ELEMENTS OF FINITE ORDER IN $V\left(Z A_{4}\right)$

P. J. Allen and C. Hobby

Abstract

The conjugacy classes for all elements of finite order in the unit group $V\left(Z A_{4}\right)$ are determined. As an application, it is shown that all normal complements to A_{4} in $V\left(Z A_{4}\right)$ must be torsion free

Let $V(Z G)$ denote the group of units of augmentation 1 in the integral group ring $Z G$. There is considerable interest in determining whether the group G has a torsion free normal complement in $V(Z G)$. The authors showed in [2] that S_{3} has two types of normal complements in $V\left(Z S_{3}\right)$, one with torsion and one without. They have also shown (see [1]) that A_{4} has a torsion free normal complement in $V\left(Z A_{4}\right)$ and that S_{4} has a normal complement in $V\left(Z S_{4}\right)$ which includes torsion elements (see [3]). Two questions arise naturally:

1. Can A_{4} also have a normal complement in $V\left(Z A_{4}\right)$ which includes torsion?
2. Can S_{4} also have a torsion free normal complement in $V\left(Z S_{4}\right)$?

This paper gives a negative answer to Question 1 by completing the task of finding all of the conjugate classes of elements of finite order in $V\left(Z A_{4}\right)$ and then showing that a subgroup containing any such class must also contain an element of order 2 in A_{4}. Earlier work has shown that the torsion elements of $V\left(Z A_{4}\right)$ are of order 2 or 3 and that all elements of order 2 are conjugate [1]. Sekiguchi [4] showed that there are four conjugate classes of subgroups of $V\left(Z A_{4}\right)$ which are isomorphic to A_{4}. It follows from his work that there are at least eight conjugate classes of elements of order 3; these classes include all of the elements of order 3 which lie in subgroups isomorphic to A_{4}. Our Theorem 1 shows that there are exactly four additional conjugate classes of elements of order 3 which do not lie in any subgroup isomorphic to A_{4}. Theorem 2 gives the answer to Question 1.

The results of [1] characterize $V\left(Z A_{4}\right)$ as an explicit subgroup of $\operatorname{SL}(3, Z)$ and thus permit us to utilize information about $\operatorname{SL}(3, Z)$. The characterization relies on the following definition: If $X=\left[x_{i j}\right] \in$ $\mathrm{SL}(3, Z)$, then the pseudotraces t_{0}, t_{1}, and t_{2} are given by $t_{0}=x_{11}+$ $x_{22}+x_{33}, t_{1}=x_{12}+x_{23}+x_{31}$, and $t_{2}=x_{13}+x_{21}+x_{32}$. Then we can
think of A_{4} as generated by

$$
A=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \text { and } \quad B=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

and of $V\left(Z A_{4}\right)$ as $\{X \in \operatorname{SL}(3, Z) \mid X$ satisfies conditions (1) and (2) $\}$ where
condition (1): $X \equiv B^{i}(\bmod 2)$ for some i
and
condition (2): two of the pseudotraces t_{j} are 0 modulo 4.
We begin by finding the centralizer of B in the ring $M_{3}(Q)$ of all 3×3 rational matrices.

Lemma 1. Let $X \in M_{3}(Q)$. Then $X B=B X$ if and only if $X=$ $\sum r_{i} B^{i}$ with $r_{i} \in Q$. Moreover, if $X \in \operatorname{SL}(3, Z)$, then
(i) $X B \equiv B X(\bmod 2)$ if and only if $X \equiv B^{i}(\bmod 2)$ and
(ii) $X B=B X$ if and only if $X=B^{i}$.

Proof. If $X=\sum r_{i} B^{i}$, then it is clear that $X B=B X$. On the other hand, an inspection of the entries in the matrices $X B$ and $B X$ will show that $X B=B X$ implies that $X=\sum r_{i} B^{i}$ for some $r_{i} \in Q$. The remainder of the lemma follows from the fact that the group ring $R\langle B\rangle$ has only trivial units if R is the ring of integers modulo 2 or if $R=Z$.

