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VOLUME ESTIMATES FOR REAL HYPERSURFACES
OF A KAEHLER MANIFOLD
WITH STRICTLY POSITIVE HOLOMORPHIC SECTIONAL
AND ANTIHOLOMORPHIC RICCI CURVATURES

FERNANDO GIMENEZ AND VICENTE MIQUEL

We give some inequalities for the volume of a connected compact
real hypersurface of a compact Kaehler manifold with strictly positive
holomorphic sectional and antiholomorphic Ricci curvatures and prove
that some of the corresponding equalities characterize the geodesic
spheres in CP"(1).

1. Introduction. Let M be an n-dimensional connected compact
Riemannian manifold M. Let P be a connected compact hypersurface
of M. Suppose that the Ricci curvature of M is bounded from below
by a real number (n—1)A4, A > 0. Let A be an upper bound of the norm
of the mean curvature of P. Heintze and Karcher ([H-K]) proved that
the following inequality holds:

vol(S7)
vol(S7-1,)
where S,‘j denotes the g-sphere of constant sectional curvature k.
Moreover they showed that equality in (1.1) implies that both M

and P are of constant curvature.
Observe that $”~), is isometric to a geodesic sphere of S7 of radius

(1.1) vol(M) < vol(P),

A+A2?
r given by
(1.2) ; sin( \/—r OSrSL.
VI+AZ \/— v

Let %, 5 A be the family of pairs (P, M) of connected compact Rie-
mannian manifolds satisfying the hypothesis in the above statement
of the Heintze-Karcher’s result. Let us consider the function “relative
volume” 7°: %, ; o — R defined by 7 (P, M) = (vol(P))/(vol(M)).
Then Heintze-Karcher’s theorem is equivalent to: “For every triad
(n,4,A), the function 7 defined on %, ; 5 has a minimum C(n,4,A)
= 7(S"} S7), and this is the only pair on which the minimum is

ATAY
attained”.
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Then it seems to be interesting to find subsets & C %, ; » on which
there is a lower bound B of 7, B > C(n, 4, A), to study if the bound
B is a minimum of 7" on % and, if this is the case, to know the
elements in % realizing this minimum. We look for these subsets %
in %, ; A N %y, where %, is the family of pairs (P, M) such that M is
a connected compact Kaehler manifold of real dimension 2» and P is
a connected compact real hypersurface of M.

The choice of # requires a bit of reflexion. We expect 7 to have
a minimum on % and, if it is possible, to characterize the pairs on
which this minimum is attained. In Heintze-Karcher’s result, the set
Py 1.4 1s determined by a bound A of a trace of the curvature oper-
ator of M and a bound A of the trace of the Weingarten map of P.
Then the equality in (1.1) implies the equality of those traces with
their bounds, and this makes the respective operators to be a multiple
of the identity. Then the equality implies M is of constant sectional
curvature and P is umbilical. Since there is no nonflat Kaehler mani-
fold of constant sectional curvature, it is unlikely to find good results
on sets determined by a bound of the Ricci curvature. On the other
hand, it seems natural to expect the minima in some subsets of .%,
to be among the nonflat Kachler manifolds of constant holomorphic
sectional curvature, but there is no umbilical real hypersurface in such
Kaehler manifolds. All this forces us to choose carefully the invari-
ants related to the curvature of M and the Weingarten map of P to
be bounded to determine %.

We adopt the following definition for the curvature and the tensor
of Riemann-Christoffel:

R(X,Y)Z = -[Vx,Vy]Z +Vix1\Z,

and
Ryyzw = (R(X,Y)Z,W).

Let (M;(,);J) be a Kaehler manifold. Recall that a holomorphic
plane is that generated by two vectors of the form X, JX, and an
antiholomorphic plane is that generated by two vectors, X,Y such
that Y is orthogonal to both X and JX.

1.1. DEFINITION. The holomorphic (antiholomorphic) sectional
curvature Ky (K ,4) of a 2n-dimensional Kaehler manifold (A£;(,); J)
is the restriction of the sectional curvature of M to the holomorphic
(antiholomorphic) planes. The antiholomorphic Ricci curvature is the
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quadratic form p, defined on T, M for each x € M by

2n-2
pa(X) =Y Rxexe, forevery X € T:M,
k=1

where {ey,...,€,-2,€2,—1,J€2,—1} is an orthonormal basis of 7, M
such that e;,_; = X/|X|.

