field of invariants in N of
Z. Suppose that M Φ K. We can take an element a E M — K c L — K.
By (b), there exists a strong differential isomorphism τ of L over K
with τa φ a. By Proposition 5, we see that τ can be extended to a
differential isomorphism τ' of LC[ over KCj. Since NCf is finitely
LC/-separable (see Theorem 2), it follows from Lemma 1 that τf can
be extended to a differential isomorphism σ of NCi over KC(. For ev-
ery p G G(N/L) and every β G L, we have σβ = τβ G LUCy pσβ = σβ
and σ~ιpσβ = β. Therefore, σ~ιpσe G(N/L) and σ G Z = G(N/M)
(see Theorem 3). This contradicts the inequality σa Φ α, and we con-
clude that M = K. Then, Z = G and G(N/L) is a normal subgroup of
G. Thus, (c) is satisfied.

Now, assume that (c) is satisfied. Let σ G G and let β G L. Since
σ~ιpσ G G(N/L) for every p e G(N/L), we have σ~ιpσβ = β and
pσβ = σβ. On the other hand, G(N/L) = G(N C(σ)/L C(σ)) by
Theorem 2 and σβ G N - σ N = N C(σ). Thus, we conclude that
σβ is an invariant of G(N C(σ)/L C{σ)) in N C(σ). Therefore,
σβ eL- C(σ) and σL c L - C(σ) C LUC. Hence, (d) is satisfied.

Finally, assume that (d) is satisfied. Let τ be any differential iso-
morphism of L over K. The fact that N is finitely L-separable and
Lemma 1 imply that τ can be extended to an element σ G G. Thus,
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we have τL = σL c LUC. By Proposition 10, we conclude that L is
strongly normal over K, i.e. (a) is satisfied.

We have proved that the four conditions are mutually equivalent.
Now, assume that these conditions are satisfied. It is clear that, in the
sequence (3), φ is a group-homomorphism and kerφ = im/. The fact
that N is finitely L-separable and Lemma 1 imply that φ is surjective.
It remains to prove that φ is a C-homomorphism.

Let σ, τ G G. We must verify the following three properties.
1°. C(σ) = N-aNnUcDL- φ{σ)L ΠUC = C(φ(σ)).
2°. Assume σ —> τ. Since (τα α G N) is a differential specialization

of (crα α G ΛQ over N9 (φ(τ)β β G L) is a differential specialization
of (φ(σ)β β G L) over L, i.e. #>(σ) —> p(τ).

3°. Assume σ <-» τ. By 2°, we have #?(σ) <-» ̂ (τ). The induced
isomorphism £V>σ: C(σ) —> C(τ) is the restriction of the differen-
tial isomorphism N σN —• TV τTV over TV which is determined by
σa -> τα (α G N). Considering every element a of L, we see that
sφ(τ),φ(σ): c(<P(σ)) "^ c ( ^ ( τ ) ) is a restriction of Sτ,σ. D

5. Examples, At first, we provide a well-known example of strongly
normal extension.

EXAMPLE 1. (See [2]-ΠI-5, IV-5 and VI-1.) Let X be a differential
indeterminate over K, let Λ be a set of linear differential forms in X
over K of finite order n and let (x\,..., xn) be a fundamental system of
zeros of Λ in a differential extension field of K. Set N = K(x\ ,...,xn).
If Nc = Kc and TV is separable over K, then we call N a Picard-Vessiot
extension ofK. Then, we can see that N is a strongly normal extension
of K and the Galois group G(N/K) is identified with a subgroup of
the general linear group GL(n) relative to the universal field Uc. Thus,
G{N/K) is a linear C-group in the sense of [1]-V.

The following example demonstrates the necessity of the remark to
Theorem 3.

EXAMPLE 2. Let K be a differential field with a single derivation
δ = (βv\v = 0, 1,2,...). Assume that δ is trivial in K. Choose
elements av {y — 1,2,...) in K satisfying the following conditions:

(a) av = 0 if v φ p(e) for every natural number e.
(b) The number of v such that av Φ 0 is finite and nonzero.
Let p be the differential prime ideal generated by δvX - av {y =

1,2,...) in K{X}. There exists a generic zero x of p over K. We
can see that N = K{x) = K{x) is strongly normal over K\ moreover,
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TV is a Picard-Vessiot extension of K. Now, assume that Nc is not
perfect. There is an element c e Nc such that cχlp ^ Nc. Set M =
K(χP& - cpxp^) and L = K(xpW - ex?). Then, L is the purely
inseparably algebraic closure in TV of M. The element x of N is
not separable over L, since the minimal polynomial of x over L is
χp{?) _ cpχp(2) - α, where a = x*(2> - CJC* e L. Hence, N is not
L-separable and N is not strongly normal over L. Since c is constant,
δ can be extended to cχlp. The minimal polynomial of x over L ^
is Xp(2) - cXp - b, where b = xp - cxlpx e L^, and x is separable
over LQO. Hence NL^ is strongly normal over L^ and the field of
constants of NLQQ is the perfect field Q.

Some more examples of the Picard-Vessiot extension by Okugawa
can be found in [2] together with several computations of differential
Galois groups.
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