RANGE TRANSFORMATIONS ON A BANACH FUNCTION ALGEBRA. II

OSAMU HATORI

Dedicated to Professor Junzo Wada on his 60th birthday

In this paper, localization for ultraseparability is introduced and a local version of Bernard's lemma is proven. By using these results it is shown that a function in $\operatorname{Op}(I_D,\operatorname{Re} A)$ is harmonic near the origin for a uniformly closed subalgebra A of $C_0(Y)$ and an ideal I of A unless the uniform closure $\operatorname{cl} I$ of I is self-adjoint; in particular, it is shown that $\operatorname{cl} I$ is self-adjoint if $\operatorname{Re} I \cdot \operatorname{Re} I \subset \operatorname{Re} A$, which is not true when I is merely a closed subalgebra of A.

1. Introduction. Let Y be a locally compact Hausdorff space, and $C_0(Y)$ (resp. $C_{0,R}(Y)$) be the Banach algebra of all complex (resp. real) valued continuous functions on Y which vanish at infinity. If Y is compact, we write C(Y) and $C_R(Y)$ instead of $C_0(Y)$ and $C_{0,R}(Y)$ respectively. Thus C(Y) (resp. $C_R(Y)$) is the algebra of all complex (resp. real) valued continuous functions on Y if Y is compact. For a function f in $C_0(Y)$, $||f||_{\infty}$ denotes the supremum norm on Y. We say that A is a Banach algebra (resp. space) included in $C_0(Y)$ with the norm $\|\cdot\|_A$ if A is a complex subalgebra (resp. space) of $C_0(Y)$ which is a complex Banach algebra (resp. space) with respect to the norm $\|\cdot\|_A$ (resp. such that $\|f\|_{\infty} \leq \|f\|_A$ holds for every f in A). It is well known that the inequality $||f||_{\infty} \leq ||f||_A$ holds for every f in a Banach algebra A included in $C_0(Y)$ with the norm $\|\cdot\|_A$. Thus we may suppose that a Banach algebra included in $C_0(Y)$ is a Banach space included in $C_0(Y)$. We say that E is a real Banach space included in $C_{0,R}(Y)$ with the norm $\|\cdot\|_E$ if E is a real subspace of $C_{0,R}(Y)$ which is a real Banach space with respect to the norm $\|\cdot\|_E$ such that $||u||_{\infty} \leq ||u||_{E}$ holds for every u in E. A (resp. real) Banach space or algebra included in $C_0(Y)$ (resp. $C_{0,R}(Y)$) is said to be trivial if it coincides with $C_0(Y)$ (resp. $C_{0,R}(Y)$).

If A is a Banach space included in $C_0(Y)$ with the norm $\|\cdot\|_A$ for a locally compact Hausdorff space Y, $\operatorname{Re} A = \{u \in C_{0,R}(Y): \exists v \in C_{0,R}(Y) \text{ such that } u+iv\in A\}$ is a real Banach space with respect to

the quotient norm $\|\cdot\|_{\operatorname{Re} A}$ defined by

$$||u||_{\operatorname{Re} A} = \inf\{||f||_A \colon f \in A, \operatorname{Re} f = u\}$$

for u in Re A. Since the inequality

$$||u||_{\infty} \leq ||u||_{\operatorname{Re} A}$$

holds for every u in Re A by the definition of $||u||_{\operatorname{Re} A}$, Re A is a real Banach space included in $C_{0,R}(Y)$ with the norm $||\cdot||_{\operatorname{Re} A}$. Let B be a (resp. real) Banach space included in $C_0(Y)$ (resp. $C_{0,R}(Y)$) with the norm $||\cdot||_B$ for a locally compact Hausdorff space Y and K be a compact subset of Y. We denote

$$\{f \in C(K) \text{ (resp. } C_R(K): \exists F \in B, F | K = f\}$$

by B|K, where F|K is the restriction of the function F to K. B|K is a (resp. real) Banach space included in C(K) (resp. $C_R(K)$) with the quotient norm $\|\cdot\|_{B|K}$ defined by

$$||f||_{B|K} = \inf\{||F||_B \colon F \in B, \ F|K = f\}$$

for f in B|K; in particular, B|K is a Banach algebra included in C(K) if B is a Banach algebra included in $C_0(Y)$. For a point X in Y, $B_X = \{f \in B: f(X) = 0\}$ is a (resp. real) Banach space included in $C_0(Y)$ (resp. $C_{0,R}(Y)$) with the norm $\|\cdot\|_B$; in particular, B_X is a Banach algebra included in $C_0(Y)$.

A is said to be a Banach function algebra on X if X is a compact Hausdorff space and A is a Banach algebra included in C(X) which separates the points of X and contains constant functions on X. A function algebra on X is a Banach function algebra on X with the supremum norm as the Banach algebra norm.

For any subsets S and T of $C_0(Y)$ and for a point x in Y and for a compact subset K of a locally compact Hausdorff space Y, we use the following notations and a terminology in this paper.

$$S|K = \{f \in C(K): \exists F \in S \text{ such that } F|K = f\},$$

 $S_X = \{f \in S: f(X) = 0\},$

where F|K denotes the restriction of the function F to K.

Re
$$S = \{u \in C_{0,R}(Y) : \exists v \in C_{0,R}(Y) \text{ such that } u + iv \in S\},$$

where $i = \sqrt{-1}$.
cl $S = \text{ the uniform closure of } S \text{ in } C_0(Y),$
 $\overline{S} = \{\overline{f} : f \in S\}.$

where - denotes the complex conjugation.

$$S \cdot T = \{ fg : f \in S, g \in T \},\$$

 $S + T = \{ f + g : f \in S, g \in T \},\$
 $\text{Ker } S = \{ y \in Y : f(y) = 0 \}.$

We say that S separates the points near x if there is a compact neighborhood U of x in Y such that S separates the points in U.

It is a natural question to ask when a (resp. real) Banach space included in $C_0(Y)$ (resp. $C_{0,R}(Y)$) coincides with $C_0(Y)$ (resp. $C_{0,R}(Y)$). The Stone-Weierstrass theorem is classical: A self-adjoint function algebra on X coincides with C(X). Hoffmann-Wermer-Bernard's theorem on the uniformly closed real part of a Banach function algebra [2, 8] is well known: If A is a Banach function algebra on X and Re A is uniformly closed, then A = C(X). I. Glicksberg [4] generalized their theorem in the case of a function algebra on a metrizable X. J. Wada [14] removed the metrizability on X. S. Saeki [10] extended the results of J. Wada in the case of a Banach algebra included in $C_0(Y)$ with certain conditions (cf. [13]). One of Saeki's theorems in [10] is as follows: Let A be a Banach algebra included in $C_0(Y)$, and I be a closed subalgebra of A such that $I \cdot A_R \subset I$, where $A_R = A \cap C_{0,R}(Y)$. If $cl(ReI) \subset ReA$, then we have that clI is closed under complex conjugation. If in addition, $A \cap \overline{A}$ is closed in A, then I is uniformly closed.

Wermer's theorem about the ring condition on the real part of a function algebra [15] is also well known: If the real part of a function algebra is a ring, then the algebra is the trivial one. The theorem is generalized in the setting of range transformations [7]. Suppose that S and T are sets of complex or real valued functions on a set Z and D is a subset of the complex plane. We denote

$$\operatorname{Op}(S_D, T) = \{h : h \text{ is a complex valued function on } D \text{ such that } h \circ f \in T \text{ whenever } f \in S \text{ has range in } D\}.$$

The central problem on range transformations is to determine the class $Op(S_D, T)$ (cf. [1]). The Stone-Weierstrass theorem asserts that if $Op(A_C, A)$ for a function algebra A on X and for the complex plane C contains the function $z \mapsto \overline{z}$, then A = C(X). A theorem of de Leeuw-Katznelson [9], which is one of the generalizations of the Stone-Weierstrass theorem, states that a continuous nonanalytic function is not contained in $Op(A_D, A)$ for a non-trivial function algebra A on X and a plane domain D. W. Spraglin [12] removed the continuity

assumption for functions in $Op(A_D, A)$ by showing that every function in $Op(A_D, A)$ is continuous if X is infinite. Wermer's theorem is generalized as follows [5, 11]: $Op((Re A)_I, Re A)$ consists of only affine functions on an interval I for a non-trivial function algebra A. Either of these theorems are generalized as the following.

THEOREM [7; Corollary 1.1]. Let A be a non-trivial function algebra and D be a plane domain. Then every function in $Op(A_D, Re A)$ is harmonic.

For certain non-trivial function algebras A and B, $Op(A_D, Re B)$ contains non-harmonic functions (cf. [7]). In this paper we show that a result analogous to the above theorem holds when B is uniformly closed and A is an ideal of B. Our main result is the following.

Theorem 2. Let A be a uniformly closed subalgebra of $C_0(Y)$ for a locally compact Hausdorff space Y and I be an ideal of A. Let D be a plane domain containing the origin. Suppose that $Op(I_D, Re\ A)$ contains a function which is not harmonic on any neighborhood of the origin. Then, for every compact subset K of $Y - Ker\ I$, I | K is uniformly closed and self-adjoint (i.e., closed under complex conjugation) and $cl\ I$ is self-adjoint.

As a corollary of Theorem 2 we prove a result analogous to a theorem of Saeki: Let A be a uniformly closed subalgebra of $C_0(Y)$ and I be an ideal of A. If Re $I \cdot \text{Re } I \subset \text{Re } A$, then cl I is self-adjoint.

The concept of ultraseparation was introduced by A. Bernard and it was used to provide, for example, a solution of a problem on range transformations (cf. [2]). The so-called Bernard's lemma is the essential tool there. In the next section we introduce localization of ultraseparability and prove a "local" Bernard's lemma, which is used to prove Theorem 2 in the last section.