Let I_{2} and I_{4} denote, respectively, the subgroups of $\operatorname{SL}(3, Z)$ consisting of all matrices which are the identity modulo 2 and 4 . It is clear that I_{4} is contained in $V\left(Z A_{4}\right)$ and that $\langle B\rangle I_{2}$ is the subgroup consisting of all matrices which satisfy condition (1).

Lemma 2. $V\left(Z A_{4}\right)$ is a normal subgroup of $\langle B\rangle I_{2}$. The factor group is the elementary group of order 4 with coset representatives $R_{0}=I$,

$$
R_{1}=\left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad R_{2}=\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and $R_{3}=R_{1} R_{2}$.
Proof. If $M \in I_{2}$ then one of the $M R_{i}$ must belong to $V\left(Z A_{4}\right)$ since multiplying M on the right by R_{1} or R_{2} has the effect, modulo 4, of adding 2 to t_{1} or t_{2}. Thus precisely one of the $M R_{i}$ will satisfy condition (2). Since $B \in V\left(Z A_{4}\right)$ it follows that the R_{i} are a full set of coset representatives of $V\left(Z A_{4}\right)$ in $\langle B\rangle I_{2}$. The square of each of
these representatives is in I_{4} and thus in $V\left(Z A_{4}\right)$. A direct calculation shows that $B^{R_{1}}$ and $B^{R_{2}}$ are in $V\left(Z A_{4}\right)$, thus the normality of $V\left(Z A_{4}\right)$ follows from the fact that I_{2} is abelian modulo the subgroup I_{4} of $V\left(Z A_{4}\right)$.

The next lemma is well known. In fact, Tahara [5] describes all of the conjugate classes of finite subgroups of $\operatorname{SL}(3, Z)$.

Lemma 3. SL($3, Z$) contains exactly two conjugate classes of elements of order 3. One of these classes contains B. The other one contains

$$
W=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & -1
\end{array}\right] .
$$

In $\operatorname{SL}(3, Z), B$ is conjugate to B^{2}, but this cannot happen in $V\left(Z A_{4}\right)$, or even in $\langle B\rangle I_{2}$, since conjugating B by an element in $\langle B\rangle I_{2}$ produces an element in $B I_{2}$. We shall restrict our attention to the conjugate classes in $V\left(Z A_{4}\right)$ of elements congruent to B modulo 2 ; the squares of the elements in each class will be a conjugate class of elements congruent to B^{2} modulo 2.

Lemmas 1 and 2 yield a complete description of all of the conjugate classes in $V\left(Z A_{4}\right)$ of elements which are conjugate in B in $\operatorname{SL}(3, Z)$ and are congruent to B modulo 2 . As we will see later, additional classes arise from conjugates of W.

Lemma 4. Conjugating B by the four coset representatives R_{i} of Lemma 2 produces elements of four conjugate classes in $V\left(Z_{4}\right)$. Any conjugate of B in $\mathrm{SL}(3, Z)$ which is congruent to B modulo 2 and belongs to $V\left(Z A_{4}\right)$ will lie in one of these classes.

Proof. Suppose that $B^{R_{t}}=B^{R_{,} M}$ for some $M \in V\left(Z A_{4}\right)$. Then $R_{j} M R_{i}^{-1}$ commutes with B so, by Lemma 1,

$$
R_{j} M R_{i}^{-1} \in\langle B\rangle .
$$

It follows from the normality of $V\left(Z A_{4}\right)$ that $R_{j} R_{i}^{-1} \in V\left(Z A_{4}\right)$, thus $R_{i}=R_{j}$. Consequently, the $B^{R_{i}}$ lie in distinct conjugate classes of $V\left(Z A_{4}\right)$.

Next, suppose that $X \equiv B(\bmod 2)$, that $X \in V\left(Z A_{4}\right)$, and that $X=B^{M}$ for some $M \in \operatorname{SL}(3, Z)$. Then $B \equiv B^{M}(\bmod 2)$ so by Lemma $1, M \equiv B^{i}(\bmod 2)$ for some i. It follows from Lemma 2 that $M=R_{j} N$ for some j and some $N \in V\left(Z A_{4}\right)$. Thus X is conjugate in $V\left(Z A_{4}\right)$ to $B^{R_{\mu}}$.

