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SPANNED AND AMPLE VECTOR BUNDLES
WITH LOW CHERN NUMBERS

EDOARDO BALLICO

Here we classify paris (V,E) with V projective variety, dim(F) =
«, E ample and spanned rank-2 vector bundle and, if n = 2k, Cι(E)k =
l,ifn = 2k+ 1, cx{E)c2{E)k = 2. In both cases V = Pn and E is
the direct sum of two line bundles of degree 1.

Introduction. In the last few years a few papers appeared (e.g. [LP],
[LS], [Wl], [W2]) giving classifications, under suitable assumptions, of
pairs (F, E) with V projective variety and E an ample, spanned vector
bundle with low Chern classes. It is natural to arise the following
conjecture (which is proved in 2.2 in a stronger form if the bundle is
the direct sum of r line bundles):

Conjecture. Fix integers n, r s, zΊ,. . . ,/ 5 , with s > 0, 0 < r, 0 <
it < min(r, n), i\ H \-is = n. Fix an irreducible, complete variety
V, dim(F) = n, and an ample vector bundle E, E spanned by global
sections. Then

and if we have equality, then V = Pn and E = rffv{\).

Here we work over an algebraically closed field K and prove the
following results.

THEOREM 1. Fix an even integer n = 2k > 0. Let V be an integral
complete variety and E a rank-2 ample vector bundle on V, E spanned
by its global sections and with C2(E)k = 1. Assume either V Cohen-
Macaulay or char(K) = 0. Then V = Pn and E = 2@v(\).

THEOREM 2. Fix an odd integer n = 2k + 1 > 0. Let V be an
integral complete variety and E a rank-2 ample vector bundle on Vy E
spanned by its global sections and with c\ (E)c2(E)k — 2. Assume either
V Cohen-Macaulay or char(K) = 0. Then V = Pn and E = 2@v{\).
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For a fixed variety V, Theorem 1 follows from the conjecture of
[LS]; hence Theorem 1 was known in several cases proved in [LP],
[Wl], 3.4, [W2].

This paper is dedicated to Alessandra.

NOTATIONS. For a projective space X, we write *f(l) instead of
0χ{\) when there is no danger of misunderstanding. A vector bundle
is called spanned if it is spanned by its global sections. We use \L\,
L G Pic(y), for the linear system associated to the sections of L.

1. Proof of Theorem 1.

LEMMA 1.1. Let V be an integral complete variety, dim(K) = n,
and E an ample vector bundle on V, τk(E) = r, E spanned by a linear
subspace W of its sections. Then άim(W) >n + r.

Proof. Set L := <?/>(£) (1). Using (P(E),L) instead of (V9E) we
reduce to the case r = 1. Now use that the map induced by \L\ is
finite by the ampleness of E. π

We omit the proof of the following general result suggested by the
referee, since it will be either used in cases (e.g. under assumption
($) in the proofs of Theorems 1 and 2) in which the existence of a
suitable section with zero-locus of the right codimension is trivial or
proved directly (claim in the proof of 1.3).

LEMMA 1.2. Let E be a rank-v ample vector bundle on an n-fold
X. Assume that E is spanned by its sections. Let X\,..., x^ be k
points in X. If kυ < dim(X), then there is s e H°(E) such that
{x\,..., jCfc} c (s)o and codim^o = v. Furthermore we may assume
that X2 is a tangent vector at x\.

LEMMA 1.3. Let S be an integral complete surface and E a rank-2
spanned ample vector bundle with c2{E) = 1. Then(S,E) = (P

Proof. If S is normal, the result is well known (see e.g. [B] if
char(K) > 0). Assume that S is not normal. Let p: S' -> S be the
normalization. Let E' :=p*(E). We have (S',E') = (P 2 ,^( l ) ) . Fix a
nonnormal point x € S, hence with length^"1 (x)) > 1.

Claim. There is a section s of E with x e (s)o and codim((s)o) = 2.

Assume the claim. Then p*(s) is a section of E1 vanishing in codi-
mension 2. Since C2(E') < length^"1 (x)), we get a contradiction.



SPANNED AND AMPLE VECTOR BUNDLES 211

Proof of the claim. Let F be the fiber of the projection t: P(l?) —• S
over x and L := ^ P ( £ ) ( 1 ) the tautological line bundle. Let h: P(2?) —•
|L| be the map induced by \L\. Since L is spanned, Λ(F) is a line.
Since L is ample, h~ι(h(F)) is a curve. Set A := t(h~ι(h(F)), and let
.4(1),... M( s) be the irreducible components of A of dimension 1 (if
any). Let P(i) be a general point of Λ(ι). Since h~ι(h(F)) nrι(P(i))
is finite, a general section of £ vanishing at x does not vanish at P(i).
By Bertini's theorem ([K]) applied to S\A, we get that a general section
s of £ with x e {s)o vanishes only in codimension 2. D

The proof of Theorem 1 will be divided into several steps ((a),...,
(m)). It will give also Theorem 2 and most of the results stated in the
next section.