2. Local property of functions in a Banach space included in $C_0(Y)$ or $C_{0,R}(Y)$. Let E be a (resp. real) Banach space included in $C_0(Y)$ (resp. $C_{0,R}(Y)$) with the norm $N_E(\cdot)$, where Y is a locally compact Hausdorff space. Let Λ be a discrete topological space. We denote the space of all bounded (with respect to the norm $N_E(\cdot)$) E-valued functions on Λ by \tilde{E}^{Λ} . Then we see that \tilde{E}^{Λ} is a Banach space with the norm

$$(N_E)^{\sim \Lambda}(\tilde{f}) = \tilde{N}_E^{\Lambda}(\tilde{f}) = \sup\{N_E(\tilde{f}(\alpha)) : \alpha \in \Lambda\}$$

for \tilde{f} in \tilde{E}^{Λ} . If E is a Banach algebra, then \tilde{E}^{Λ} is also a Banach algebra. Let K be a compact subset of Y. Then $(E|K)^{\sim\Lambda}=\tilde{E}^{\Lambda}|\tilde{K}^{\Lambda}$ and $(N_{E|K})^{\sim\Lambda}(\cdot)=(\tilde{N}_{E}^{\Lambda})_{|\tilde{K}^{\Lambda}}(\cdot)$, where $N_{E|K}(\cdot)$ is the quotient norm with respect to $N_{E}(\cdot)$ and K and $(\tilde{N}_{E}^{\Lambda})_{|\tilde{K}^{\Lambda}}(\cdot)$ is the quotient norm with respect to $\tilde{N}_{E}^{\Lambda}(\cdot)$ and \tilde{K}^{Λ} . On the other hand we may suppose that every E-valued function \tilde{f} in \tilde{E}^{Λ} is a complex (resp. real) valued function on $Y \times \Lambda$ by defining

$$\tilde{f}(x,\lambda) = (\tilde{f}(\lambda))(x)$$

for (x, λ) in $Y \times \Lambda$. Since every function f in E satisfies the inequality $||f||_{\infty} \leq N_E(f)$ we may suppose that every E-valued function \tilde{f} in \tilde{E}^{Λ} is a complex (resp. real) valued bounded function with respect to the supremum norm on $Y \times \Lambda$. So we may suppose that

$$\tilde{E}^{\Lambda} \subset C(\tilde{Y}^{\Lambda}),$$

where we denote by \tilde{Y}^{Λ} the Stone-Čech compactification of the direct product $Y \times \Lambda$ of Y and Λ . Let X be a point in Y. We denote

$$F_x^{\Lambda} = \bigcap [G \times \Lambda],$$

where G varies over all the compact neighborhoods of x and $[\cdot]$ denotes the closure in \tilde{Y}^{Λ} . We denote

$$Q^{\Lambda}(E_x) = \{ p \in F_x^{\Lambda} \colon \tilde{f}(p) = 0 \text{ for } \forall \tilde{f} \in \tilde{E}_x^{\Lambda} \}.$$

Let (x,λ) be a point in $\{x\} \times \Lambda$ and \tilde{f} be a function in \tilde{E}_x^{Λ} . Then we have $\tilde{f}(\lambda) \in E_x$ for every $\lambda \in \Lambda$ and so $(\tilde{f}(\lambda))(x) = 0$. By the definition of $Q^{\Lambda}(E_x)$ we see that

$$\{x\} \times \Lambda \subset Q^{\Lambda}(E_x) \subset F_x^{\Lambda}$$

SO

$$[\{x\} \times \Lambda] \subset Q^{\Lambda}(E_x) \subset F_x^{\Lambda}$$

since $Q^{\Lambda}(E_x)$ is closed in \tilde{Y}^{Λ} . For a function f in E we denote by $\langle f \rangle$ the function on Λ with the constant value f.

We assume from Lemma 1 through Lemma 5 that E is a (resp. real) Banach space included in $C_0(Y)$ (resp. $C_{0,R}(Y)$) for a locally compact Hausdorff space Y and that Λ is a discrete topological space.

LEMMA 1. Let a and b be different points in Y. Then $F_a^{\Lambda} \cap F_b^{\Lambda} = \emptyset$.

Proof. Since Y is a locally compact Hausdorff space we can choose disjoint compact neighborhoods G_a and G_b for a and b respectively.

By the definition of F_a^{Λ} and F_b^{Λ} we have

$$F_a^{\Lambda} \cap F_b^{\Lambda} \subset [G_a \times \Lambda] \cap [G_b \times \Lambda]$$

while $[G_a \times \Lambda] \cap [G_b \times \Lambda] = \emptyset$ since $G_a \cap G_b = \emptyset$. Thus we have $F_a^{\Lambda} \cap F_b^{\Lambda} = \emptyset$.

LEMMA 2. Let K be a compact subset of Y. Then

$$\bigcup_{y\in\operatorname{Int}K}F_y^{\Lambda}\subset [K\times\Lambda]\subset\bigcup_{y\in K}F_y^{\Lambda},$$

where Int K is the interior of K.

Proof. Let y be a point in Int K. By the definition of F_y^{Λ} we see that

$$F_y^{\Lambda} \subset [K \times \Lambda],$$

so we have

$$\bigcup_{y\in\operatorname{Int}K}F_y^\Lambda\subset [K\times\Lambda].$$

Let p be a point in $[K \times \Lambda]$. The functional

$$f \mapsto \langle f \rangle(p)$$

on C(K) is linear and multiplicative, so there is a unique t(p) in K such that

$$\langle f \rangle(p) = f(t(p))$$

for all f in C(K). We will show that $p \in F_{t(p)}^{\Lambda}$. Suppose not. By the definition of $F_{t(p)}^{\Lambda}$ there is a compact neighborhood G of t(p) in Y such that

$$p \notin [G \times \Lambda].$$

Since $\tilde{Y}^{\Lambda} = [G \times \Lambda] \cup [G^c \times \Lambda]$, where G^c is the complement of G in Y, we see that

$$p \in [G^c \times \Lambda].$$

By Urysohn's lemma there is a function g in $C_0(Y)$ such that

$$g(t(p)) = 1$$
 and $g(y) = 0$

for every y in G^c . Since p is in $[G^c \times \Lambda]$ we have

$$\langle g \rangle(p) = 0.$$

On the other hand

$$\langle g \rangle(p) = g(t(p)) = 1$$
,

which is a contradiction. Thus we conclude that $p \in F_{t(p)}^{\Lambda}$. It follows that

$$[K \times \Lambda] \subset \bigcup_{y \in K} F_y^{\Lambda}.$$

LEMMA 3. $\bigcup_{y \in Y} F_y^{\Lambda} \subset \tilde{Y}^{\Lambda}$ where the union is disjoint. In particular, if Y is compact, then

$$\bigcup_{y\in Y} F_y^{\Lambda} = \tilde{Y}^{\Lambda}.$$

Proof. The first assertion is trivial by the definition of F_y^{Λ} and Lemma 1. If Y is compact, then by Lemma 2 we see

$$\bigcup_{y \in Y} F_y^{\Lambda} = \tilde{Y}^{\Lambda}$$

since Y = Int Y.

LEMMA 4. Let a be a point in Y and G be a compact neighborhood of a in Y. Then

$$F_a^{\Lambda} \subset \{ p \in [G \times \Lambda] : \langle f \rangle (p) = f(a) \text{ for } \forall f \in E \}.$$

In particular, if E separates the points near a, that is, there is a compact neighborhood U of a such that E separates the points in U, then we see that

$$F_a^{\Lambda} = \{ p \in [U \times \Lambda] : \langle f \rangle (p) = f(a) \text{ for } \forall f \in E \}.$$

Proof. Let p be a point in F_a^{Λ} . Then $p \in [G \times \Lambda]$ since $F_a^{\Lambda} \subset [G \times \Lambda]$. Suppose that there is a function f_0 in E_a such that

$$\langle f_0 \rangle(p) \neq f_0(a).$$

Then

$$G' = \{ y \in G \colon |f_0(y) - f_0(a)| \le \delta/2 \},\$$

where $\delta = |\langle f_0 \rangle(p) - f_0(a)|$, is a compact neighborhood of a and

$$p \notin [G' \times \Lambda].$$

Thus we have $p \notin F_a^{\Lambda}$ since $F_a^{\Lambda} \subset [G' \times \Lambda]$, which is a contradiction. We conclude that

$$F_a^{\Lambda} \subset \{ p \in [G \times \Lambda] : \langle f \rangle (p) = f(a) \text{ for } \forall f \in E \}.$$

Suppose that E separates the points in U. Let p be a point in $[U \times \Lambda]$ such that $\langle f \rangle(p) = f(a)$ for every f in E. By Lemma 2 there is $y \in U$ such that $p \in F_{\nu}^{\Lambda}$. By the above argument we see that

$$\langle f \rangle(p) = f(y)$$

for every f in E. Since

$$\langle f \rangle(p) = f(a)$$

for every f in E and we see that a = y since E separates the points in U, so we conclude that $p \in F_a^{\Lambda}$.

LEMMA 5. Let a be a point in Y and G be a compact neighborhood of a in Y. Then

$$Q^{\Lambda}(E_a) \subset \{ p \in [G \times \Lambda] : \tilde{f}(p) = 0 \text{ for } \forall \tilde{f} \in (E_a)^{\sim \Lambda} \}.$$

In particular, if E_a separates the points near a, that is, there is a compact neighborhood U of a such that E_a separates the points in U, then

$$Q^{\Lambda}(E_a) = \{ p \in [U \times \Lambda] : \tilde{f}(p) = 0 \text{ for } \forall \tilde{f} \in (E_a)^{\sim \Lambda} \}.$$

Proof. The first assertion is trivial by the definition of $Q^{\Lambda}(E_x)$. Suppose that E_a separates the points in U. Since $\langle f \rangle$ is in $(E_a)^{\sim \Lambda}$ for every f in E_a we have

$$\{p \in [U \times \Lambda]: \tilde{f}(p) = 0 \text{ for } \forall \tilde{f} \in (E_a)^{\sim \Lambda}\}\$$

 $\subset \{p \in [U \times \Lambda]: \langle f \rangle(p) = 0 \text{ for } \forall f \in E_a\}.$

 E_a is a (resp. real) Banach space included in $C_0(Y)$ (resp. $C_{0,R}(Y)$) with the restriction of the norm E to E_a . We see by Lemma 4 that

$$\{p \in [U \times \Lambda]: \langle f \rangle(p) = 0 \text{ for } \forall f \in E_a\} = F_a^{\Lambda}$$

since f(a) = 0 for every f in E_a . So we conclude that

$$\{p \in [U \times \Lambda]: \tilde{f}(p) = 0 \text{ for } \forall \tilde{f} \in (E_a)^{\sim \Lambda}\} \subset F_a^{\Lambda}.$$

We see that

$$Q^{\Lambda}(E_a) = \{ p \in [U \times \Lambda] : \tilde{f}(p) = 0 \text{ for } \forall \tilde{f} \in (E_a)^{\sim \Lambda} \}.$$

When $\Lambda = N$, the space of all positive integers we write \tilde{E} , $\tilde{N}_{E}(\cdot)$, $Q(E_x)$, \tilde{Y} and F_x instead of \tilde{E}^N , $\tilde{N}_{E}^N(\cdot)$, $Q^N(E_x)$, \tilde{Y}^N and F_x^N respectively (cf. [7]).

