ELEMENTS OF FINITE ORDER IN $V(ZA_4)$

P. J. Allen and C. Hobby

The conjugacy classes for all elements of finite order in the unit group $V(ZA_4)$ are determined. As an application, it is shown that all normal complements to A_4 in $V(ZA_4)$ must be torsion free

Let V(ZG) denote the group of units of augmentation 1 in the integral group ring ZG. There is considerable interest in determining whether the group G has a torsion free normal complement in V(ZG). The authors showed in [2] that S_3 has two types of normal complements in $V(ZS_3)$, one with torsion and one without. They have also shown (see [1]) that A_4 has a torsion free normal complement in $V(ZA_4)$ and that S_4 has a normal complement in $V(ZS_4)$ which includes torsion elements (see [3]). Two questions arise naturally:

1. Can A_4 also have a normal complement in $V(ZA_4)$ which includes torsion?

2. Can S_4 also have a torsion free normal complement in $V(ZS_4)$?

This paper gives a negative answer to Question 1 by completing the task of finding all of the conjugate classes of elements of finite order in $V(ZA_4)$ and then showing that a subgroup containing any such class must also contain an element of order 2 in A_4 . Earlier work has shown that the torsion elements of $V(ZA_4)$ are of order 2 or 3 and that all elements of order 2 are conjugate [1]. Sekiguchi [4] showed that there are four conjugate classes of subgroups of $V(ZA_4)$ which are isomorphic to A_4 . It follows from his work that there are at least eight conjugate classes of elements of order 3; these classes include all of the elements of order 3 which lie in subgroups isomorphic to A_4 . Our Theorem 1 shows that there are exactly four additional conjugate classes of elements of order 3 which do not lie in any subgroup isomorphic to A_4 . Theorem 2 gives the answer to Question 1.

The results of [1] characterize $V(ZA_4)$ as an explicit subgroup of SL(3, Z) and thus permit us to utilize information about SL(3, Z). The characterization relies on the following definition: If $X = [x_{ij}] \in SL(3, Z)$, then the *pseudotraces* t_0 , t_1 , and t_2 are given by $t_0 = x_{11} + x_{22} + x_{33}$, $t_1 = x_{12} + x_{23} + x_{31}$, and $t_2 = x_{13} + x_{21} + x_{32}$. Then we can think of A_4 as generated by

$$A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \text{ and } B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

and of $V(ZA_4)$ as $\{X \in SL(3, Z) | X \text{ satisfies conditions } (1) \text{ and } (2)\}$ where

condition (1): $X \equiv B^i \pmod{2}$ for some i

and

condition (2): two of the pseudotraces t_i are 0 modulo 4.

We begin by finding the centralizer of B in the ring $M_3(Q)$ of all 3×3 rational matrices.

LEMMA 1. Let $X \in M_3(Q)$. Then XB = BX if and only if $X = \sum r_i B^i$ with $r_i \in Q$. Moreover, if $X \in SL(3, Z)$, then (i) $XB \equiv BX \pmod{2}$ if and only if $X \equiv B^i \pmod{2}$ and (ii) XB = BX if and only if $X = B^i$.

Proof. If $X = \sum r_i B^i$, then it is clear that XB = BX. On the other hand, an inspection of the entries in the matrices XB and BX will show that XB = BX implies that $X = \sum r_i B^i$ for some $r_i \in Q$. The remainder of the lemma follows from the fact that the group ring $R\langle B \rangle$ has only trivial units if R is the ring of integers modulo 2 or if R = Z.

Let I_2 and I_4 denote, respectively, the subgroups of SL(3, Z) consisting of all matrices which are the identity modulo 2 and 4. It is clear that I_4 is contained in $V(ZA_4)$ and that $\langle B \rangle I_2$ is the subgroup consisting of all matrices which satisfy condition (1).

LEMMA 2. $V(ZA_4)$ is a normal subgroup of $\langle B \rangle I_2$. The factor group is the elementary group of order 4 with coset representatives $R_0 = I$,

	(1	2	0)			(1	0	2 \
$R_1 =$	0	1	0	,	$R_2 =$	0	1	0
$R_1 =$	0)	0	1)		$R_2 =$	0)	0	1)

and $R_3 = R_1 R_2$.