Proof of Theorem 1. (a) Take s e H°(E) with X := (s)0 of codi-
mension 2. We want to prove that (X,E\X) = (P"~ 2 ,2^(l)). Since
C2(E\X)k~ι = 1, X is generically reduced and Y := Xτeά is irreducible.
By the inductive assumption, (Y,E\Y) = (P w " 2 ,2^( l ) ) . If F is Cohen-
Macaulay, then X is Cohen-Macaulay; since X is generically reduced,
it is reduced. Now assume char(K) = 0. Then a general section s1

of E has W := (s')0 reduced, hence (W9E\W) = ( P ^ 2 , 2 ^ ( l ) ) . Set
// := det(ls). For every closed subscheme Z of F, let/?z be the Hubert
polynomial of <9χ with respect to H. Using either flatness or the short
exact sequences determined by s and sr, we see that px = pW Assume
that X is not reduced and let k > 0 be the dimension of the support
of the nilradical of &χ. For a fixed Z and a general D e |L|, we have
PZΠDW = Pz(«) -Pz(fl - 1). Hence /7^nZ) = p^nz> Taking A: general
divisors of L, we get a contradiction.

(b) Set T := {(ί)0: s € //°(£),codim((j)0) = 2}. By the proof of
the claim in the proof of 1.3 (or by 1.2), for every x e V, there is
SeT with x e S.

(c) Now we prove that V is smooth. Indeed by (b) and (a) for every
x e V there is a smooth subvariety S of codimension 2 and locally
complete intersection in V, with x eS.

(d) Now we give a few definitions. A curve C c V is called a
line if C = P1 and £ |C = 20 (1). A line C is called of type T if
it is contained in some SeT. Fix any SeT. For any smooth
codimension 2 subvariety 7 of F which is an embedded deformation
of S, we have (Y9E\Y) = (P"-2 ,2^(l)) by the invariance of Chern
numbers under deformations. Call G the set of such Y. A line is
called of type G if it is contained in some Y e G.
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(e) Now we prove that for all x, y eV, x φ y, there is S e T with
{χ,y}cs.

Proof. For any z e V, let F(z) be the fiber over z of the projection
-> F. Let L := ^P(£)(l) be the tautological line bundle and

h: P(E) —> \L\ be the induced map. Since L is spanned, fι(F(z)) is
a line for all z, hence h(F(x)) u h(F(y)) spans a linear space 0 of
dimension at most 3. We conclude as in the proof of the claim in the
proof of 1.3.

(f) By (e) for all x, y e V with x Φ y there is a line of type Γ
containing x and y. Now we want to prove that there is a unique line
containing x and y. Take S e T with {x,y} c S and let C be a line
containing x and y. Since 1?|C = 20 (\), any section of 2s vanishing
on x and y vanishes on C. Thus C c 5 , hence the uniqueness of the
line containing x and y. Hence every line is of type T. Since E\S
is the normal bundle to S in F, every line is a smooth point of the
Hubert scheme of F. Write (x9y) for the line containing x and y,
xφy.

(g) Now assume the existence of a divisor D > 0 with h°(E(—D)) Φ
0. Fix x, y, z in F with x eD,y £D. Take X € Γ, X containing x,
uy. Since Z) n S is a positive divisor, we have 0{D)\S = ^s(l) . Fix a
section s of E(-D), s φθ. We have seen that s does not vanish on S or
vanishes identically on S. By (e) we get easily that s vanishes nowhere
on S, hence it does not vanish at x or at y. Thus s does not vanish at
all and shows that E(-D) is the extension of a line bundle M by the
trivial line bundle. Set R := M(D). We have seen that R\S = ^ ( 1 )
for every S e Γ. Since i? is a quotient of E, R is ample and spanned.
Fix A e \R\, u e A, z e A, υ $ A, S e T, Q e T with u e S n Q,
?; G S, z G β. Since 2?|S = ^s(l), one sees that 4̂ is smooth and
irreducible, and that for any two points of A, the line containing them
is contained in A. Fix W eT. Since h\R\W) = n - 1 < h°(R) - 2,
there are A, B e R with A φ B, W C (A n 5 ) . Since ^ n ΰ contains
the line joining any two of its points, (A Π B)τeά = W. Fix aeW and
C G |U| with a £ C. Since K is the union of the lines (a,t), t e C,
there is a line (a, m) not tangent to A at α. Take 2?' in the pencil of R
spanned by A and B, with me B'. Then 4̂ n B1 is smooth at α, hence
everywhere i.e. (AnB) = W. Thus i?" = 1. Since R is ample and
spanned, and V is smooth V = P", i? = ^(1). By (e) for every line 7
of F, £ |7 = 2^/(1), hence E = 20{\) (e.g. use [E]).
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(h) From now on in this section, we make the following assumption

($):

($) For divisors D > 0, h°(E(-D)) = 0.