DEFINITION 1. Let E be a (resp. real) Banach space included in $C_0(Y)$ (resp. $C_{0,R}(Y)$). We say that E is ultraseparating if \tilde{E} separates the points of \tilde{Y} . We say that E is ultraseparating near a point x in Y if there is a compact neighborhood K of x such that E|K is ultraseparating with respect to the quotient norm, that is, $(E|K)^{\sim}$ of E|K with the quotient norm separates the points of \tilde{K} .

It is easy to see that if E is ultraseparating on Y, then Y is compact and E separates the points of Y and $E \neq E_{\nu}$ for every point y in Y.

LEMMA 6. Let E be a (resp. real) Banach space included in C(X) (resp. $C_R(X)$) for a compact Hausdorff space X. Then the following are equivalent.

- (1) E is ultraseparating.
- (2) E separates the points in X and E is ultraseparating near x for every x in X.
- (3) E separates the points in X and \tilde{E} separates the points in F_x for every x in X.

Proof. (1) \rightarrow (2) and (2) \rightarrow (3) are trivial. So we show (3) \rightarrow (1). Suppose that (3) is satisfied. By Lemma 3 we have $\tilde{X} = \bigcup_{x \in X} F_x$, where the union is disjoint. Let p and q be different points in \tilde{X} . We consider two cases. If there is $x \in X$ such that p and q are points in F_x , then \tilde{E} separates p and q by (3). If $p \in F_x$ and $q \in F_y$ for different points x and y in X, then there is a function f in E such that $f(x) \neq f(y)$ since we suppose that (3) is satisfied. It follows that

$$\langle f \rangle(p) \neq \langle f \rangle(q)$$

since $\langle f \rangle(p) = f(x)$ and $\langle f \rangle(q) = f(y)$. In any case we see that \tilde{E} separates p and q.

PROPOSITION 1. Let E be a real Banach space included in $C_{0,R}(Y)$ for a locally compact Hausdorff space Y. Let x be a point in Y. If E

is ultraseparating near x, then the following condition is satisfied:

(*) There is a compact neighborhood G of x which satisfies the condition that there are a natural number m and a $\delta > 0$ such that if Y_1 and Y_2 are disjoint compact subsets of G, then we can choose f_1, f_2, \ldots, f_m and g_1, g_2, \ldots, g_m in the unit ball of E satisfying

$$\sum_{i=1}^{m} (|f_i| - |g_i|) > \delta \quad on \ Y_1,$$

$$\sum_{i=1}^{m} (|f_i| - |g_i|) < -\delta \quad on \ Y_2.$$

If (*) is satisfied, then E|G is ultraseparating.

LEMMA 7. Let E be a real Banach space included in $C_R(X)$ for a compact Hausdorff space X such that E separates the points of X and E contains constant functions. Then the space of all linear combinations of |f| for f in the unit ball of E is uniformly dense in $C_R(X)$.

Proof. Let $\delta > 0$ and σ_{δ} be a C^{∞} -smoothing operator supported in $(-\delta, \delta)$, that is, σ_{δ} is a nonnegative real valued function of class C^{∞} on the real line supported in $(-\delta, \delta)$ with integral 1. Put

$$h_{\delta}(x) = \int_{-\delta}^{\delta} |x - t| \sigma_{\delta}(t) dt.$$

Then h_{δ} is a function of class C^{∞} . For every positive ε and for every positive integer m there exist a $\delta > 0$, a C^{∞} -smoothing operator σ_{δ} and a real number t with $|t| < \varepsilon$ such that

$$(d^m/dx^m)h_\delta(t)\neq 0$$

since $|\cdot|$ is not a polynomial near the origin. We denote the uniform closure of the space of all linear combinations of the absolute value of functions in the unit ball of E by V. Let g_1, g_2, \ldots, g_n be functions in the unit ball of E. Then

$$h_{\delta}(g_1s_1+g_2s_2+\cdots+g_ns_n+t)\in V$$

for real numbers s_1, s_2, \ldots, s_n , t with sufficiently small absolute values, provided $\delta < 1$. Thus we see that

$$\{h_{\delta}(g_1s_1+g_2s_2+\cdots+g_ns_n+t) - h_{\delta}(g_2s_2+g_3s_3+\cdots+g_ns_n+t)\}/s_1$$

is in V. In particular, fixing s_2, s_3, \ldots, s_n and letting $s_1 \to 0$ we have

$$g_1(d/dx)h_{\delta}(g_2s_2+\cdots+g_ns_n+t)\in V.$$

Continuing in this manner,

$$g_1g_2\cdots g_n(d^n/dx^n)h_{\delta}(t)\in V$$

and since we may suppose that $(d^n/dx^n)h_{\delta}(t) \neq 0$ we have

$$g_1g_2\cdots g_n\in V$$
.

It follows by the Stone-Weierstrass theorem that

$$V = C_R(X)$$
.

Proof of Proposition 1. Suppose that the condition (*) is satisfied. We show that E|G with the quotient norm is ultraseparating on G. Let a and b be different points of \tilde{G} and U_a and U_b be disjoint compact neighborhoods of a and b respectively. Let

$$U_a^k = U_a \cap (G \times \{k\})$$

and

$$U_b^k = U_b \cap (G \times \{k\}).$$

Then we see that $U_a^k \cap U_b^k = \emptyset$ and $a \in [\bigcup_{k=1}^{\infty} U_a^k], b \in [\bigcup_{k=1}^{\infty} U_b^k]$. Let t be the map

$$t: \tilde{G} \to G$$

which satisfies

$$\langle f \rangle(p) = f(t(p))$$

for every f in C(G) and for every p in \tilde{G} . Since $t(U_a^k)$ and $t(U_b^k)$ are disjoint compact subsets of G, by the condition (*) and by the definition of the quotient space we can choose $f_{1,k}, f_{2,k}, \ldots, f_{m,k}$ and $g_{1,k}, g_{2,k}, \ldots, g_{m,k}$ in the unit ball of E|G for every positive integer k satisfying

$$\sum_{i=1}^{m} (|f_{i,k}| - |g_{i,k}|) > \delta/2 \quad \text{on } t(U_a^k),$$

$$\sum_{i=1}^{m} (|f_{i,k}| - |g_{i,k}|) < -\delta/2 \quad \text{on } t(U_b^k).$$

It follows that

$$\sum_{i=1}^{m} (|\langle f_{i,n} \rangle (a)| - |\langle g_{i,n} \rangle (a)|) \ge \delta/2$$

and

$$\sum_{i=1}^{m}(|\langle f_{i,n}\rangle(b)|-|\langle g_{i,n}\rangle(b)|)\leq -\delta/2,$$

where $\langle f_{i,n} \rangle$ and $\langle g_{i,n} \rangle$ are functions in \tilde{E} such that $\langle f_{i,n} \rangle (y,k) = f_{i,k}(y)$ and $\langle g_{i,n} \rangle (y,k) = g_{i,k}(y)$ for every (y,k) in $G \times N$ respectively. Thus we see that at least one of $\langle f_{1,n} \rangle, \langle f_{2,n} \rangle, \ldots, \langle f_{m,n} \rangle$ and $\langle g_{1,n} \rangle, \langle g_{2,n} \rangle, \ldots, \langle g_{m,n} \rangle$ separates a and b. We conclude that E|G is ultraseparating.

To prove the reverse implication we suppose that E|G' is ultraseparating for a compact neighborhood G' of x. We consider two cases:

- (1) E|G' contains constant functions.
- (2) E|G' does not contain non-zero constant functions.

First we treat the case (1). Suppose that (*) is not satisfied with G = G'. Then for every positive integer n there are disjoint compact subsets $Y_{1,n}$ and $Y_{2,n}$ of G' such that

$$\sum_{i=1}^{n} (|f_i| - |g_i|) > 1/n \quad \text{on } Y_{1,n}$$

or

$$\sum_{i=1}^{n} (|f_i| - |g_i|) < -1/n \quad \text{on } Y_{2,n}$$

are not satisfied for every f_1, f_2, \ldots, f_n and g_1, g_2, \ldots, g_n in the unit ball of E|G'. Put

$$\tilde{Y}_1 = \left[\bigcup_{n=1}^{\infty} (Y_{1,n} \times \{n\}) \right]$$

and

$$\tilde{Y}_2 = \left[\bigcup_{n=1}^{\infty} (Y_{2,n} \times \{n\}) \right].$$

Since \tilde{Y}_1 and \tilde{Y}_2 are disjoint compact subsets of \tilde{G}' there are \tilde{f} in the unit ball of $C(\tilde{G}')$ such that

$$\tilde{f}(\tilde{y}) = 1$$
 for every \tilde{y} in \tilde{Y}_1 ,
 $\tilde{f}(\tilde{y}) = -1$ for every \tilde{y} in \tilde{Y}_2 .