Proof. If $M \in I_2$ then one of the MR_i must belong to $V(ZA_4)$ since multiplying M on the right by R_1 or R_2 has the effect, modulo 4, of adding 2 to t_1 or t_2 . Thus precisely one of the MR_i will satisfy condition (2). Since $B \in V(ZA_4)$ it follows that the R_i are a full set of coset representatives of $V(ZA_4)$ in $\langle B \rangle I_2$. The square of each of

these representatives is in I_4 and thus in $V(ZA_4)$. A direct calculation shows that B^{R_1} and B^{R_2} are in $V(ZA_4)$, thus the normality of $V(ZA_4)$ follows from the fact that I_2 is abelian modulo the subgroup I_4 of $V(ZA_4)$.

The next lemma is well known. In fact, Tahara [5] describes all of the conjugate classes of finite subgroups of SL(3, Z).

LEMMA 3. SL(3, Z) contains exactly two conjugate classes of elements of order 3. One of these classes contains B. The other one contains

	[1	0	0	
W =	0	0	-1	
	0	1	-1	

In SL(3, Z), B is conjugate to B^2 , but this cannot happen in $V(ZA_4)$, or even in $\langle B \rangle I_2$, since conjugating B by an element in $\langle B \rangle I_2$ produces an element in BI_2 . We shall restrict our attention to the conjugate classes in $V(ZA_4)$ of elements congruent to B modulo 2; the squares of the elements in each class will be a conjugate class of elements congruent to B^2 modulo 2.

Lemmas 1 and 2 yield a complete description of all of the conjugate classes in $V(ZA_4)$ of elements which are conjugate in B in SL(3, Z) and are congruent to B modulo 2. As we will see later, additional classes arise from conjugates of W.

LEMMA 4. Conjugating B by the four coset representatives R_i of Lemma 2 produces elements of four conjugate classes in $V(ZA_4)$. Any conjugate of B in SL(3, Z) which is congruent to B modulo 2 and belongs to $V(ZA_4)$ will lie in one of these classes.

Proof. Suppose that $B^{R_i} = B^{R_jM}$ for some $M \in V(ZA_4)$. Then $R_jMR_j^{-1}$ commutes with B so, by Lemma 1,

$$R_i M R_i^{-1} \in \langle B \rangle.$$

It follows from the normality of $V(ZA_4)$ that $R_j R_i^{-1} \in V(ZA_4)$, thus $R_i = R_j$. Consequently, the B^{R_i} lie in distinct conjugate classes of $V(ZA_4)$.

Next, suppose that $X \equiv B \pmod{2}$, that $X \in V(ZA_4)$, and that $X = B^M$ for some $M \in SL(3, Z)$. Then $B \equiv B^M \pmod{2}$ so by Lemma 1, $M \equiv B^i \pmod{2}$ for some *i*. It follows from Lemma 2 that $M = R_j N$ for some *j* and some $N \in V(ZA_4)$. Thus X is conjugate in $V(ZA_4)$ to B^{R_j} .

There are elements of order 3 in $V(ZA_4)$ which are congruent to *B* modulo 2 and conjugate to *W* in SL(3, *Z*). (Because of Lemma 3, such elements cannot be conjugate to any of the B^{R_i} .) In fact, if

$$T = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

then

$$W^{T} = \begin{bmatrix} 0 & 1 & 2 \\ 0 & -2 & -3 \\ 1 & 2 & 2 \end{bmatrix} \text{ and } W^{TR_{1}} = \begin{bmatrix} 0 & 5 & 8 \\ 0 & -2 & -3 \\ 1 & 4 & 2 \end{bmatrix}$$

are in $V(ZA_4)$ and are congruent to B modulo 2. We shall show that these two elements lie in different conjugate classes in $V(ZA_4)$ and that every element of $V(ZA_4)$ which is congruent to B modulo 2, and conjugate to W in SL(3, Z), is conjugate in $V(ZA_4)$ to one of them.

LEMMA 5. W^T and W^{TR_1} are not conjugate in $V(ZA_4)$.

Proof. We begin by observing that if $M \in V(ZA_4)$ then conditions (1) and (2) imply that the sum of the entries in M must be 3 modulo 4. By condition (1), the entries on one pseudotrace are $1 + e_1$, $1 + e_2$, $1 + e_3$ where the e_i are even, and all other entries of M are even. Consequently, $1 = |M| \equiv 1 + e_1 + e_2 + e_3 \pmod{4}$, so the pseudotrace with odd entries is 3 modulo 4 and it follows from condition (2) that the sum of the entries of M is 3 modulo 4.