By (g) to prove Theorem 1 it is sufficient to assume ($) and find a
contradiction.

(i) First assume h°(E) > 6; by 1.1 this is satisfied if k > 2. Fix
any 3 points x9 y, z of V. By assumption there is s G H°(E) with
s(χ) = χ(y) = s(z) = 0,sφ0. By ($) there is S G T with {x, y9 z} c S.
We want to check that if h°(E) = 6 there is S e G with {x9y9 z} c S
and that if z φ (x, y), such a surface S is unique. First the uniqueness.
If S, Sι are surfaces with this property, SπS' contains the line joining
any two of its points, hence S = Sf. Counting dimensions, we see that
for general x, y, z there is S G G containing them. Since by the proof
of (a) G is a complete family, this is true for all x, y, z; alternatively
one can use the union of the lines (z, t) with / e (x,y).

(j) For every S e G and every P φ S, let D(P,S) be the union of
the lines (P9t) with t e S. D(P,S) is a divisor. First we check that
for any x, y e D(P9S), (x,y) c D{P,S) (hence in particular D{P,S)
is irreducible). Take u, v e S such that x e (u,P), y e (v,P). Fix
t e (x,y). By (i) there is W e G with {u, υ, P} c W, hence with t e W
and with (t,P) e W\ hence (t,P) n (u,υ) Φ 0, i.e. t e D(P,S). Note
that the divisors D(P,S) and D(Pf,S') are algebraically equivalent.
Hence for any two points a, b e V, there is a divisor D algebraically
equivalent to D(P,S) and with a G D, b φ. D\ by Nakai's ampleness
criterion D(P, S) is ample.

(k) By (j) any line of type T not contained in D(P,S) intersects
D(P,S) at most at a point. Fix a point x of D(P,S). By (k) there
is a line F of type T intersecting D(P,S) only at x and transversally.
Thus <?(D(P,S))\F = <f(l). Thus the same is true for all lines (by
(f) they are of type Γ), hence <?(D(P9S))\S = ^(1). Fix j ; G D(P9S)
and any line of type T through y and not contained in D(P9S)\ since
D(P,S) Φ V, the existence of such a line follows from (i) and (j); we
get that D(P9S) is smooth at y for every y. Since for suitable P ;, we
have D(P9S)ΠD(F9S) = 5 (set-theoretically), S is ample in Z)(P,*S)
by the last part of (i).

(1) Set A :=D(P9S).

Claim.
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Proof of the claim. Let <J be the ideal sheaf of S in A; let S(k)
be the kth infinitesimal neighborhood of S in A, with ideal sheaf
J?k+K Set i 7 := Hom(2s/A(A)9E\A). Since £ is ample in A, there is
an integer k > 0 such that hι(A,F ® J ^ + 1 ) = 0, thus H°(A,F) ->
//°(5(^)3/

Γ|5r(A:)) is surjective. Since J r / c / ^ / c + 1 = *%(£), from the
isomorphism is IS = 2^(1) and the exact sequence

0 — ^ 7 ^ ' + 1 <g> F -> F |5(0 -* F|5(r - 1) -> 0

we find that the restriction map H°(S{k),F\S(k)) -> H°(S,F\S) is
surjective. Thus there is c e H°(A9 F) which induces the isomorphism
between 2^(1) and E\S. Since 5 is ample in A, every divisor of A
intersects S. Thus c induces an isomorphism at every point of A (take
the determinant!).

(m) The same proofs as in (1) give that E = 2ff{A)9 containing ($).
The proof of Theorem 1 is over. D

2. Proof of Theorem 2.

Proof of Theorem 2. First assume n = 1. Let h be the morphism
from V to a suitable Grassmannian Grass induced by H°(E). By
assumption (for the Plucker embedding) deg(λ)deg(λ(F)) = 2. Thus
h(V) is smooth and rational. If deg(Λ) = 2, h(V) is a line and the
restriction of the universal quotient bundle of Grass to h(V) is not
ample (see e.g. [P], p. 123), contradicting the ampleness of E. Thus
h is an isomorphism and E must be the direct sum of two line bundles
of degree 1. If n > 3, the inductive proof of Theorem 1 works. If
n = 3, however that proof has to be modified (in particular point (e)
and its consequences). Thus we assume n = 3 and use the terminology
"line of type T or of type G" as in the previous section.