Observe that p, is a sum of antiholomorphic sectional curvatures.
We also remark that p(X, X) = p4(X) + Ky(X)|X|?, where p is the
Ricci curvature of M and Ky (X) is the holomorphic sectional curva-
ture of the plane generated by X and JX.

Bounds on Ky and K, have been used in [Gr2] for the related
problem of getting comparison theorems for the volume of a tube
about a complex submanifold of a Kaehler manifold.

1.2. DErFINITION. Let P be a real hypersurface of a Kaehler man-
ifold (M;( ,);J) of real dimension 2n. Let N be a unit vector field
normal to P defined on an open U of P. Let L be the Weingarten
map of P associated to N. We define the J N-normal curvature of
P at p € U, ks, as the normal curvature of P at p in the direction
J N with the orientation given by N, i.e. k;x(p) = (LJ/N,JN)(p). We
define the J N-mean curvature of P at p as the real number

Hyn(p) = g (tr L~ Kpy)(p) = G2 DE )

where H(p) is the mean curvature of P at p.

From now on, unless otherwise stated, M will denote a connected
compact Kaehler manifold of real dimension 2n, with metric {, ) and
almost-complex structure J. P will denote a connected compact real
hypersurface of M.

We will denote by CP"(A) the complex projective space of real di-
mension 2n and holomorphic (antiholomorphic) sectional curvature
4 (A). SE (BS) will denote the geodesic sphere (ball) of radius r
in CP"(A). T(fz viy—r = CP” (A) — BE will denote the geodesic tube
of radius (n/2vA) — r about the complex submanifold CP"~!(A) of
CP"(A).

The main results we shall prove here are

1.3. THEOREM. Let A, h,k be positive real numbers. Suppose that,
on M, Ky > 44, p4 > (2n — 2)A. Suppose that, on P, kyyH;y > 0,
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|Hyn| < h, lkyn| < k. Then

(CP"(A
(1.3.1) vol(M) < XOT(OI_(EF()i

vol(P),

where r = min{ry,r,}, and ry,r, are defined by k = 2\/Acot(2Vry),
and h = Vicot(vVry), 0 < VAr,, 2VAr, < n/2. The equality holds if
and only if r,, = ry, and there is a holomorphic isometry i: M — CP"(4)
such that i(P) = S€.

Of course, when n = 1, (1.1) and (1.3.1) are equivalent.

Let %, ; » x be the family of pairs (P, M) with M and P asin 1.3. Let
B(n,4,h,k) = (vol(St))/(vol(CP"(A))). Denote %, ; s by F, 1, and
B(n,A,h,k) by B(n,A,r) when r, = r, = r (then 0 < r < n/(4V7)).
Then 1.3 says: “B(n,A,h,k) is a lower bound of 7 restricted to
Znink- This bound is a minimum only when r, = r, = r, and
(SE,CP"(A)) is the only pair where this minimum is attained”. Ev-
idently %, ;, C Fppp» Where X' = ((2n 4+ 2)/(2n - 1))A, A =
((2n = 2)h + k)/(2n — 1) and, from the Heintze-Karcher’s result,
B(n,A,r) > C(2n,A',A’). By continuity it follows that, if (r;,r;,) is
in a sufficiently small neighbourhood of (r,r), then B(n,A,h,k) >
C(2n,2',N).

1.4. THEOREM. Assume M satisfies the same hypotheses as in 1.3,
and that P is orientable. Let h; > 0, k; (i = 1,2) be real numbers such
that ky < kyn < ks, hy < H;n < hy for a given orientation on P. Then

C
vol(BE)  volTi -,
4. < :
(1.4.1) vol(M) < (vol(sg)+ voI(SC vol(P),

where ry = max{ry,,ry},r2 = min{ry,,ry,} and ry,ry are defined by
ki = 2v/2cot(2VAr,) and h; = Vicot(Viry,), 0 < ry, 1, < n/(2VA).
The equality holds if and only if ry = r, = ry, =ry, = r and there is a
holomorphic isometry i: M — CP"(A) such that i(P) = SE.