By Lemma 7 there are a finite number of functions $\tilde{f}_1, \tilde{f}_2, \ldots, \tilde{f}_{\nu}$ and $\tilde{g}_1, \tilde{g}_2, \ldots, \tilde{g}_{\nu}$ in $(E|G')^{\sim}$ with the norm less than 1/2 respectively which satisfy

$$\left| \sum_{i=1}^{\nu} (|\tilde{f}_i| - |\tilde{g}_i|) - \tilde{f} \right| < 1/3.$$

Thus we see that

$$\sum_{i=1}^{\nu} (|\tilde{f}_i| - |\tilde{g}_i|) > 2/3 \quad \text{on } \tilde{Y}_1$$

and

$$\sum_{i=1}^{\nu} (|\tilde{f}_i| - |\tilde{g}_i|) < -2/3 \quad \text{on } \tilde{Y}_2.$$

By the definition of the norm of $(E|G')^{\sim}$ there are functions $f_{1,n}, f_{2,n}, \ldots, f_{\nu,n}$ and $g_{1,n}, g_{2,n}, \ldots, g_{\nu,n}$ in the unit ball of E such that

$$\tilde{f}_i(n) = f_{i,n}|G',$$

 $\tilde{g}_i(n) = g_{i,n}|G'$

for every positive integer n and $i = 1, 2, ..., \nu$. It follows that

$$\sum_{i=1}^{\nu} (|f_{i,n}| - |g_{i,n}|) > 2/3 \quad \text{on } Y_{1,n}$$

and

$$\sum_{i=1}^{\nu} (|f_{i,n}| - |g_{i,n}|) < -2/3 \quad \text{on } Y_{2,n},$$

which is a contradiction to the definition of $Y_{1,n}$ and $Y_{2,n}$ for large n. Thus we have that (*) is satisfied with G = G'.

Next we consider the case (2). Let E' = E|G' + C, where C is the space of all the real valued constant functions on G'. We identify a real number c and the function on G' with constant value c. Then B is a real Banach space included in $C_R(G')$ with the norm defined by

$$||f + c||_{E'} = ||f||_{E|G'} + |c|,$$

where $||f||_{E|G'}$ is the quotient norm for f in E|G' and |c| is absolute value of a real number c. By (1) we see the following:

There are a natural number m and a $\delta' > 0$ such that if Y_1' and Y_2' are disjoint compact subsets of G', then we can choose $f_1' + c_1$, $f_2' + c_2, \ldots, f_m' + c_m$ and $g_1' + d_1, g_2' + d_2, \ldots, g_m' + d_m$ in the unit ball of E' satisfying

$$\sum_{i=1}^{m} (|f'_i + c_i| - |g'_i + d_i|) > \delta' \quad \text{on } Y'_1,$$

$$\sum_{i=1}^{m} (|f'_i + c_i| - |g'_i + d_i|) < -\delta' \quad \text{on } Y'_2.$$

There is a function u in E|G' such that u(x) = 1 since E|G' is ultraseparating. Put $M = ||u||_{E|G'}$. Take the compact neighborhood

$$G = \{ y \in G' : |1 - u(y)| \le \delta'/4m \}$$

of x. Then we see the following:

If Y_1 and Y_2 are disjoint compact subsets of G, there are functions $(f'_i + c_i u)/(M+1)$ and $(g'_i + d_i u)/(M+1)$ in the unit ball of E' and that

$$\sum_{i=1}^{m} \{ |(f_i' + c_i u)/2(M+1)| - |(g_i' + d_i u)/2(M+1)| \}$$

$$> \delta'/4(M+1)$$

on Y_1 and

$$\sum_{i=1}^{m} \{ |(f_i' + c_i u)/2(M+1)| - |(g_i' + d_i u)/2(M+1)| \}$$

$$< -\delta'/4(M+1)$$

on Y_2 . By the definition of the quotient norm of E|G there are functions f_1, f_2, \ldots, f_m and g_1, g_2, \ldots, g_m in the unit ball of E which satisfy

$$f_i|G = (f_i' + c_i u)/2(M+1),$$

 $g_i|G = (g_i' + d_i u)/2(M+1)$

for i = 1, 2, ..., m. Put $\delta = \delta'/4(M+1)$. The condition (*) holds on G with m and δ .

COROLLARY 1. Let E be a (resp. real) Banach space included in $C_0(Y)$ (resp. $C_{0,R}(Y)$). Let K be a compact subset of Y. Then the following are equivalent.

- (1) E|K is ultraseparating.
- (2) $(E|K)^{\sim \Lambda}$ is ultraseparating for a discrete topological space Λ .
- (3) $(E|K)^{\sim \Lambda}$ separates the points of \tilde{K}^{Λ} for a discrete topological space Λ whose cardinality is infinite.
- (4) $((E|K)^{\sim \Lambda})^{\sim \Lambda'}$ separates the points of $(\tilde{K}^{\Lambda})^{\sim \Lambda'}$ for discrete topological spaces Λ and Λ' , where at least one of the cardinalities of Λ and Λ' is infinite.

Proof. Suppose that E is a Banach space included in $C_0(Y)$. By the definition of the quotient norm of Re E we see that $(\operatorname{Re} E|K)^{\sim\Lambda} = \operatorname{Re}((E|K)^{\sim\Lambda})$. Thus (1), (2), (3) and (4) are equivalent to the following respectively.

(1)' Re E|K is ultraseparating.

- (2)' $(\operatorname{Re} E|K)^{\sim \Lambda}$ is ultraseparating for a discrete topological space Λ .
- (3)' $(\operatorname{Re} E|K)^{\sim \Lambda}$ separates the points of \tilde{K}^{Λ} for a discrete topological space Λ with infinite cardinality.
- (4)' $((\operatorname{Re} E|K)^{\sim\Lambda})^{\sim\Lambda'}$ separates the points of $(\tilde{K}^{\Lambda})^{\sim\Lambda'}$ for discrete topological spaces Λ and Λ' , where at least one of the cardinalities of Λ and Λ' is infinite.

So without loss of generality we may consider only the case that E is a real Banach space included in $C_{0,R}(Y)$. By Lemma 6 (1) is equivalent to the condition that E|K separates the points of K and E is ultraseparating near x for every x in K with the relative topology induced by Y. Thus by Proposition 1 (1) is equivalent to the condition that E|K separates the points of K and (*) of Proposition 1 is satisfied for every x in K. In the same way as in the proof of Proposition 1 we see that (2), (3) and (4) are equivalent to the above condition respectively.

Now we show a local version of Bernard's lemma.

Theorem 1. Suppose that E is a (resp. real) Banach space included in $C_0(Y)$ (resp. $C_{0,R}(Y)$) for a locally compact Hausdorff space Y. Let x be a point in Y. Suppose that Λ is a discrete topological space with cardinality not less than that of an open base for x. Then the following hold.

- (1) \tilde{E}^{Λ} separates the different points in F_x^{Λ} if and only if E is ultraseparating near x.
- (2) $\tilde{E}^{\Lambda}|F_{X}^{\Lambda}$ is uniformly dense in $C(F_{X}^{\Lambda})$ (resp. $C_{R}(F_{X}^{\Lambda})$) if and only if there is an interpolating compact neighborhood G of X for E; i.e., E|G=C(G) (resp. $C_{R}(G)$).

Proof. First we prove (1). Since a Banach space A included in $C_0(Y)$ is ultraseparating near a point x in Y if and only if $\operatorname{Re} A$ with the quotient norm is ultraseparating near x, so without loss of generality we may assume that E is a real Banach space included in $C_{0,R}(Y)$. Suppose that E is ultraseparating near x. By Proposition 1 we see that there is a compact neighborhood G of x which satisfies the condition that there are a positive integer n and a positive real number δ such that for every pair of disjoint compact sets G_1 and G_2 of G, there are functions f_1, f_2, \ldots, f_n and g_1, g_2, \ldots, g_n in the unit ball of E such

that

$$\sum_{i=1}^{n} (|f_i| - |g_i|) > \delta \quad \text{on } G_1,$$

$$\sum_{i=1}^{n} (|f_i| - |g_i|) < -\delta \quad \text{on } G_2.$$

Let p and q be different points in F_x^{Λ} . Let U_p and U_q be disjoint compact neighborhoods in \tilde{G}^{Λ} of p and q respectively. So we have that $t(U_p^{\alpha})$ and $t(U_q^{\alpha})$ are disjoint compact sets in G for every α in Λ , where $U_p^{\alpha} = U_p \cap (G \times \{\alpha\})$ and $U_q^{\alpha} = U_q \cap (G \times \{\alpha\})$ and t is the map from $[G \times \Lambda]$ onto G satisfying

$$\langle f \rangle(a) = f(t(a))$$

for every f in C(G) and a in $[G \times \Lambda]$. There are functions $f_{1,\alpha}, f_{2,\alpha}, \ldots, f_{n,\alpha}$ and $g_{1,\alpha}, g_{2,\alpha}, \ldots, g_{n,\alpha}$ in the unit ball of E with

$$\sum_{i=1}^{n} (|f_{i,\alpha}| - |g_{i,\alpha}|) > \delta \quad \text{on } t(U_p^{\alpha}),$$

$$\sum_{i=1}^{n} (|f_{i,\alpha}| - |g_{i,\alpha}|) < -\delta \quad \text{on } t(U_q^{\alpha})$$

for every α in Λ . Let \tilde{f}_i and \tilde{g}_i be E-valued functions in \tilde{E}^{Λ} such that $\tilde{f}_i(\alpha) = f_{i,\alpha}$ and $\tilde{g}_i(\alpha) = g_{i,\alpha}$ for i = 1, 2, ..., n and for every α in Λ . Since we may suppose that every E-valued function in \tilde{E}^{Λ} is a function in $C(\tilde{Y}^{\Lambda})$ by defining

$$\tilde{f}(x,\alpha) = (\tilde{f}(\alpha))(x)$$

for every (x,α) in $Y \times \Lambda$ and since p is a point in $[\bigcup_{\alpha} U_p^{\alpha}]$ and q is a point in $[\bigcup_{\alpha} U_q^{\alpha}]$ we have that $\tilde{f}_j(p) \neq \tilde{f}_j(q)$ or $\tilde{g}_j(p) \neq \tilde{g}_j(q)$ for some $1 \leq j \leq n$.