There are elements of order 3 in $V\left(Z A_{4}\right)$ which are congruent to B modulo 2 and conjugate to W in $\operatorname{SL}(3, Z)$. (Because of Lemma 3, such elements cannot be conjugate to any of the $B^{R_{i}}$.) In fact, if

$$
T=\left[\begin{array}{rrr}
1 & 1 & 1 \\
0 & 1 & 1 \\
-1 & 0 & 1
\end{array}\right]
$$

then

$$
W^{T}=\left[\begin{array}{rrr}
0 & 1 & 2 \\
0 & -2 & -3 \\
1 & 2 & 2
\end{array}\right] \quad \text { and } \quad W^{T R_{1}}=\left[\begin{array}{rrr}
0 & 5 & 8 \\
0 & -2 & -3 \\
1 & 4 & 2
\end{array}\right]
$$

are in $V\left(Z A_{4}\right)$ and are congruent to B modulo 2 . We shall show that these two elements lie in different conjugate classes in $V\left(Z A_{4}\right)$ and that every element of $V\left(Z A_{4}\right)$ which is congruent to B modulo 2 , and conjugate to W in $\operatorname{SL}(3, Z)$, is conjugate in $V\left(Z A_{4}\right)$ to one of them.

Lemma 5. W^{T} and $W^{T R_{1}}$ are not conjugate in $V\left(Z A_{4}\right)$.
Proof. We begin by observing that if $M \in V\left(Z A_{4}\right)$ then conditions (1) and (2) imply that the sum of the entries in M must be 3 modulo 4. By condition (1), the entries on one pseudotrace are $1+e_{1}, 1+e_{2}$, $1+e_{3}$ where the e_{i} are even, and all other entries of M are even. Consequently, $1=|M| \equiv 1+e_{1}+e_{2}+e_{3}(\bmod 4)$, so the pseudotrace with odd entries is 3 modulo 4 and it follows from condition (2) that the sum of the entries of M is 3 modulo 4.

Now suppose that $W^{T M}=W^{T R_{1}}$ for some $M \in V\left(Z A_{4}\right)$. Let

$$
P=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2 \\
2 & 2 & 1
\end{array}\right)
$$

and observe that $B^{P}=W^{T}$, so $B^{P M}=B^{P R_{1}}$. By Lemma 1, if $X=$ $P M R_{1}^{-1} P^{-1}$, then

$$
X=s I+t B+u B^{2}
$$

for some rational numbers s, t, and u. Each of the column sums of X is $s+t+u$; thus, if we start to evaluate $|X|$ by adding the first two rows to the third, we see that $|X|=(s+t+u)\left(s^{2}+t^{2}+u^{2}-s t-s u-t u\right)$. Next, note that $X^{P}=M R_{1}^{-1}$ is an integer matrix of determinant 1 which also has column sums $s+t+u$ since I, B^{P}, and $\left(B^{2}\right)^{P}$ have column sums of 1 . Therefore, $s+t+u$ is an integer. If we start to
evaluate $\left|X^{P}\right|$ by adding the first two rows to the third, then factoring out $s+t+u$, we see that

$$
1=\left|X^{P}\right|=(s+t+u) n
$$

for some integer n. It is now clear from the form of $|X|$ that $s+t+u$ and $s^{2}+t^{2}+u^{2}-s t-s u-t u$ are both 1 or both -1 . If

$$
s^{2}+t^{2}+u^{2}=s t+s u+t u-1
$$

then $s t+s u+t u \geq 1$. Hence

$$
1=(s+t+u)^{2}=s^{2}+t^{2}+u^{2}+2(s t+s u+t u) \geq 2
$$

a contradiction. Therefore $s+t+u=1$.
We now know that $X^{P}=M R_{1}^{-1}$ where the column sums of X^{P} are each 1. Multiplying X^{P} on the right by R_{1} adds twice the first column to the second, thus the column sums of M are, respectively, 1,3 , and 1. But then the sum of the entries of M is 1 modulo 4 , a contradiction.

We found that the $B^{R_{i}}$ come from four different classes. One might expect that the $W^{T R_{i}}$ would come from four new classes. Lemma 5 has shown that W^{T} and $W^{T R_{1}}$ do come from different classes. These turn out to be the only new classes.