Notice that if #Z is the harmonic mean of

vol(S€) vol(S¢
- and 2 R
vol(BE) vol(T(g " Va)—r))
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i.e.
_ 1 1

2
N + 5
Z  vol(S§)/vol(BE) * vol(SE)/ vol( T(‘r:l n \/I)—rz)

then (1.4.1) can be written as (vol(P)/ vol(M)) > (#/2).

The hypothesis of the orientability of P in (1.4.1) is of technical
nature: it is necessary to fix the direction of N at any point of P in
order to give universal bounds of k;y and H;y.

Let %, 5k be the family of pairs (P,M) with M and P as in
1.4. Let B(n,A,h;,k;) = #/2. Denote this % and B by z’n’,&r and
B'(n,A,r) when r, = r, = r (then 0 < r < (n/(2V4)). Then 1.4
says: “7 restricted to %, ; 5, x, has a lower bound B(n, 4, h;, k;). This
bound is a minimum only when ry = r, = r, and this minimum is
attained only on the pair (SE,CP"(1))”. For 0 < r < n/(4VA) we
have %, , . C %, and B'(n,A,r) = B(n,A,r). We recall that %7, ;,
and B(n,A,r) are not defined for n/(4v2) < r < n/(2VA). It is also
obvious that %, ; 5 x, C Fopyn With X' = ((2n+2)/(2n - 1))A, AN =
(1/(2n — 1)) max{(2n — 2)hy + ky,—(2n — 2)h; — k,;}, and also, from
Heintze-Karcher’s result, B'(n,A,r) > C(2n,4',A’). By continuity it
follows that, if (ry,, r,, 7y, 7,) is in a sufficiently small neighbourhood
of (r,r,r,r), then B(n,A, h;, k;) > C(2n, ', A").

We shall prove these theorems almost simultaneously in three steps.
In the first one (§2), we shall obtain a comparison result for the volume
element in Fermi coordinates around P, following the ideas in [Grl].
In a second step (§3) we shall do the corresponding integrations to
obtain (1.3.1) and (1.4.1). Then (§4) we discuss the equalities.

Finally, in §5, we state two results on the relative volume of the
boundary of a regular domain of a Kaehler manifold which are ob-
tained in the same form as 1.3 and 1.4 and may be useful to get
isoperimetric inequalities for Kaehler manifolds.

We wish to thank F. Carreras and O. Gil-Medrano for useful com-
ments. We are specially indebted to A. Montesinos for his constructive
criticisms on earlier versions of this paper.

2. The estimates for the volume element.

2.1. For every p € P and every unit vector N € T, M orthogonal
to T, P, let yn(s) be the geodesic such that yx(0) = p, y5(0) = N. Let
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S(N) = inf{t > O|yn(¢) is a focal point of P}. For every ¢ € 10, f(N)][,
there is a neighbourhood U of yy(%) and a neighbourhood V of p in
P such that P(t) = UnNn{m € M|d(m,V) = t} is a real hypersurface
of M. Let S(¢) be the Weingarten map of P(¢) associated to a unit
normal vector field N’ defined on P(¢) as an extension of y(¢). Then
S(t) satisfies the differential equation (see [Grl]):

(2.1.1) S'(t) = S(t)*> + R(2),

where S'(7) = V, 7S(?), and R(1)U = R(N'U)N' for every U €
TmP(t),m = yn(t), R being the curvature tensor of M.

Denote by (27 P) .# P the (unit) normal bundle of P in M. Let
 be the riemannian volume element of M, and dp that of P. Let
On(p,t) be the real function on {(p, N,t) e ¥/ P xR: 0 <t < f(N)}
defined by w(yn(¢)) = On(p, t)dpAdt. Then Oy satisfies the differential
equation (see [Grl]):

ONPD _ _rss).