On the other hand, suppose that \tilde{E}^{Λ} separates the points of F_{X}^{Λ} so there is a g in E such that g(x)=1 since \tilde{E}^{Λ} separates the points in $\{x\} \times \Lambda$. Since $\langle g \rangle = 1$ on F_{X}^{Λ} we see by Lemma 7 that the linear combinations of absolute value of functions in $\tilde{E}^{\Lambda}|F_{X}^{\Lambda}$, is uniformly dense in $C_{R}(F_{X}^{\Lambda})$. Let $\{G_{\alpha}\}$ be a family of compact neighborhoods of x such that $\{\text{Int }G_{\alpha}\}$, the family of all the interiors of G_{α} , is an open base for x with the cardinality not greater than that of Λ . Without loss of generality we may assume that the two cardinalities coincide. We shall show that there are a compact neighborhood G of X and a positive integer n_0 with the following property: For every pair of disjoint

compact subsets Y_1 and Y_2 of G, there are functions $f_1, f_2, \ldots, f_{n_0}$ and $g_1, g_2, \ldots, g_{n_0}$ in the unit ball of E such that

$$\sum_{i=1}^{n_0} (|f_i| - |g_i|) > 1/2 \quad \text{on } Y_1,$$

$$\sum_{i=1}^{n_0} (|f_i| - |g_i|) < -1/2 \quad \text{on } Y_2.$$

Suppose not. For every compact neighborhood G_{α} in $\{G_{\alpha}\}$ and positive integer n, there are disjoint compact subsets $Y_1^{\alpha,n}$ and $Y_2^{\alpha,n}$ of G_{α} such that for every f_1, f_2, \ldots, f_n and g_1, g_2, \ldots, g_n in the unit ball of E we have

$$\sum_{i=1}^{n} (|f_i| - |g_i|)(y_1) \le 1/2 \quad \text{for } \forall y_1 \in Y_1^{\alpha, n}$$

or

$$\sum_{i=1}^{n} (|f_i| - |g_i|)(y_2) \ge -1/2 \quad \text{for } \forall y_2 \in Y_2^{\alpha, n}.$$

Let $f_{\alpha,n}$ be a real valued continuous function on Y with $||f_{\alpha,n}||_{\infty} \le 1$ and

$$f_{\alpha,n} = 1$$
 on $Y_1^{\alpha,n}$,
 $f_{\alpha,n} = -1$ on $Y_2^{\alpha,n}$.

Let Φ be a homeomorphism from a discrete space Λ onto a discrete space $\Lambda \times N$, where N is the discrete space of all positive integers. Let \tilde{f} be a E-valued function in \tilde{E}^{Λ} such that

$$\tilde{f}(\gamma) = f_{\Phi(\gamma)}$$

for every γ in Λ , so $\tilde{f}|F_x^{\Lambda} \in C(F_x^{\Lambda})$. Thus by Lemma 7 there are a finite number of functions $\tilde{f}_1, \tilde{f}_2, \ldots, \tilde{f}_m$ and $\tilde{g}_1, \tilde{g}_2, \ldots, \tilde{g}_m$ in \tilde{E}^{Λ} with $\tilde{N}_E^{\Lambda}(\tilde{f}_i) \leq 1$ and $\tilde{N}_E^{\Lambda}(\tilde{g}_i) \leq 1$ for $i = 1, 2, \ldots, m$ such that

$$\left|\sum_{i=1}^{m}(|\tilde{f}_i|-|\tilde{g}_i|)-\tilde{f}\right|<1/8$$

on F_x^{Λ} . Let U be an open neighborhood of F_x^{Λ} such that

$$\left|\sum_{i=1}^{m}(|\tilde{f}_i|-|\tilde{g}_i|)-\tilde{f}\right|<1/4$$

on U. By the definition of F_x^{Λ} there is a compact neighborhood G_{β} in $\{G_{\alpha}\}$ such that

$$U\supset [G_{\beta}\times\Lambda].$$

Thus we see that

$$\left|\sum_{i=1}^{m}(|\tilde{f}_{i}(\gamma)|-|\tilde{g}_{i}(\gamma)|)-\tilde{f}(\gamma)\right|<1/4$$

on G_{β} . We have that

$$\sum_{i=1}^{m} (|\tilde{f}_{i}(\Phi^{-1}(\beta, m))| - |\tilde{g}_{i}(\Phi^{-1}(\beta, m))|) > 3/4 \text{ on } Y^{\beta, m},$$

$$\sum_{i=1}^{m} (|\tilde{f}_{i}(\Phi^{-1}(\beta, m))| - |\tilde{g}_{i}(\Phi^{-1}(\beta, m))|) < -3/4 \text{ on } Y^{\beta, m},$$

which is a contradiction, proving (1).

To prove (2) we need the following. One can prove it by the standard argument on Banach spaces.

LEMMA 8. Let T_1 and T_2 be Banach spaces with the norms $N_1(\cdot)$ and $N_2(\cdot)$ respectively. Let ϕ be a bounded linear transformation on T_1 into T_2 . Suppose that there exist an ε with $0 < \varepsilon < 1$ and a positive constant M_0 such that for every u in the unit ball of T_2 there is v in T_1 such that $N_1(v) \leq M_0$ and $N_2(u - \phi(v)) \leq \varepsilon$. Then ϕ is onto.

Proof of (2) in Theorem 1. Clearly existence of an interpolating compact neighborhood of x implies $\tilde{E}^{\Lambda}|F_x^{\Lambda}=C(F_x^{\Lambda})$ (resp. $C_R(F_x^{\Lambda})$), so we need only prove the reverse implication. Assume $\tilde{E}^{\Lambda}|F_x^{\Lambda}$ is uniformly dense in $C(F_x^{\Lambda})$ (resp. $C_R(F_x^{\Lambda})$). Without loss of generality we may suppose that Y is compact. \tilde{E}^{Λ} separates the points of F_x^{Λ} since $\tilde{E}^{\Lambda}|F_x^{\Lambda}$ is uniformly dense in $C(F_x^{\Lambda})$, so E is ultraseparating near x by (1). Thus without loss of generality we may suppose that E separates the points of E. Let E be a family of compact neighborhoods of E such that E is an open base for E. Without loss of generality we may assume that the cardinalities of E and E coincide. First we show that there are a compact neighborhood E and a natural number E such that for every E in the unit ball of E (E and a natural number E such that for every E in the unit ball of E (E is an E with E with E in the unit ball of E (E in the unit ball of E in t

$$||f|G_{\beta}-h|G_{\beta}||_{\infty}<1/2.$$

Suppose that it is not true. Then for every compact neighborhood G_{α} in $\{G_{\alpha}\}$ and natural number n, there is an $f_{\alpha,n}$ in the unit ball of C(Y) which satisfies the condition that $\|f_{\alpha,n}|G_{\alpha} - h|G_{\alpha}\|_{\infty} < 1/2$ for $h \in E$

implies $N_E(h) > n$. Let Φ be a homeomorphism from Λ onto $\Lambda \times N$. Let \tilde{f} be a C(Y)-valued function in $C(\tilde{Y}^{\Lambda}) = (C(Y))^{-\Lambda}$ such that

$$\tilde{f}(\gamma) = f_{\Phi(\gamma)}$$

for every γ in Λ . Since $\tilde{E}^{\Lambda}|F_{\chi}^{\Lambda}$ is uniformly dense in $C(F_{\chi}^{\Lambda})$, we see that

$$\|\tilde{f}|F_x^{\Lambda} - \tilde{g}|F_x^{\Lambda}\|_{\infty} < 1/4$$

for some \tilde{g} in \tilde{E}^{Λ} . Thus we see that

$$U = \{ \tilde{x} \in \tilde{Y}^{\Lambda} \colon |\tilde{f}(\tilde{x}) - \tilde{g}(\tilde{x})| < 1/3 \}$$

is an open neighborhood of F_x^{Λ} . So there is a G_{β} in $\{G_{\alpha}\}$ such that $U \supset [G_{\beta} \times \Lambda]$. Thus we have

$$\|\tilde{f}(\Phi^{-1}(\beta, n))|G_{\beta} - \tilde{g}(\Phi^{-1}(\beta, n))|G_{\beta}\|_{\infty} < 1/2,$$

so $N_E(\tilde{g}(\Phi^{-1}(\beta, n))) > n$, which is a contradiction since $\tilde{g} \in \tilde{E}^{\Lambda}$. Let T be the linear transformation of $E|G_{\beta}$ into $C(G_{\beta})$ (resp. $C_R(G_{\beta})$) defined by

$$Tf = f$$

for f in $E|G_{\beta}$. Then T is bounded since the inequality

$$||f||_{\infty} \le ||f||_{E|G_{\beta}}$$

holds for every f in $E|G_{\beta}$. By the above argument the hypotheses of Lemma 8 hold with $\varepsilon = 1/2$ and $M_0 = n_1$. Thus we see that

$$E|G_{\beta} = C(G_{\beta})$$
 (resp. $C_R(G_{\beta})$).

PROPOSITION 2. Let E be a (resp. real) Banach space included in $C_0(Y)$ (resp. $C_{0,R}(Y)$) for a locally compact Hausdorff space Y and x be a point in Y. Let Λ be a discrete space. Suppose that E is ultraseparating near x. Then we have that

$$[\{x\} \times \Lambda] = Q^{\Lambda}(E_x).$$

Proof. Since E is ultraseparating near x, \tilde{E}^{Λ} separates the points of $\{x\} \times \Lambda$, so there is a g in E such that g(x) = 1. Suppose that \tilde{f} is a E-valued function in \tilde{E}^{Λ} . We see that

$$\tilde{f} - \langle (\tilde{f}(\alpha))(x)g \rangle$$

is in \tilde{E}_{x}^{Λ} , where $\langle (\tilde{f}(\alpha))(x)g \rangle$ is an *E*-valued function such that $\langle (\tilde{f}(\alpha))(x)g \rangle (\gamma) = (\tilde{f}(\gamma))(x)g$ for every γ in Λ . That does not prove Proposition 2 but the rest of the proof is the same as the proof of Lemma 4 in [7].

3. Results of range transformations. In this section we prove the main results.

THEOREM 2. Let A be a uniformly closed subalgebra of $C_0(Y)$ for a locally compact Hausdorff space Y and I be an ideal of A. Let D be a plane domain containing the origin. Suppose that $Op(I_D, \operatorname{Re} A)$ contains a function which is not harmonic on any neighborhood of the origin. Then I|K is uniformly closed and self-adjoint for every compact subset K of Y – Ker I and cl I is self-adjoint.