(1) As in (b) of §1, for every P e W, there is a line C of type T
with P G C. As in (c) of § 1 this implies the smoothness of V.

(2) First assume the existence of a divisor D > 0 with h°(E(—D)) Φ
0. By (1) there is a line A of type T not contained in D. Since E\D
is ample, cι(E\D) Φ 0, hence for every line C of type Γ, C ΠD Φ 0 .
Thus &{D)\C has degree 1 for every C of type T. Fix 5 G H°(E) with
(j)o = Λ and t e H°(E(-D))91 φ 0. Then s\D shows that c2(E\D) = 1.
By 1.3 D = P 2 , E\D = 2^(1). Note that t either vanishes identically
on a line not in Z> or has no zero there. Fix a point P e V. By 1.1
and Bertini's theorem ([K]), we see that there are infinitely many lines
of type T through P. Thus we see that if t vanishes at P, it vanishes
in codimension 1. Enlarging if necessary D, we get a contradiction.
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Thus t{0v) is a subline bundle of E(-D)\ let M := E(-D)/s{0v),
R := M(D), hence R ample and spanned. Fix A e \R\. As before
we see that (A,E\A) = (P 2 ,2^(l)) . Since h°(V,A) > 3, A contains a
line 5 of type Γ. Thus 0(A)\A = 0(1), hence A3 = 1, and we get the
thesis.

(2) From now on, we assume the following assertion ($):

($) there is no divisor D > 0 with h°(E(-D)) φ 0.

By 1.1 for any length 2 subscheme X of V there is a non-zero section
of E vanishing there. By ($) there is a line of type T containing X.
Such a line is unique by ($) (even taking lines not of type T). The
uniqueness implies that every line is of type T.

(3) Fix any line S and P £ S. Let A = D(P, S) be the union of the
lines (P, t) with t e S. Let Q be the image of H°(E) into H°(A,E\A)
by the restriction map. Take a general s e Q with s(P) = 0. By
Bertini's theorem we see that s vanishes only in codimension 2 on A.
By the last part of (2) we see that P = (s)o as a scheme. Thus by 1.3
(A,E\A) = (P 2 ,2^(l)) . In particular every section of E\A vanishing
on a scheme of length 2 vanishes on a "line" of A. Thus by the last
statement in (2) every line intersecting A at more than one point is
contained in A. Taking D(P',S) for general P'9 we get A3 = 1, hence
V = P 3 . By [E] E splits and Theorem 2 is proved. D

REMARK 2.1. Fix (V,E). A line in V is a smooth rational curve C
such that E\C is a direct sum of line bundles of degree 1. Here are
some properties a pair (V,E) can have: (i) through a general point
there is a line; (ii) for two general points there is a line; (iii) for every
pair of points there is a line containing them. In (ii) and (iii) we can
ask also the uniqueness of the line. The proofs of Theorems 1 and
2, show that (ii) is true if in the statement of the theorems we omit
the Cohen-Macaulay assumption; furthermore no pair (V,E) exists if
in the statement of Theorem 2 we take c\(E)c2(E)k = 1. One gets
similar results, for instance if r = 3, n = 1 + 3k, C\(E)c^(E)k = 3 (no
such pair exists if c\(E)c^(E)k < 3) and in a few similar cases.

Now we show that the conjecture holds (in a stronger form) for
vector bundles which are direct sum of ample, spanned line bundles.

PROPOSITION 2.2. Fix integers r, n, s, i\,...,is with r > 0, n > 0,
s > 0, 0 < it < min(r, n) for all tf i\-\ h is = n. Let V be a complete,
integral variety and L\,..., Lr be ample and spanned line bundles on
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V. SetE:=Lι® ' ® Lr and c = c, , {E)ch{E) •••ci (E). Then

and ifc = d, then V = Pn and Lt has degree one for all t.

Proof. The intersection number of any n ample line bundles is > 0.
The result follows immediately from the following claim.

Claim. Fix any n ample, spanned, line bundles M\,..., Mn in V. If
their intersection number is one, then V = P" and each Mt has degree
one.

Proof of the claim. By induction on n, the cases with n = 1 and
n = 2 being left to the reader; for n = 2 use for instance Hodge
index theorem. Assume n > 3. Take A e |Afi|. By induction we
get A = P " " 1 and each Mt\A, t > 1, has degree one. Set U := Mu

J := M2. We get UJn~ι = 1. Taking B e \J\, we get B = Pn~ι and
JB of degree one. Thus Jn = 1, and the claim is easy. D
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