(2.1.2) oD

2.2. PROPOSITION. Suppose that, on M,Kyg > 44, py > (2n — 2)A
(A > 0). Denote by #,P (¥ ,P) the fibre of /'P (¥4 P) at p. For
eachp € P and N € S¥ P, let {e;}1<i<an—1 be an orthonormal basis
of T, P such that e;,_y = JN, and let {E;(t)}1<i<2n—1 be parallel vector
fields along yn(t) such that E;(0) = e; (this implies Ey,_(t) = Jyy(2)).
Then, if L is the Weingarten map of P at p associated with the orien-
tation given by N, and L;; = (Le;, e;), we have

(2.2.1) On(p,t) < un(4,p,t), where
(2.2.2) un(A,p,t) = <cos2\/Zt - kJN(p)Si%\/;/—“)

sin \/It) -2

X (COS\/I[—HJN(I)) v

The equality in (2.2.1) is attained if and only if L;; = Lj; = B,1 <
i,j < 2n -2, and with respect to {E;(t)}1<i<an—1,S(t) and R(t) have



VOLUMES OF REAL HYPERSURFACES 29

the matrix form

8/(B.0)
BEACE) O
(2.2.3) S(t) = (B ,
ACE) o
MU
\ 0 RACTE)
(,1 0
\0 42
where
5,(B, 1) = cos(Vit) — % sin(vV/71),
kin .
Cikyw, 1) = cos(2VAt) — % sin(2V/41),

and ' denotes the derivative with respect to t.

Proof. Consider the functions
(2.2.4) fi(t) = (S()E;(¢), Ei(1)).

Taking the derivative of both sides of (2.2.4), using (2.1.1) and the
Cauchy-Schwarz inequality, we get

(2.2.5) f! =(S'E;,E;) = (S’E; + R()E;, E;) = |SEi|* + (R(1)E;, E;)
> (SE;, E))* + (R(E;, Ej) = f? + (R()E;, E;).

But,
2n-2
Y (R(E;, Ej) > (2n — 2)A
i=1
because, for i = 1,...,2n -2, the E; are perpendicular to both y}, and

Jyy, and p4 > (2n — 2)A. We have also
(R()E2n—1,E2p—1) > 44,

since Ky > 4A. Then, we have the differential inequalities
2n-2

1 2n—-2 ! 1 5
(2.2.6) (m;ﬁ) 22,1_2;12 +A

| 222\’
2(2,1—_32_:1f) +
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(2.2.7) Pone1 2 foo1 + 44
with
(2.2.8) fi(0)=(Lej,e;y =Ly, i=1,...,2n—1.

Then ([Grl, page 211]),

1 =2 VAsin Vit + Hjy cos VAt
2.2.9 — (1) >
( ) 2"—2Zfl()— cosﬁt—’—’ﬁsin\//_lt

i=1
(2.2.10) Fono1(t) > 2V sin 2Vt +k k“Y cos 2v/Az
cos 2v/At — 54 sin 2Vt

b

and the denominators of the right-hand sides of these inequalities are
positive from ¢ = 0 to the first zero of each one.
Then, from (2.1.2),

2n—-1
(2.2.11) %m On(p,t) = —trS(t) = — Y (S(Ei(1), Ei(t))

i=1
< itlnuzv(l,p, 1.

Then d(In(6n(p,t)/un(4,p,1)))/dt < 0, and On(p,t)/un(4,p,1) is a
decreasing function of ¢, whose value for ¢t = 0 is 1, whence (2.2.1)
follows.

If we have the equality in (2.2.1), then all the inequalities in this
proof must be equalities. Equality in (2.2.6) implies f;(f) = f;(¢) =
B(),1<i,j<2n-2,and B(0) = B = L;; = Lj;. Equalities in (2.2.5)
and (2.2.9) imply that E;(¢) are eigenvectors of S(¢) with eigenvalue
—05(B,1)/0,(B,t) for 1 < i < 2n—2 and —{(ksn,t)/i(kyn,t) for
i =2n — 1. This fact, (2.1.1) and the equalities in (2.2.6) and (2.2.7)
give the matrix form of R(¢). O

3. Proof of the inequalities (1.3.1) and (1.4.1).
3.1. LetRt = {te R:t > 0}, Rt = R* — {0}. Fori = 1,2 let
gi: Rf x RZ x R* — R be the functions defined by

(3.1.1) gk, B,1) = Li(eia, ) (e: B, 1)*" 2,
with g = +1,¢; = —1.