Proof. Let h be a function in $Op(I_D, Re A)$ which is not harmonic on any neighborhood of the origin. If Y is not compact, then \overline{Y} denotes the one point compactification of Y and ∞ denotes the point in $\overline{Y} - Y$. If Y is compact, then we add ∞ as an isolated point and \overline{Y} denotes $Y \cup \{\infty\}$. We may suppose that A is a closed subalgebra of $C(\overline{Y})$ such that $f(\infty) = 0$ for every f in A. Let \overline{Y}_1 be the quotient space obtained by identifying the points in \overline{Y} which cannot be separated by A. Let \overline{Y}_0 be the quotient space obtained by identifying the points in \overline{Y} which cannot be separated by I. Let p be the point in \overline{Y}_0 which corresponds to the equivalence class in \overline{Y} containing ∞ . We may suppose that \overline{Y}_0 is the quotient space obtained by identifying points in \overline{Y}_1 which cannot be separated by I and that p corresponds to Ker I. We may also suppose that each point in $\overline{Y}_0 - \{p\}$ corresponds to a point in $\overline{Y}_1 - \text{Ker } I$, that is, we may suppose that $\overline{Y}_0 - \{p\} = \overline{Y}_1 - \text{Ker } I$. Let $I' = \operatorname{cl} I + C$ be the sum of the uniform closure of I and the space of constant functions C. Then I' is a function algebra on \overline{Y}_0 . Let Ch(I')be the Choquet boundary for I'. We consider two cases: (1) There is no accumulation point of Ch(I') or p is the only accumulation point of Ch(I') in \overline{Y}_0 . (2) There is an accumulation point of Ch(I') which is not p.

Case (1). Let S denote the closure of Ch(I') in \overline{Y}_0 , that is, S denotes the Shilov boundary for I'. By the condition every point in $S - \{p\}$ is isolated. Thus I'|S = C(S), so we have $I' = C(\overline{Y}_0)$ since S is the Shilov boundary for I'. It follows that $cl\ I$ is self-adjoint. Since A is uniformly closed and I is an ideal of A we have

$$I \cdot C(\overline{Y}_0) \subset I$$
.

Thus we conclude that I|K is uniformly closed and self-adjoint for every compact subset K of Y - Ker I.

Case (2). First we show that h is continuous near the origin. Suppose that h is not continuous on any neighborhood of the origin. There exists a positive number δ such that $\{z: |z| < \delta\} \subset D$. Take q to be

an accumulation point of Ch(I') other than p. There is a function k in I such that

$$k(q) = d > 0, \qquad ||k||_{\infty} \le 1$$

for a positive number d since $p \neq q$. There is a point of discontinuity z_0 of h with $|z_0| < \delta/2$ such that there is a function g in I such that

$$g(q) = z_0, \qquad ||g||_{\infty} < \delta/2$$

since $p \neq q$ and we suppose that h is not continuous near the origin. Since q is an accumulation point of Ch(I') we can choose a sequence $\{y_n\}$ of Ch(I') which satisfies the condition that p is not contained in the closure of $\{y_n\}$ and

$$|g(y_n) - g(q)| < 1/n$$

and

$$|k(y_n) - k(q)| < 1/n$$

for every positive integer n and the y_n have disjoint neighborhoods V_n for every positive integer n. Let q_0 be an accumulation point of $\{y_n\}$. So we have $q_0 \notin \{y_n\}$ since $V_n \cap V_k = \emptyset$ if $n \neq k$. Then we have $g(q) = g(q_0)$ and $k(q) = k(q_0)$ so

$$|g(y_n) - g(q_0)| < 1/n,$$
 $|k(y_n) - k(q_0)| < 1/n$

for every positive integer n. Now we need Lemma 9.

LEMMA 9. There are a positive number M and a subsequence $\{y_{m(n)}\}$ of $\{y_n\}$ such that for every convergent sequence $\{\alpha_n\}$ of complex numbers with limit 0 there is a function f in cl I such that

$$f(y_{m(n)}) = \alpha_n, \qquad ||f||_{\infty} \le M \cdot \sup_n |\alpha_n|.$$

Proof. Since $\{y_n\}$ is a sequence in Ch(I') there is a function f_n in I for every positive integer n with the property

$$f_n(y_n) = 1$$
, $f_n(q_0) = 0$, $||f_n||_{\infty} \le 2$
 $|f_n(y)| < 1/2^{n+1}$ for $\forall y \in V_n^c$

since each y_n is a point in the Choquet boundary, where V_n^c is the complement of V_n in \overline{Y}_0 . Let $\{g_n\}$ be the countable set of all polynomials of $\{f_n\}$ with rational coefficients and vanishing constant term. For integers m and j put

$$K_{m,j} = \{x \in \overline{Y}_0 \colon |g_j(q_0) - g_j(x)| < 1/m\},\$$

$$K_m = \bigcap_{j=1}^m K_{m,j}.$$

Choose a subsequence $\{y_{m(n)}\}\$ of $\{y_n\}$ such that

$$y_{m(k)} \in K_k \cap \{y_n\}$$

for every positive integer k. Let q'_0 be an accumulation point of $\{y_{m(n)}\}$. Let I_1 be the uniform closure of $\{g_n\}$. Then I_1 is a closed subalgebra of cl I and

$$\lim_{n\to\infty}\mathfrak{g}(y_{m(n)})=0=\mathfrak{g}(q_0')$$

for every \mathfrak{g} in I_1 . Let J be a bounded linear transformation of I_1 into c_0 , where c_0 denotes the Banach space of all convergent sequences of complex numbers with limit 0, such that

$$J(\mathfrak{g}) = \{\mathfrak{g}(y_{m(n)})\}_{n=1}^{\infty}.$$

We show that J is onto. Let $\{\alpha_n\} \in c_0$ with $\sup_n |\alpha_n| \le 1$. Then

$$f = \sum_{n=1}^{\infty} \alpha_n f_{m(n)}$$

is in I_1 and $||f||_{\infty} \le 4$ and

$$|f(y_{m(n)}) - \alpha_n| \le 1/2.$$

Thus we see that J is onto by Lemma 8. It follows by the open mapping theorem that Lemma 9 holds.

Sequel of proof of Theorem 2. Since z_0 is a point of discontinuity for h, there is an $\varepsilon_0 > 0$ and a sequence $\{z_n\}$ in $\{z : |z| < \delta\}$ such that $z_n \to z_0$ and

$$|h(z_0) - h(z_n)| > \varepsilon_0$$

for every positive integer n. Without loss of generality we may assume

$$\sup_{n}|z_n-z_0|< d\delta/(18M).$$

Let $\{q_n\}$ be a subsequence of $\{y_{m(n)}\}$ such that

$$\{q_n\} = \{y_{m(n)}\} \cap \{x \in \overline{Y}_0 \colon |g(x) - z_0| < d\delta/(18M), \\ |k(x) - d| < d/3\}.$$

Let q_0'' be an accumulation point of $\{q_n\}$. Then we have $g(q_0'') = g(q_0') = g(q_0)$. Let $\alpha_n = (z_n - g(q_n))/k(q_n)$. Then $|\alpha_n| \le \delta/(6M)$ and $\alpha_n \to 0$ as $n \to \infty$. So by Lemma 9 there is an f in cl I with

$$f(q_n) = \alpha_n$$
, $||f||_{\infty} \le M\delta/(6M) = \delta/6$.

We have $fk + g \in I$ since $\operatorname{cl} I \subset A$ and I is an ideal of A. We also have

$$||fk+g||_{\infty} \le 2\delta/3$$
, $(fk+g)(q_n) = z_n$, $(fk+g)(q_0'') = z_0$

since q_0'' is an accumulation point of $\{q_n\}$. While

$$h \circ (fk + g) \in \operatorname{Re} A$$

since range of fk + g is contained in D, we also have

$$h \circ (fk + g)(q_n) = h(z_n),$$

 $h \circ (fk + g)(q''_0) = h(z_0),$

which is a contradiction since

$$|h(z_n) - h(z_0)| > \varepsilon_0$$

for every positive integer n, while q_0'' is an accumulation point of $\{q_n\}$. Thus we conclude that h is continuous near the origin.

Now we need Lemma 10.

LEMMA 10. Let B be a uniformly closed subalgebra of $C_0(Y)$ for a locally compact Hausdorff space Y which separates the points of Y. Let D be a plane domain containing the origin. Suppose that x is a point in Y such that $B_x \neq B$. Suppose also that there is a function f in $C_0(Y)$ with $f(x) \neq 0$ which satisfies that

$$f \cdot B \subset B$$

where $f \cdot B = \{fg : g \in B\}$. If there is a function h in $Op((f \cdot B)_D, Re B)$ which is continuous near the origin but is not harmonic on any neighborhood of the origin, then there is a compact neighborhood G of x with

$$B|G = C(G)$$
.

Before we prove Lemma 10 we show the rest of the proof of Theorem 2 by using Lemma 10. By the definition of \overline{Y}_1 we may suppose that A is a uniformly closed subalgebra of $C(\overline{Y}_1)$ which separates the points of \overline{Y}_1 . Let x be a point in \overline{Y}_1 – Ker I. Then we have that $A \neq A_x$ and that there is a function f in I such that $f(x) \neq 0$. Since I is an ideal of A, $f \cdot A$ is contained in I, so we have

$$\operatorname{Op}(I_D, \operatorname{Re} A) \subset \operatorname{Op}((f \cdot A)_D, \operatorname{Re} A).$$

Thus h is a function in $Op((f \cdot A)_D, Re A)$ which is continuous near the origin but is not harmonic on any neighborhood of the origin. It

follows by Lemma 10 that there is a compact neighborhood G in \overline{Y}_1 of x such that

$$A|G=C(G)$$
.

Without loss of generality we may suppose that $G \subset \overline{Y}_1 - \operatorname{Ker} I$, so we have

$$I|G = C(G)$$

since I is an ideal of A. The same conclusion holds for every point in \overline{Y}_1 – Ker I. Since we may suppose that \overline{Y}_1 – Ker $I = \overline{Y}_0 - \{p\}$ we see that

$$I' = C(\overline{Y}_0)$$

by Corollary 2.13 in [3]. We conclude that cl I is selfadjoint. Since A is uniformly closed and I is an ideal of A. We see that $I \cdot C(\overline{Y}_0) \subset I$. Thus we conclude that I|K = C(K) for every compact subset K of $\overline{Y}_0 - \{p\}$, in short, I|K is uniformly closed and self-adjoint for every compact subset K of $Y - \operatorname{Ker} I$.