Lemma 6. Each $W^{T R_{i}}$ is conjugate in $V\left(Z A_{4}\right)$ either to W^{T} or to $W^{T R_{1}}$.

Proof. It suffices to show that $W^{T R_{1} R_{2}}$ is $W^{T M}$ for some M in $V\left(Z A_{4}\right)$. It will follow that $W^{T R_{1}}$ and $W^{T R_{2}}$ are in the same class, since $R_{2}^{2} \in V\left(Z A_{4}\right)$. The matrix

$$
M=\left(\begin{array}{rrr}
1 & 4 & 4 \\
-2 & -7 & -6 \\
2 & 6 & 5
\end{array}\right)
$$

has the required properties.
The next lemma shows that the 6 classes found in Lemmas 4 and 5 account for all of the elements of order 3 in $V\left(Z A_{4}\right)$ which are congruent to B modulo 2 .

Lemma 7. Suppose that $X \in V\left(Z A_{4}\right)$, that $X \equiv B(\bmod 2)$, and that $X=W^{M}$ for some $M \in \mathrm{SL}(3, Z)$. Then X is conjugate in $V\left(Z A_{4}\right)$ to one of W^{T} and $W^{T R_{1}}$.

Proof. By hypothesis, $W M \equiv M B(\bmod 2)$. If $M=\left[m_{i j}\right]$, then a comparison of the entries of $W M$ and $M B$ shows that

$$
M \equiv\left[\begin{array}{ccc}
m_{11} & m_{11} & m_{11} \\
m_{21} & m_{22} & m_{21}+m_{22} \\
m_{21}+m_{22} & m_{21} & m_{22}
\end{array}\right] \quad(\bmod 2)
$$

Since $|M|=1, m_{11}$ must be odd, and not both of m_{21}, m_{22} can be even. Thus, modulo $2, M$ is one of

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) .
$$

We shall need the matrix P such that $B^{P}=W^{T}$ (see Lemma 5), the matrix

$$
U=\left(\begin{array}{rrr}
-1 & 1 & 0 \\
-1 & 0 & -1 \\
-1 & -1 & 1
\end{array}\right)
$$

which can be seen to have the property that $B^{U}=W$, and the matrix

$$
K=s I+t W^{T}+u\left(W^{2}\right)^{T}=\left(\begin{array}{rrr}
0 & 0 & -1 \\
-1 & 0 & 2 \\
0 & -1 & -2
\end{array}\right)
$$

where $s=t=-2 / 3, u=1 / 3$.
We now let

$$
G=K^{-1} P^{-1} U M=\left(\begin{array}{rrr}
1 & 0 & -1 \\
-1 & 1 & 1 \\
1 & -1 & 0
\end{array}\right) M .
$$

Then $G \in \operatorname{SL}(3, Z)$ and it follows from our information about the form of M modulo 2 that $G \in\langle B\rangle I_{2}$. Thus, By Lemma $2, G R_{i} \in V\left(Z A_{4}\right)$ for some i.

Note that

$$
U M=P K G=\left(P K P^{-1}\right) P G
$$

where $P K P^{-1}$ commutes with powers of B since it is a sum of powers of B. Therefore,

$$
X=W^{P}=B^{U M}=B^{P G}=W^{T G}
$$

Thus, $X^{R_{t}}=W^{T\left(G R_{t}\right)}$ is a conjugate of W^{T} in $V\left(Z A_{4}\right)$. It follows from Lemmas 2 and 6 that X is conjugate in $V\left(Z A_{4}\right)$ either to W^{T} or to $W^{T R_{1}}$.

Theorem 1. $V\left(Z A_{4}\right)$ contains precisely 12 conjugacy classes of elements of order 3. The elements $B^{R_{1}}, i=0,1,2,3$, together with W^{T}
and $W^{T R_{1}}$ are representatives of the 6 conjugacy classes that are congruent to B modulo 2; their squares are representatives of the other 6 classes.