In general, given a function g: X x Rt — R, where X is a given space,
we denote by z(g) the function which to every x € X associates the
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first zero of the function 1 — g(x,?). Then we define g: R} xR?xR? —
R by

2 z(&)
(3.12) glhonfroaf) =Y [ alhonpurr
i=1

and f: Rf xRt xRt - R by
(3.1.3) [, B) = g(4, @, B, B).

3.2. LEMMA. f is an increasing function of a and p.

Proof. Since a, f > 0, we have

Z(gl (ﬂ" «, ﬂa t)) < 7[/(4\/1-) < Z(gZ(la a, ﬁ, t))
Then from the definition of f:

z(g1)
(3.2.1) f(ha,B) = /0 (81 + &) (A o, B, 1) dt

z(&2)
+ / &4, B, 1) dt.
Z

(&1)

Evidently g, is an increasing function of « and 8. For g, + g, we
have, denoting

a=cos2VAt, b= (sin2vit)/(2V7),

a=cosVAt and b= (sinVit)/V2A,
that

(81 + &2)(4a, B,t) = (a— ab)(a— Bb)*"~> + (a + ab)(a+ Bb)*"?
i 2n-2 AT
=2a ] a2n—2—2jb2]B2]
;1 < 2J )

n—1
2n =2\ 2p_2-2j32j-2 p2j-1
+2baba;(2j_l>a b~ ~°p ,

a=cos2\/It>0, for ¢t < T

42’
. 2
_sin 2Vt 50,

bab a7
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Then g; + g, is increasing in « and f for 0 < ¢ < z(g;). Then
0(g1 + &)/0a>0and d(g, + &)/dp > 0, which implies

o o [*#&) o [%s&)
sl o) =5 [ mdre 2 [

/Z(gl) b ( \d 2(&) 9 dt>0
= —(g1+& t+/ —gdt >0,
0 Ja ! 2 z(g1) oa 2

and, from a similar computation, % f(A,a,B) > 0. Then f is an
increasing function of « and f. o

3.3. ProPOSITION. (a) If M and P satisfy the same conditions as in
1.3 with the same bounds for Ky, p4,|Hyn| and |k y|, then

(3.3.1) vol(M) < /P SO ks (@)L | Hyn(0))dp < £(5 k. h) vol(P).

(b) If M and P satisfy the same conditions as in 1.4 with the same
bounds for Ky, p4, Hyy and k;y, then

(3.3.2) vol(M) < /P g kyn (), Hyn(0), ks n(0), Hyn(p)) dp
< g(h ki, by, ko, ) vol(P).

Proof. Let ¢(N) = sup{t > 0: d(P,yn(t)) = t}, cut P = {yn(c(N)):
N € v P}. From the facts that

M ={yn(t): Ne ¥V P,0<t<c(N)}UcutP,

yn 1s the only minimizing geodesic from P to yy(¢) forall ¢ € 0, c(N)],
c¢(N) < f(N) = z(0n(p, 1)), and the inequality (2.2.1), we have

e(N) (=N)
vol(M) = /P { /0 Oy (p, 1) di + /0 H_N(p,t)dl} dp

z(On(p,t)) z(6-n(p,t))
< / / Ox(p,t)dt + / 6_x(p,0)dt \ dp
P 0 0

Z(#N(}“ap’t))
<[1] un (i, p, 1) dt
P 0
2(u-n(A0,0))
+/ u-n(4,p,t)dt; dp,
0

and the first part of inequalities (3.3.1) and (3.3.2) follow from this
one, if we have in mind that the Weingarten maps of P associated to
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N and —N have opposite sign and, then, kjy = —k;_n) and H;y =
~Hjm.

The second part of the inequality (3.3.2) follows immediately from
the first, and the second of (3.3.1) follow from the first and Lemma

3.2 O
In order to prove (1.3.1) and (1.4.1) we need
3.4. LEMMA. Let S be the geodesic sphere of radius r in CP"(),p €
S¢ and N € S0, St pointing toward the centre of SC. Then there
is an orthonormal basis of T,SE of the form {e;}1<i<on—1 Such that

€1 = JN in which the Weingarten map of S¢ associated to N in
CP"(A) has the matrix form

VA cotVar 0

Va.cotVAr
0 2V cot2Var

Proof. An explicit expression for A = 1 is given in [C-R]. It can also
be obtained using the methods of [C-V].