Proof of Lemma 10. Without loss of generality we may assume that h is continuous on $\{z: |z| \le 1\}$ since $f \cdot B$ is closed under constant multiplication. We may also suppose that $||f||_{\infty} = 1$. We denote $f \cdot B_x = \{fg: g \in B_x\}$ by \mathfrak{B} . We see that \mathfrak{B} is a Banach space with respect to the norm defined by

$$||u||_{\mathfrak{B}} = \inf\{||g||_{\infty} : g \in B_x, u = fg\}$$

for u in \mathfrak{B} . It is trivial that $||u||_{\infty} \leq ||u||_{\mathfrak{B}}$ for every u in \mathfrak{B} . Now we need Lemma 11, which can be proven in the same way as the proof of Lemma 1.2 in [7].

LEMMA 11. Let $\mathfrak{B}_1 = \{u \in \mathfrak{B}: ||u||_{\mathfrak{B}} \leq 1/2\}$. Then there are a positive integer n_0 and a real number ε with $0 < \varepsilon < 1/2$ and a function ψ in \mathfrak{B}_1 such that

$$\{g\in\mathfrak{B}\colon \|g-\psi\|_{\mathfrak{B}}<\varepsilon\}\subset\mathfrak{B}_1$$

and there is a dense subset U in $\{g \in \mathfrak{B} : \|g - \psi\|_{\mathfrak{B}} < \varepsilon\}$ with ψ in U which satisfies the following:

For every g in U we have

$$h \circ g \in \operatorname{Re} B$$
 and $||h \circ g||_{\operatorname{Re} B} < n_0$.

Sequel of the proof of Lemma 10. First we show that B is ultraseparating near x. Let $\sigma_n(\cdot)$ be a smoothing operator of class C^{∞} supported

in $\{z: |z| < \eta\}$ for a small $\eta > 0$. Put

$$h_{\eta}(z_1, z_2) = \iint h(z_1 - z_2 w) \sigma_{\eta}(w) dx dy \qquad (w = x + iy)$$

and

$$L_{\eta}(z_1, z_2, \alpha) = |\alpha|^2 \Delta_1(h_{\eta}(z_1, z_2)|z_2|^4),$$

where Δ_1 is the Laplacian with respect to $x_1 = \text{Re } z_1$ and $y_1 = \text{Im } z_1$. By Lemma 5 in [7] we see that

$$L_{\eta}(fg_2, fg_3, g_1) \in \operatorname{cl} \operatorname{Re} B$$

for every g_1 , g_2 and g_3 in B with $||g_i||_{\infty} < 1/2$ for i = 2 and 3 and a small $\eta > 0$. Thus we see that

$$C_{0,R}(Y)\Delta_1(h_{\eta}(fg_2, fg_3)|fg_3|^4) \in \text{cl Re } B$$

by the Stone-Weierstrass theorem. Since h is not harmonic near the origin we see that

$$|L_n(z, w, 1)| \ge (1/2)|L_n(0, z_2, 1)| \ne 0$$

on $\{(z,w)\in C^2\colon |z|\leq \varepsilon',\, |w-z_2|\leq \varepsilon'\}$ for a small $\eta>0$ and a smoothing operator σ_η and an $\varepsilon'>0$ and a z_2 with sufficiently small non-zero absolute value. Choose g_2 and g_3 in B with $\|g_i\|_\infty<1/2$ for i=2 and 3 such that

$$g_2(x)=0, \qquad fg_3(x)=z_2.$$

Let

$$G' = \{ y \in Y : |f(y)| \ge |f(x)|/2, |fg_2(y)| \le \varepsilon', |fg_3(y) - fg_3(x)| \le \varepsilon' \}.$$

So G' is a compact neighborhood of x with

$$L_{\eta}(fg_2(y), fg_3(y), 1) \neq 0$$

for every y in G'. We show that B|G' is ultraseparating. Let Y_1 and Y_2 be compact subsets of G'. By the definition of G' there is a function u in cl Re B such that

$$||u||_{\infty} \le 2,$$

 $u(y) > 1$ for $\forall y \in Y_1,$
 $u(y) < -1$ for $\forall y \in Y_2$

since $C_{0,R}(Y) \cdot L_{\eta}(fg_2, fg_3, 1) \subset \text{cl Re } B$ and since $L_{\eta}(fg_2(y), fg_3(y), 1) \neq 0$ for $\forall y \in G'$. We see that there are functions u' and v in Re B with

$$||u'||_{\infty} \leq 3$$
,

$$u'(y) > 1/2$$
 for $\forall y \in Y_1$,
 $u'(y) < -1/2$ for $\forall y \in Y_2$,

and $u' + iv \in B$. Then we have $\exp(u' + iv) \in B$ since B is uniformly closed and we have

$$\begin{aligned} \|\exp(u'+iv)\|_{\infty} &\leq \exp 3, \\ |\exp(u'+iv)(y)| &> \exp(1/2) \quad \text{for } \forall y \in Y_1, \\ |\exp(u'+iv)(y)| &< \exp(-1/2) \quad \text{for } \forall y \in Y_2. \end{aligned}$$

Let a and b be different points in \tilde{G}' and U_a and U_b be disjoint compact neighborhoods of a and b respectively. Put $U_a^k = U_a \cap (G' \times \{k\})$ and $U_b^k = U_b \cap (G' \times \{k\})$ for every positive integer k. Then we see that $U_a^k \cap U_b^k = \emptyset$ for every k and $a \in \bigcup_{n=1}^\infty U_a^n$, $b \in \bigcup_{n=1}^\infty U_b^n$. Let t be the map

$$t: \tilde{G}' \to G'$$

which satisfies $\langle g \rangle(p) = g(t(p))$ for every f in C(G') and for every p in \tilde{G}' , since $t(U_a^k)$ and $t(U_b^k)$ are disjoint compact subsets of Y for every k. For every positive integer k choose a function f_k in B such that

$$||f_k||_{\infty} \le \exp 3,$$

$$|f_k(y)| > \exp(1/2) \quad \text{for } \forall y \in t(U_a^k),$$

$$|f_k(y)| < \exp(-1/2) \quad \text{for } \forall y \in t(U_b^k).$$

It follows that \tilde{f} separates a and b, where \tilde{f} is a function in $(B|G')^{\sim}$ such that $\tilde{f}(n) = f_n|G'$ for every n. Thus we conclude that B|G' is ultraseparating on G'. Let $f \cdot B|G' = \{fg|G' \colon g \in B\}$. Then $f \cdot B|G'$ is a Banach space included in C(G') with the norm defined by

$$||u||_{f \cdot B|G'} = \inf\{||g||_{\infty} : g \in B, fg|G' = u\}$$

for $u \in f \cdot B|G'$. Since f never equals zero on G', $(f \cdot B|G')^{\sim}|F_y = (B|G')^{\sim}|F_y$ for every y in G' by Lemma 4, so $f \cdot B|G'$ is ultraseparating by (3) of Lemma 6.

Let Λ be a discrete space whose cardinality coincides with that of an open base for x. We will show that

$$\operatorname{cl}(\tilde{B}^{\Lambda}|F_{X}^{\Lambda}) = C(F_{X}^{\Lambda}).$$

Let ${}_0F_{\scriptscriptstyle X}^\Lambda$ be the quotient space of $F_{\scriptscriptstyle X}^\Lambda$ by $\tilde{B}_{\scriptscriptstyle X}^\Lambda$, that is, the space defined by identifying the points of $F_{\scriptscriptstyle X}^\Lambda$ which cannot be separated by $\tilde{B}_{\scriptscriptstyle X}^\Lambda$. Since B is ultraseparating near x we see that $Q^\Lambda(B_x)=[\{x\}\times\Lambda]$ by Proposition 2 and $Q^\Lambda(B_x)$ is the only subset of $F_{\scriptscriptstyle X}^\Lambda$ with more than

one point which corresponds to a point in ${}_0F_x^{\Lambda}$. Let \tilde{q} be the point in ${}_0F_x^{\Lambda}$ which corresponds to $Q^{\Lambda}(B_x)$. Let B' be the function algebra on ${}_0F_x^{\Lambda}$ generated by $\tilde{B}_x^{\Lambda}|{}_0F_x^{\Lambda}$ and the constant functions. Let \tilde{x} be a point in ${}_0F_x^{\Lambda} - \{\tilde{q}\}$. There is an \tilde{f} in \tilde{B}_x^{Λ} with

$$\langle f \rangle \tilde{f}(\tilde{x}) = s \neq 0,$$

where s is a complex number with small absolute value. Without loss of generality we may suppose that

$$\Delta_1(h_\eta(0,s))\neq 0,$$

where η is a small positive number such that $\eta < \varepsilon/(2\|\tilde{f}\|_{\infty})$ (ε is the constant in Lemma 11) and

$$h_{\eta}(z_1, z_2) = \iint h(z_1 - z_2 w) \sigma_{\eta}(w) dx dy \qquad (w = x + iy)$$

for some smoothing operator $\sigma_{\eta}(\cdot)$ of class C^{∞} supported in $\{z : |z| < \eta\}$. We can choose an $\varepsilon' > 0$ such that

$$|\Delta_1(h_\eta(z, w))| \ge (1/2)|\Delta_1(h_\eta(0, s))|$$

on

$$\{(z, w) \in C^2 \colon |z| \le \varepsilon', |w - s| \le \varepsilon'\}.$$

Put

$$Y' = \{ \tilde{y} \in {}_{0}F_{x}^{\Lambda} : |\langle f \rangle \tilde{f}(\tilde{y}) - \langle f \rangle \tilde{f}(\tilde{x})| \le \min\{\varepsilon'/2, |s|/2\} \}.$$