Proof. The theorem is immediate in view of Lemmas 3-7. As we noted after stating Lemma 3, it suffices to find the classes for elements congruent to B modulo 2 ; there are then corresponding classes for elements congruent to B^{2} modulo 2. Lemma 3 narrowed the search to conjugates of B and W in $\operatorname{SL}(3, Z)$. Lemma 4 described the classes arising from conjugates of B. Lemma 5 exhibited two distinct classes arising from conjugates of W; Lemma 6 showed that these were the only new classes generated from W^{T} by the R_{i}; Lemma 7 showed that any class arising from a conjugate of W has to be one produced from W^{T} by an R_{i}.

The authors have shown (see [1])
Lemma 8. all elements of order 2 in $V\left(Z A_{4}\right)$ are conjugate in $V\left(Z A_{4}\right)$.

Theorem 1 and Lemma 8 account for all the conjugacy classes of elements of finite order in the unit group $V\left(Z A_{4}\right)$. If N is any normal subgroup of $V\left(Z A_{4}\right)$ containing an element of order 2 , then it follows from Lemma 8 that $A \in N$. Thus, a normal complement to A_{4} in $V\left(Z A_{4}\right)$ cannot contain an element of order 2 . We shall now show that any normal subgroup containing an element of order 3 must also contain an element of order 2 and thus establish

Theorem 2. All normal complements to A_{4} in $V\left(Z A_{4}\right)$ are torsion free.

Proof. Let N be a normal subgroup of $V\left(Z A_{4}\right)$ containing an element of order 3. In view of Theorem 1, it follows that N contains one of the $B^{R_{i}}$ or W^{T} or $W^{T R_{1}}$.

Case 1. Suppose $B^{R_{i}} \in N$. A routine calculation shows that $A^{R_{i}} \in$ $V\left(Z A_{4}\right)$ for each i. In A_{4}, the commutator (A, B) is an element of order 2; therefore $(A, B)^{R_{i}}$ is an element of order 2 which lies in N.

Case 2. Suppose that N contains W^{T} or $W^{T R_{t}}$.
Let

$$
M_{1}=\left(\begin{array}{rrr}
-1 & 0 & -2 \\
2 & -1 & 2 \\
-2 & 0 & -3
\end{array}\right) \quad \text { and } \quad M_{2}=\left(\begin{array}{rrr}
1 & 2 & 0 \\
-2 & -3 & 0 \\
2 & 2 & 1
\end{array}\right),
$$

and note that the $M_{i} \in V\left(Z A_{4}\right)$.

Let

$$
X=W^{T} W^{T M_{1}} W^{T M_{2}}=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
8 & 8 & 1
\end{array}\right)
$$

Then X is an element of order 2 in $V\left(Z A_{4}\right)$ which will lie in N if N contains W^{T}. Also, since R_{1} normalizes $V\left(Z A_{4}\right)$, any normal subgroup containing $W^{T R_{1}}$ must contain $W^{T R_{1} H_{i}}$ where $H_{i}=M_{i}^{R_{i}}$ and thus will contain $X^{R_{1}}$.

Remark. The proof for Case 1 amounted to showing that any normal subgroup containing a $B^{R_{1}}$ must contain a conjugate of A_{4}. As Sekiguchi showed in [4], $V\left(Z A_{4}\right)$ contains just 4 conjugate classes of groups isomorphic to A_{4}. Our elements W^{T} and $W^{T R_{1}}$ are not contained in subgroups of $V\left(Z A_{4}\right)$ which are isomorphic to A_{4}. For example, $W^{T}=B^{P}$ but $A^{P} \notin V\left(Z A_{4}\right)$ so $\left\langle B^{P}, A^{P}\right\rangle$ is isomorphic to A_{4} but it is not contained in $V\left(Z A_{4}\right)$.

References

[1] P. J. Allen and C. Hobby, A characterization of units in $Z\left[A_{r}\right]$, J. Algebra, 66 (1980), 534-543.
[2],A note on the unit group of $Z S_{3}$, Proc. Amer. Math. Soc., 99 (1987), 9-14.
[3] , A characterization of units in $Z S_{4}$, Comm. Algebra, 16 (1988), 14791505.
[4] K. Sekiguchi, On the units of integral group rings, Tokyo J. Math., 3 (1980), 149-162.
[5] K. Tahara, On the finite subgroups of GL(3, Z), Nagoya Math. J., 41 (1971), 169-209.

Received February 28, 1987.