3.5. Proof of (1.3.1). Let M = CP*(A),P = S¢ in 2.2. If we take
{€i}1<i<2n—1 as the basis given in 3.4, then all the inequalities of the

proof are equalities and, then
05" P (0,1) = un(A,p,1).

Moreover ¢(N) = z(un(4,p,t)), whence
vol(CP"(1)) = / (A, 2V cot2v/ar, VA cotVar) du,
SE

where du is the volume element of S¢. Then
(3.5.1)  vol(CP"(A)) = vol(SE) f(4, 2VA cot2Vir, VA cotVr).

If r,ry,r, have the values given in 1.3, then 2v/Acot2vAr > k and
vAcotv/Ar > h, and, since f is increasing in the last two arguments,
we get (1.3.1) from (3.3.1) and (3.5.1). O

3.6. Proof of (1.4.1). First observe that for M = CP*(A), P = S€,
e, N2, D, t) = gi(A, 2VAcot 2Var, Vi.cot Vir, t).
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Then, if r;, ry,, 1y, are the quantities defined in 1.4,

n
(3.6.1) vol(BE) = / / 21(4, 2V cot 2Var1, VA cot Viry, 1) dt du,
S,(l: 0

C
(3.62) vol (TS, )

(m/2VA)—r
=/ / (A, 2V A cot 2vVAry, VAcot Var,, t) dt du.
scJo

From the definition of the r; and g;:
(3.6.3) gi(A, 2V cot 2vVar;, VAcot Var;, t) > gi(A, ki, hi,t).
Then we get (1.4.1) from (3.6.1,2,3) and (3.3.2). O

4. Equality discussion. First we recall some known facts about Ja-
cobi operators. We take them from [Ch].

4.1. DEFINITION. Let p € P, N € ¢4 ,P, yn(f) as in 2.1. Let
7, be the parallel transport along yn(¢). Then the Jacobi operator
A(t, N): {y\(0)} — {y\(0)}+ is defined by

A(t,N)e = 171 Y (2),
where Y (¢) is the transverse Jacobi field along yx such that Y(0) = e,
VY =Y'(0) = —Le.

4.2. PropPoOsSITION [Ch]. A(t, N) satisfies the differential equation:
(4.2.1) A"(t,N)+ #(t)A(t,N) =0
with the initial conditions A(0,N) = I, A'(0,N) = —L, where Z(t) =
7 'R(D)1,.

Observe that if {E;} is a basis of {y}(¢)}* obtained by parallel
transport of a basis {e;} of {¥),(0)}*, then the matrix of R(¢) in the
basis {E;} and that of Z(¢) in the basis {¢;} are the same.

4.3. ReEMARK. For every subset S of TM, denote by expg the
restriction to S of the exponential map on 7M. Let /' P(t) = {X €
AP such that | X| = t}. From Definition 4.1 it is obvious that

rank(A(z, N)) = rank(exp ,p(s)-/n)-

4.4. DEFINITION. Let m € M, y:(t) a geodesic parametrized by its
arc length starting from m (y;(0) = m), with yé(O) = £. Then the
Jacobi operator A, (¢,&): {€}+ — {€}+ is defined by
(4.4.1) Am(t,E)e = 171Y(2),
where Y (¢) is the jacobi field along y:(¢) such that Y(0) =0, Y'(0) = e.
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4.5. PROPOSITION [Ch]. A4,,(t,&) satisfies the differential equation
(4.5.1) A (8,8) + Bm(D)Am(8,€) =0

with the initial conditions A,,(0,&) = 0,4),(0,&) = I, where Z(t):
{&}+ — {&} is defined by

Fm(t)e = 1, ' R(yp(2), 11€)73(1).

