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VOLUME ESTIMATES FOR REAL HYPERSURFACES
OF A KAEHLER MANIFOLD

WITH STRICTLY POSITIVE HOLOMORPHIC SECTIONAL
AND ANTIHOLOMORPHIC RICCI CURVATURES

FERNANDO GIM6NEZ AND VICENTE MIQUEL

We give some inequalities for the volume of a connected compact
real hypersurface of a compact Kaehler manifold with strictly positive
holomorphic sectional and antiholomorphic Ricci curvatures and prove
that some of the corresponding equalities characterize the geodesic
spheres in CPn (λ).

1. Introduction. Let M be an «-dimensional connected compact
Riemannian manifold M. Let P be a connected compact hypersurface
of M. Suppose that the Ricci curvature of M is bounded from below
by a real number (n -1 )λ, λ > 0. Let Λ be an upper bound of the norm
of the mean curvature of P. Heintze and Karcher ([H-K]) proved that
the following inequality holds:

(1.1) vol(M) <

where S% denotes the ^-sphere of constant sectional curvature k.
Moreover they showed that equality in (1.1) implies that both M

and P are of constant curvature.
Observe that S%~^2 is isometric to a geodesic sphere of S" of radius

r given by

(1.2) -7=L= = -if sin(VXr), 0 < r < \
y/λ + A2 y/λ y/λ

Let ^ ?Λ,Λ be the family of pairs (P, M) of connected compact Rie-
mannian manifolds satisfying the hypothesis in the above statement
of the Heintze-Karcher's result. Let us consider the function "relative
volume" T: 3ίnXk -> R defined by ^(P,M) = (vol(P))/(vol(Af)).
Then Heintze-Karcher's theorem is equivalent to: "For every triad
(π,λ,Λ), the function 'V defined on &nχk has a minimum C(n,λ,A)

= ^(S"+Λ2>^T)>
 a n ( * ^ s ^s ^ e o nty p a * Γ o n w^ich the minimum is

attained".
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Then it seems to be interesting to find subsets 38 c 31 nyλ?Λ on which
there is a lower bound B of Ψ*, B > C(n,λ,A), to study if the bound
B is a minimum of Ψ on 3S and, if this is the case, to know the
elements in 38 realizing this minimum. We look for these subsets 38
in 3ϋn^ Π 3?n> where Jfn is the family of pairs (P, M) such that M is
a connected compact Kaehler manifold of real dimension In and P is
a connected compact real hypersurface of M.

The choice of 38 requires a bit of reflexion. We expect "V to have
a minimum on 38 and, if it is possible, to characterize the pairs on
which this minimum is attained. In Heintze-Karcher's result, the set
^n,λ,A is determined by a bound λ of a trace of the curvature oper-
ator of M and a bound Λ of the trace of the Weingarten map of P.
Then the equality in (1.1) implies the equality of those traces with
their bounds, and this makes the respective operators to be a multiple
of the identity. Then the equality implies M is of constant sectional
curvature and P is umbilical. Since there is no nonflat Kaehler mani-
fold of constant sectional curvature, it is unlikely to find good results
on sets determined by a bound of the Ricci curvature. On the other
hand, it seems natural to expect the minima in some subsets of 3fn

to be among the nonflat Kaehler manifolds of constant holomorphic
sectional curvature, but there is no umbilical real hypersurface in such
Kaehler manifolds. All this forces us to choose carefully the invari-
ants related to the curvature of M and the Weingarten map of P to
be bounded to determine 38.

We adopt the following definition for the curvature and the tensor
of Riemann-Christoίfel:

R{X9 Y)Z = -[V*, V y ]Z

and

Let (Af; (,);/) be a Kaehler manifold. Recall that a holomorphic
plane is that generated by two vectors of the form X, JX, and an
antiholomorphic plane is that generated by two vectors, X, Y such
that Y is orthogonal to both X and JX.

1.1. DEFINITION. The holomorphic (antiholomorphic) sectional
curvature KH (KA) of a 2n-dimensional Kaehler manifold {M\ (,);/)
is the restriction of the sectional curvature of M to the holomorphic
(antiholomorphic) planes. The antiholomorphic Ricci curvature is the
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quadratic form pA defined on TXM for each x e M by

2/1-2

A4(ΛΓ) = Σ Rxetxet, for every X e ΓxΛf,
Λ r = l

where {^I, ...,£2«-2>^2«-i>^2«-i} is a n orthonormal basis of TXM
such that ^2n-i = X/\X\-

Observe that /?̂  is a sum of antiholomorphic sectional curvatures.
We also remark that p(X9X) = PA(X) + KH(X)\X\2, where p is the
Ricci curvature of M and KH{X) is the holomorphic sectional curva-
ture of the plane generated by X and JX.

Bounds on KH and KΛ have been used in [Gr2] for the related
problem of getting comparison theorems for the volume of a tube
about a complex submanifold of a Kaehler manifold.

1.2. DEFINITION. Let P b e a real hypersurface of a Kaehler man-
ifold (M ( ,); /) of real dimension In. Let N be a unit vector field
normal to P defined on an open U of P. Let L be the Weingarten
map of P associated to N. We define the JN-normal curvature of
P at p e U, kjN, as the normal curvature of P at p in the direction
JN with the orientation given by N9 i.e. kjχ{p) = (LJN, JN)(p). We
define the /iV-mean curvature of P at /? as the real number

__ , x 1 , _ r , w v {In — \)H —

«>tf(p) = ( t r L *™)fr) =

2/1-2

where i/(p) is the mean curvature of P at p.