Now suppose that $W^{TM} = W^{TR_1}$ for some $M \in V(ZA_4)$. Let

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$

and observe that $B^P = W^T$, so $B^{PM} = B^{PR_1}$. By Lemma 1, if $X = PMR_1^{-1}P^{-1}$, then

$$X = sI + tB + uB^2$$

for some rational numbers s, t, and u. Each of the column sums of X is s+t+u; thus, if we start to evaluate |X| by adding the first two rows to the third, we see that $|X| = (s + t + u)(s^2 + t^2 + u^2 - st - su - tu)$. Next, note that $X^P = MR_1^{-1}$ is an integer matrix of determinant 1 which also has column sums s + t + u since I, B^P , and $(B^2)^P$ have column sums of 1. Therefore, s + t + u is an integer. If we start to

4

evaluate $|X^P|$ by adding the first two rows to the third, then factoring out s + t + u, we see that

$$1 = |X^P| = (s + t + u)n$$

for some integer *n*. It is now clear from the form of |X| that s + t + uand $s^2 + t^2 + u^2 - st - su - tu$ are both 1 or both -1. If

$$s^2 + t^2 + u^2 = st + su + tu - 1$$

then $st + su + tu \ge 1$. Hence

$$1 = (s + t + u)^2 = s^2 + t^2 + u^2 + 2(st + su + tu) \ge 2,$$

a contradiction. Therefore s + t + u = 1.

We now know that $X^P = MR_1^{-1}$ where the column sums of X^P are each 1. Multiplying X^P on the right by R_1 adds twice the first column to the second, thus the column sums of M are, respectively, 1, 3, and 1. But then the sum of the entries of M is 1 modulo 4, a contradiction.

We found that the B^{R_i} come from four different classes. One might expect that the W^{TR_i} would come from four new classes. Lemma 5 has shown that W^T and W^{TR_1} do come from different classes. These turn out to be the only new classes.

LEMMA 6. Each W^{TR_i} is conjugate in $V(ZA_4)$ either to W^T or to W^{TR_1} .

Proof. It suffices to show that $W^{TR_1R_2}$ is W^{TM} for some M in $V(ZA_4)$. It will follow that W^{TR_1} and W^{TR_2} are in the same class, since $R_2^2 \in V(ZA_4)$. The matrix

$$M = \begin{pmatrix} 1 & 4 & 4 \\ -2 & -7 & -6 \\ 2 & 6 & 5 \end{pmatrix}$$

has the required properties.

The next lemma shows that the 6 classes found in Lemmas 4 and 5 account for all of the elements of order 3 in $V(ZA_4)$ which are congruent to B modulo 2.

LEMMA 7. Suppose that $X \in V(ZA_4)$, that $X \equiv B \pmod{2}$, and that $X = W^M$ for some $M \in SL(3, Z)$. Then X is conjugate in $V(ZA_4)$ to one of W^T and W^{TR_1} .

Proof. By hypothesis, $WM \equiv MB \pmod{2}$. If $M = [m_{ij}]$, then a comparison of the entries of WM and MB shows that

$$M \equiv \begin{bmatrix} m_{11} & m_{11} & m_{11} \\ m_{21} & m_{22} & m_{21} + m_{22} \\ m_{21} + m_{22} & m_{21} & m_{22} \end{bmatrix} \pmod{2}.$$

Since |M| = 1, m_{11} must be odd, and not both of m_{21} , m_{22} can be even. Thus, modulo 2, M is one of

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

We shall need the matrix P such that $B^P = W^T$ (see Lemma 5), the matrix

$$U = \begin{pmatrix} -1 & 1 & 0 \\ -1 & 0 & -1 \\ -1 & -1 & 1 \end{pmatrix}$$

which can be seen to have the property that $B^U = W$, and the matrix

$$K = sI + tW^{T} + u(W^{2})^{T} = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 2 \\ 0 & -1 & -2 \end{pmatrix}$$

where s = t = -2/3, u = 1/3.

We now let

$$G = K^{-1}P^{-1}UM = \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix} M.$$

Then $G \in SL(3, \mathbb{Z})$ and it follows from our information about the form of M modulo 2 that $G \in \langle B \rangle I_2$. Thus, By Lemma 2, $GR_i \in V(\mathbb{Z}A_4)$ for some i.

Note that

$$UM = PKG = (PKP^{-1})PG$$

where PKP^{-1} commutes with powers of B since it is a sum of powers of B. Therefore,

$$X = W^P = B^{UM} = B^{PG} = W^{TG}.$$

Thus, $X^{R_i} = W^{T(GR_i)}$ is a conjugate of W^T in $V(ZA_4)$. It follows from Lemmas 2 and 6 that X is conjugate in $V(ZA_4)$ either to W^T or to W^{TR_1} .