4.6. ProposITION [Ch]. Let &1 be a coordinate system of the
euclidean sphere S*"~' of T,,M. Then x(t,u) = exp,, t&(u) defines a
system of polar geodesic coordinates x=' around m. In this coordinate
system the metric tensor has the expression

2n-1
ds?=dr*+ ) <Am(t Ew)5 o6

i,j=1

(), (1,6 2 (u )>duf i,

4.7. ProposITION [Ch]. Let ¢! be a coordinate system of P C M.
Then v(t,u) = exp,(,) tN(u) defines a system of Fermi coordinates v~ -1
around P. In this coordmate system the metric tensor has the expression

2n—1
ds?=di+ Y <A(r Np) 229 42, N(p(u) 22 )>d ' du

ou
i,j=1

In order to prove 1.3 and 1.4 it only remains to know what happens
when equality occurs in (1.3.1) or (1.4.1). To do it we observe the
following facts:

4.8. To prove (1.3.1) we used in 3.5 that
(4.7.1) f(k,h) < f(A, 2V cot 2Var, VA cot VAr)
and equality implies r = r, = r, (i.e. kK = 2V/Acot2VAr and h =

VA cotVar).

4.9. Equality in (1.3.1) implies equality in (3.3.1) and then, looking
at the proof of (3.3.1) we observe that equality implies ¢(N) = f(N) =
Z(GN(AWP’ t)) = Z(:uN()"pa t)) =r.

4.10. Equality in (3.3.1) implies |k;n(p)| = k, |Hyn(p)| = h, be-
cause f is an increasing function. Then, for every p € P we can
take N € %/ pP such that, for the Weingarten map L of P associ-
ated to N, k;y = kK and H;y = h. In particular, P is orientable,
¥ P has two connected components and the subset ./ of such N is
one of them. With this choice, equality in (1.3.1) implies equality in
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(2.2.1) and, from 2.2, with respect to the basis given in 2.2, L has a
diagonal matrix with L;; = A = VAcotvAr for 1 < i < 2n—2 and
Lyy_12n—1 = k = 2v/Acot2v/Ar, and Z#(t) has the matrix expression
given in (2.2.3).

4.11. Let &/ be the set of the N € ## P considered in 4.10. Then,
from 4.2 and 4.10 we have that equality in (1.3.1) implies

S (£VAcotVir, t)
A(t,£N) = O

0
Li(£2vA cot 2V, 1)

iV cotVr, t)

The matrices A(¢, N), N € &, have rank 2n — 1 for 0 < ¢ < r,
and rank O for ¢ = r. Then, from 4.3, rank(exp,p(;)-,n) = 0 for
every N € /. This implies that there is a point m € M such that
exp,p({rN,N € &}) = {m}.

In the following assertions we always assume the equality in (1.3.1)
(and hence in (3.3.1)).

4.12. For N € &/, equality in (3.3.1) implies (as in 4.9) ¢(—N) =
f(=N) = z(u_n(4,p,1)) = (n/2v/A)—r. Then the focal set and the cut-
focal points of P in the direction of — N are focal _(P) = cut_(P) =
{r-~n((m/2VA) ~r): Nes}.

4.13. As a consequence of 4.11 every point p € P can be joined
to m by a geodesic yy(t), N € &, such that yy(r) = m, m is the
first focal point of P in the direction N and r = ¢(N). Let N(p) be
the unique element of &/ N T,M. Let S27-1 be the unit sphere in
T.M. Let us consider the continuous map ®: P — S$2"~1 given by
d(p) = —yfv(p)(r) = —(d(exp,ptN(p))/dt)(r). Since P is compact, we
have that ®(P) is closed in S?*~1,

Lete eR,0<e< (n/2VA)—rand V =exp,p{tN: —e<t<r,
Ned} =exp,{s¢: 0<s<r+e &€ DP)}. Then it follows from
4.11 and 4.12 that V is open. Let z: R} x $?"~! — T,,M — {0} be
the diffeomorphism given by z(s,£) = s&. Then ]0,r + ¢[x¢(P) =
z~lexp;,, (V) is open, then ®(P) is open in $?*~1. Since $?"~! is
connected, we have that ®(P) = S§?*~! and, then, P = Sy,(r), the
geodesic sphere of M of center m and radius r.
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4.14. From 4.5 and (2.2.3) we have, for every ¢ € $"~! ¢ T,, M,