Then Y' is a compact neighborhood of \tilde{x} in ${}_0F_x^\Lambda$ with $\tilde{q} \notin Y'$, so we may suppose that Y' is a compact subset of F_x^Λ . Let \tilde{g} be a function in $(\tilde{B}^\Lambda)^\sim$. For a complex number β with sufficiently small absolute value and a complex number w with $|w| \leq \eta$ we have that

$$(\tilde{\tilde{g}}(n))(\alpha)(f\tilde{f}(\alpha))^2\beta - f\tilde{f}(\alpha)w$$

is in $\mathfrak B$ for every positive integer n and every α in Λ and

$$\|(\tilde{\tilde{g}}(n))(\alpha)(f\tilde{f}(\alpha))^2\beta - f\tilde{f}(\alpha)w\|_{\mathfrak{B}} < \varepsilon.$$

So for every small positive ε'' , positive integer n and α in Λ there is a function $g_{\varepsilon'',\alpha,n}$ in U which satisfies the condition that

$$\|\psi + (\tilde{g}(n))(\alpha)(f\tilde{f}(\alpha))^2\beta - f\tilde{f}(\alpha)w - g_{\varepsilon'',\alpha,n}\|_{\mathfrak{B}} < \varepsilon'',$$

where ψ is the function in Lemma 11. We see that

$$h \circ g_{\varepsilon'',\alpha,n} \in \operatorname{Re} B$$

and

$$||h \circ g_{\varepsilon'',\alpha,n}||_{\operatorname{Re}B} < n_0.$$

Thus we see that

$$h \circ \tilde{\tilde{g}}_{\varepsilon''} \in \operatorname{Re}(\tilde{B}^{\Lambda})^{\sim}$$
,

where $\tilde{g}_{\varepsilon''}$ is a function in $(\tilde{B}^{\Lambda})^{\sim}$ such that $(\tilde{g}_{\varepsilon''}(n))(\alpha) = g_{\varepsilon'',\alpha,n}$ for every n and α . Since the inequality $||u||_{\infty} \leq ||u||_{B}$ holds for every u in B and since h is continuous we see that

$$h(\langle\langle\psi\rangle\rangle + \tilde{\tilde{g}}\langle\langle f\rangle\tilde{f}\rangle^2\beta - \langle\langle f\rangle\tilde{f}\rangle w)$$

is in $\operatorname{cl}(\operatorname{Re}(\tilde{B}^{\Lambda})^{\sim})$, where $\langle \psi \rangle$ (resp. $\langle f \rangle$) is the constant function in \tilde{B}^{Λ} with constant value ψ (resp. f) and $\langle \langle \psi \rangle \rangle$ (resp. $\langle \langle f \rangle \tilde{f} \rangle$) is the constant function in $(\tilde{B}^{\Lambda})^{\sim}$ with constant value $\langle \psi \rangle$ (resp. $\langle f \rangle \tilde{f}$). Thus we have that

$$h_{\eta}(\langle\langle\psi\rangle\rangle + \tilde{\tilde{g}}\langle\langle f\rangle\tilde{f}\rangle^{2}\beta,\langle\langle f\rangle\tilde{f}\rangle)$$

is in $cl(Re(\tilde{B}^{\Lambda})^{\sim})$ for a complex number β with sufficiently small absolute value. It follows by Lemma 5 in [7] that

$$L_{\eta}(\langle\langle\psi\rangle\rangle,\langle\langle f\rangle\tilde{f}\rangle,\tilde{\tilde{g}}) = |\tilde{\tilde{g}}|^2 L_{\eta}(\langle\langle\psi\rangle\rangle,\langle\langle f\rangle\tilde{f}\rangle,1)$$

is in $\operatorname{cl}(\operatorname{Re}(\tilde{B}^{\Lambda})^{\sim})$. Since $\langle \psi \rangle = 0$ and $\langle f \rangle = f(x)$ on F_{χ}^{Λ} we see that

$$|\tilde{g}|^2 L_n(0, f(x)\langle \tilde{f} \rangle, 1)|\tilde{Y}'$$

is in $\operatorname{cl}(\operatorname{Re}(\tilde{B}^{\Lambda})^{\sim})|\tilde{Y}'$. Since \tilde{f} is in \tilde{B}_{Y}^{Λ} we see that

$$L_n(0, f(x)\langle \tilde{f} \rangle, 1) = 0$$

on $\{x\} \times \Lambda \times N$ by Lemma 5 in [7]. Thus we conclude that

$$|\tilde{\tilde{g}}|^2 L_{\eta}(0, f(x)\langle \tilde{f} \rangle, 1)|\tilde{Y}'$$

is in $\operatorname{cl}(\operatorname{Re}(\tilde{B}_{\chi}^{\Lambda})^{\sim})|\tilde{Y}'$. Since B is ultraseparating near x, $(\tilde{B}^{\Lambda})^{\sim}$ separates the points in $[F_{\chi}^{\Lambda} \times N]$, in particular, in \tilde{Y}' by Corollary 1. By the definition of Y' we see that $L_{\eta}(0, f(x)\langle \tilde{f} \rangle, 1)$ never equals zero on \tilde{Y}' . It follows by the Stone-Weierstrass theorem that

$$C_R(\tilde{Y}') \subset \operatorname{cl}(\operatorname{Re}(\tilde{B}_{\chi}^{\Lambda}|Y')^{\sim})$$

since $(\operatorname{cl}(\operatorname{Re}(\tilde{B}_{\chi}^{\Lambda})^{\sim}))|\tilde{Y}'\subset\operatorname{cl}(\operatorname{Re}(\tilde{B}_{\chi}^{\Lambda}|Y')^{\sim})$, so by Bernard's lemma we have

$$C_R(Y') = \operatorname{Re}(\tilde{B}_{\chi}^{\Lambda}|Y')$$

so

$$C(Y') = \tilde{B}_{x}^{\Lambda}|Y'$$

by a theorem of Hoffman-Wermer-Bernard [2, 8]. We conclude that

$$B' = C({}_0F_x^{\Lambda})$$

by Corollary 2.13 in [3]. It follows that

$$\operatorname{cl}(\tilde{B}^{\Lambda}|F_{x}^{\Lambda})=C(F_{x}^{\Lambda}).$$

We conclude by (2) of Theorem 1 that there is a compact neighborhood G of x such that $G' \supset G$ and

$$B|G = C(G)$$
.

REMARK 1. Let A be a function algebra on a compact Hausdorff space X which contains an infinite number of points and B be a Banach function algebra on X. Then every function in $Op(A_D, \operatorname{Re} B)$ for a plane domain D is continuous on D (cf. Remark 2 in [7]). This is not the case for a point separating closed subalgebra of C(X) which does not contain the constant functions. Let $X = \{0, 1, 1/2, 1/3, \ldots\}$. Let $A = \{f \in C(X): f(0) = 0\}$ and $D = \{z: |z| < 1\}$. Take any sequence $\{\lambda_n\}$ in D with $\lambda_n \neq 0$ but $\lambda_n \to 0$ and let

$$h(z) = \begin{cases} z & \text{if } z \in \{\lambda_n\}, \\ 0 & \text{if } z \notin \{\lambda_n\}. \end{cases}$$

Then we see that discontinuous function h is in $Op(A_D, Re A)$. (This example was corrected by the referee.)

REMARK 2. The condition that I is an ideal is necessary in Theorem 2, that is, if I is merely a subalgebra of A or even if I is a closed subalgebra of A, there may be a continuous function h in $Op(I_D, Re A)$ which is not harmonic near the origin (cf. Remark 1 in [7]).

COROLLARY 2. Let A be a function algebra on a compact Hausdorff space X and I be an ideal of A. Let D be a plane domain. Suppose that cl I is not self-adjoint. Then every function in $Op((I + C)_D, Re A)$ is harmonic on D.

COROLLARY 3 (cf. [13]). Let A be a uniformly closed subalgebra of $C_0(Y)$. Suppose that I is an ideal of A or the sum of an ideal of A and the space of the constant functions. If

$$\operatorname{Re} I \cdot \operatorname{Re} I \subset \operatorname{Re} A$$
.

then cl I is self-adjoint.

Proof. If Re $I \cdot \text{Re } I \subset \text{Re } A$, then we see that

$$z \mapsto (\text{Re } z)^2$$

is in $Op(I_C, Re A)$, but is not harmonic.

Acknowledgment. The author wishes to express his thanks to the referee for a number of suggestions.

REFERENCES

- [1] J. M. Bachar, Jr., Some results on range transformations between function spaces, Proc. Conf. on Banach Algebras and Several Complex Variables, Contemporary Math., 32 (1984), 35-62.
- [2] A. Bernard, Espace des parties réeles des éléments d'une algèbre de Banach de fonctions, J. Funct. Anal., 10 (1972), 387-409.
- [3] R. B. Burckel, Characterizations of C(X) Among Its Subalgebras, Marcel Dekker 1972.
- [4] I. Glicksberg, On two consequences of a theorem of Hoffman and Wermer, Math. Scand., 23 (1968), 188-192.
- [5] O. Hatori, Functions which operate on the real part of a function algebra, Proc. Amer. Math. Soc., 83 (1981), 565-568.
- [6] _____, A remark on a theorem of B. T. Batikyan and E. A. Gorin, Tokyo J. Math., 7 (1984), 157-160.
- [7] _____, Range transformations on a Banach function algebra, Trans. Amer. Math. Soc., 297 (1986), 629-643.
- [8] K. Hoffman and J. Wermer, A characterization of C(X), Pacific J. Math., 12 (1962), 941-944.
- [9] K. de Leeuw and Y. Katznelson, Functions that operate on non-self-adjoint algebras, J. d'Analyse Math., 11 (1963), 207-219.
- [10] S. Saeki, On Banach algebra of continuous functions, preprint 1972.
- [11] S. J. Sidney, Functions which operate on the real part of a uniform algebra, Pacific J. Math., 80 (1979), 265-272.
- [12] W. Spraglin, Partial interpolation and the operational calculus in Banach algebras, Ph.D. Thesis, UCLA, 1966.
- [13] J.-I. Tanaka, Real parts of Banach function algebras, J. Math. Soc. Japan, 29 (1977), 763-769.
- [14] J. Wada, On a theorem of I. Glicksberg, Proc. Japan Acad., 48 (1972), 227–230.
- [15] J. Wermer, The space of the real parts of a function algebra, Pacific J. Math., 13 (1963), 1423-1426.

Received October 25, 1987 and in revised form March 24, 1988.

Kitasato University 1-15-1 Kitasato, Sagamihara City Kanagawa Prefecture, 228 Japan