THEOREM 1. $V(ZA_4)$ contains precisely 12 conjugacy classes of elements of order 3. The elements B^{R_i} , i = 0, 1, 2, 3, together with W^T and W^{TR_1} are representatives of the 6 conjugacy classes that are congruent to B modulo 2; their squares are representatives of the other 6 classes.

Proof. The theorem is immediate in view of Lemmas 3–7. As we noted after stating Lemma 3, it suffices to find the classes for elements congruent to B modulo 2; there are then corresponding classes for elements congruent to B^2 modulo 2. Lemma 3 narrowed the search to conjugates of B and W in SL(3, Z). Lemma 4 described the classes arising from conjugates of B. Lemma 5 exhibited two distinct classes arising from conjugates of W; Lemma 6 showed that these were the only new classes generated from W^T by the R_i ; Lemma 7 showed that any class arising from a conjugate of W has to be one produced from W^T by an R_i .

The authors have shown (see [1])

LEMMA 8. All elements of order 2 in $V(ZA_4)$ are conjugate in $V(ZA_4)$.

Theorem 1 and Lemma 8 account for all the conjugacy classes of elements of finite order in the unit group $V(ZA_4)$. If N is any normal subgroup of $V(ZA_4)$ containing an element of order 2, then it follows from Lemma 8 that $A \in N$. Thus, a normal complement to A_4 in $V(ZA_4)$ cannot contain an element of order 2. We shall now show that any normal subgroup containing an element of order 3 must also contain an element of order 2 and thus establish

THEOREM 2. All normal complements to A_4 in $V(ZA_4)$ are torsion free.

Proof. Let N be a normal subgroup of $V(ZA_4)$ containing an element of order 3. In view of Theorem 1, it follows that N contains one of the B^{R_i} or W^T or W^{TR_1} .

Case 1. Suppose $B^{R_i} \in N$. A routine calculation shows that $A^{R_i} \in V(ZA_4)$ for each *i*. In A_4 , the commutator (A, B) is an element of order 2; therefore $(A, B)^{R_i}$ is an element of order 2 which lies in N.

Case 2. Suppose that N contains W^T or W^{TR_i} . Let

$$M_1 = \begin{pmatrix} -1 & 0 & -2 \\ 2 & -1 & 2 \\ -2 & 0 & -3 \end{pmatrix} \text{ and } M_2 = \begin{pmatrix} 1 & 2 & 0 \\ -2 & -3 & 0 \\ 2 & 2 & 1 \end{pmatrix},$$

and note that the $M_i \in V(ZA_4)$.

Let

$$X = W^T W^{TM_1} W^{TM_2} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 8 & 8 & 1 \end{pmatrix}.$$

Then X is an element of order 2 in $V(ZA_4)$ which will lie in N if N contains W^T . Also, since R_1 normalizes $V(ZA_4)$, any normal subgroup containing W^{TR_1} must contain $W^{TR_1H_i}$ where $H_i = M_i^{R_i}$ and thus will contain X^{R_1} .

REMARK. The proof for Case 1 amounted to showing that any normal subgroup containing a B^{R_1} must contain a conjugate of A_4 . As Sekiguchi showed in [4], $V(ZA_4)$ contains just 4 conjugate classes of groups isomorphic to A_4 . Our elements W^T and W^{TR_1} are not contained in subgroups of $V(ZA_4)$ which are isomorphic to A_4 . For example, $W^T = B^P$ but $A^P \notin V(ZA_4)$ so $\langle B^P, A^P \rangle$ is isomorphic to A_4 but it is not contained in $V(ZA_4)$.

References

- [1] P. J. Allen and C. Hobby, A characterization of units in $Z[A_r]$, J. Algebra, 66 (1980), 534-543.
- [2] $\frac{1}{9-14}$, A note on the unit group of ZS₃, Proc. Amer. Math. Soc., 99 (1987),
- [3] $_$, A characterization of units in ZS₄, Comm. Algebra, 16 (1988), 1479–1505.
- [4] K. Sekiguchi, On the units of integral group rings, Tokyo J. Math., 3 (1980), 149-162.
- [5] K. Tahara, On the finite subgroups of GL(3, Z), Nagoya Math. J., 41 (1971), 169-209.

Received February 28, 1987.

University of Alabama Tuscaloosa, AL 35487

8