—; sin Vs
An(s,6) = 0 —; sin Vs 0
ﬁ sin 2v/As
Then
rank Ap,(s,&) =2n—1 for 0<s < n/(2V2)
and

rank A, (n/(2V4),&) = 2n -2
which implies that ¢y(¢) := min{z > 0: y:(¢) is a conjugate point of
m along y:} = n/ (2v/2). Then, the set of conjugated points of m is
conj(m) = {y¢(n/(2V7)),& € §?"~! C T,, M} and, given & € $¥~! C
TyM, if N € & is such that ¢ = —y)(r), then y:(s) = yn(r—s) =
P-N(s —7).
4.15. From 4.14, y:(n/(2V4)) = y_n(n/(2VA) —r). Then from 4.12

and 4.14 conj(m) = cut_(P) = cut(m), where cut(m) is the cut locus
of m. This allows us to define the map i’

(4.15.1) i': M — cut(m) — CP"(A) — cut(m')

in the following form: Let j: 7,,M — T,,CP"(1) be a holomorphic
isometry, then we define

i'(exp,, S&) = exp,, sj(£), for0<s<m/2VA &EeS* 1,

Since %,,(t) is the same map for M and for CP"(1), we have
Ap(8,E) = A (s, j(€)). If €71 is a coordinate system in $27~1 ¢ T,,M
which defines polar geodesic coordinates x~! around m as in 4.6,

&1 = (jo&)~! defines polar geodesic coordinates x'~! around m’
such that i/ o x~! = x/~1. Then, from 4.6, i’ is a holomorphic isome-
try.

4.16. Since the map i’ in (4.15.1) is a holomorphic isometry, M —
cut(m) has constant holomorphic sectional curvature. Moreover, M —
cut(m) is dense in M, whence by continuity, M has constant holomor-
phic sectional curvature, and, M being compact, there is a holomor-
phic isometry i: M — CP"(A) (cf. [K-N]). Let m' = i(m) and j = i*.
Then ijpr—cui(m) = ¢', which implies (by 4.13) that i(P) = '(Sn(r)) =
S¢. This finishes the proof of Theorem 1.3.
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To prove 1.4, observe that equality in (1.4.1) implies that (3.6.3) are
equalities, and, then, r; = ry, = ry,. Also, equality in (1.4.1) implies
equalities in (3.3.2) and, then k; = kyn,h; = Hyn, and r; = r. Then,
Hjn = Vicot(Var), kyny = 2v/Acot(2v/Ar), and, from here, the proof
of 1.4 follows from similar arguments to those used in 1.3.

5. Inequalities on the relative volume of the boundary of a domain in
a Kaehler manifold. The proof of 1.4 also proves, with slight modifi-
cations, the following result:

5.1. THEOREM. Let M be as in 1.3. Let Q be a compact regular
domain of M with boundary 8Q = P. For everyp € P take N € ¥ , P
such that N points toward Q (i.e. yn(t) € Q for small t > 0).

(a) Let hy > 0, k; be real numbers such that k; < kyn(p), by <
H;x(p) for every p € P. Then:

vol(6Q) vol(SE
vol(Q) ~ vol(BE)’

where ry,, ry,, 11 are defined as in 1.4. When Q and 0Q are connected,
the equality holds if and only if ry = ry, = ry, and there is a holomorphic
isometry i: Q — BE such that i(0Q) = SE.

(b) Let hy, k, be real numbers such that kjn(p) < kz, Hyn(p) < hy.
Then

(5.1.1)

vol(0Q) S vol(SS)

—Q) = C ’
vol(M — Q) vol(T(n/2 VI)—r2)

where ry = min{ry,, r,}, 1, is defined as in 1.4, and ry, is defined by
hy = VAcotVar,,0 < r, < n/VA. The equality in (5.1.2) implies
I‘h2 = rk2 =Tr;.

(5.1.2)

5.2. COROLLARY. Let M,Q,0Q and N be as in 5.1 (a), but now
h; <0. Then

vol(0Q) vol(SE

— C 2
vol(€2) vol(T(n P \/,T)—r,)

(5.2.1)

where r| = min{ry ,ry }, and r, , ry, are defined by —h; = \/Acot Vi,
—ky = 2vAcot2var, 0 < 1y, 1y, < m/2VA. The equality in (5.2.1)
implies ry, = ry,.

Proof. M — Q, 8Q and —N satisfy the condition of 5.1 (b) with
hy = —h; and k; = —k;. Then the r;, defined in 5.1(b) is less than
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or equal to n/2v/A, because h; = —h; > 0. Then the result of 5.1(b)
holds and we get 5.2. o
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