From now on, unless otherwise stated, M will denote a connected
compact Kaehler manifold of real dimension 2n, with metric (, ) and
almost-complex structure J. P will denote a connected compact real
hypersurface ofM.

We will denote by CPn(λ) the complex protective space of real di-
mension In and holomorphic (antiholomorphic) sectional curvature
4λ (λ). S*r (Bfr) will denote the geodesic sphere (ball) of radius r
in CPn(λ). If ly/ί = CPn(λ) - B*r will denote the geodesic tube

of radius (π/2y/λ) - r about the complex submanifold CPn~ι(λ) of
CPn(λ).

The main results we shall prove here are

1.3. THEOREM. Let λ,h,k be positive real numbers. Suppose that,
on M, KH > 4λ, pA > (2/i - 2)λ. Suppose that, on P, kJNHJN > 0,
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\HJN\ < h, \kJN\ < k. Then

where r = min{rk,rh}f and rk,rh are defined by k = 2\/lcoX{2\/λrk)i

and h = Vλcot(Vλrh)f 0 < y/λrh,2Vλrk < π/2. The equality holds if
and only ifrk = r^ and there is a holomorphic isometry i: M —> CPn(λ)
such that i{P) = Sf.

Of course, when ΛI = 1, (1.1) and (1.3.1) are equivalent.

Let J^n λ h k be the family of pairs (P, M) with M and P as in 1.3. Let
B{nXh]k) = (vol(Sf))/(vol(CP»(λ))). Denote JΓnMJk by XnX? and
B(n,λ,h9k) by B{n,λ,r) when rk = rh = r (then 0 < r < π/(4y/λ)).
Then 1.3 says: uB(n,λ,h9k) is a lower bound of ^ restricted to
<%n,λ,h,k- This bound is a minimum only when rk = rh = r, and
(5*%CPM(Λ)) is the only pair where this minimum is attained". Ev-
idently 3?nXr c <&2n,λ>Λ>> w h e r e λ' = ((2/ι + 2)/(2/i - l))λ, Λ' =
((2/i - 2)Λ + k)/(2n - 1) and, from the Heintze-Karcher's result,
B(n,λ,r) > C(2n,λf,Af). By continuity it follows that, if (rk,rh) is
in a sufficiently small neighbourhood of (r,r), then B(n,λ,h,k) >

1.4. THEOREM. Assume M satisfies the same hypotheses as in 1.3,
and that P is orientable. Let hi > 0, k\ (i = 1,2) be real numbers such
that k\ < kjx <kι, h\< HJM < hi for a given orientation on P. Then

where rx = max{r fa,rAl},r2 = min{r fe,rΛ2} α«rf rfc,rA/

A:/ = 2yfλotit(2yίλrk) and hi = VλθQ\{\fλrhi), 0 < rA/,r^ < π/(2\/ϊ).
ΓΛe equality holds if and only ifr\ = Γ2 = r^ = rA. = r and there is a
holomorphic isometry i: M -• C/^λ) .swcΛ /Aα/ /(P) = Sfr.

Notice that if %? is the harmonic mean of
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i.e.

then (1.4.1) can be written as (vol(P)/vol(M)) > (JT/2).

The hypothesis of the orientability of P in (1.4.1) is of technical
nature: it is necessary to fix the direction of N at any point of P in
order to give universal bounds of kjx and ///AT.

Let ^nXh^ki be the family of pairs (P,M) with M and P as in
1.4. Let Ίi(n9λ9hi9ki) = &J2. Denote this 3? and B by J%λr and
B'(n9λ9r) when rkι = rhι = r (then 0 < r < (π/(2y/λ)). Then 1.4
says: "T restricted to ^,,AΛΛ

 h a s a l o w e r bound B(n,λ,hi,ki). This
bound is a minimum only when r^ = r^ = r, and this minimum is
attained only on the pair (S*r,CPn(λ))". For 0 < r < π/{4\fλ) we
have 3%λr c ^nχr and B'(n,λ,r) = B(n9λ9r). We recall that ^ Λ r

and B{n,λ,r) are not defined for π/(4\/λ) < r < π/(2y/λ). It is also

obvious that J Γ M Λ Λ c XWΛ w i t h λ ' = ^ l n + 2 ) / ( 2 n " l»λ>A' =
(l/(2n - l))max{(2/i - 2)Λ2 + k2,-(2n - 2)Λi - ArJ, and also, from
Heintze-Karcher's result, B'(n,λ,r) > C(2n9λ'9M). By continuity it
follows that, if (rkι, r fe, rΛl, r f e) is in a sufficiently small neighbourhood
of (r,r,r,r), then B{n9λ9hi9ki) > C(2n,λ',Ar).

We shall prove these theorems almost simultaneously in three steps.
In the first one (§2), we shall obtain a comparison result for the volume
element in Fermi coordinates around P9 following the ideas in [Grl].
In a second step (§3) we shall do the corresponding integrations to
obtain (1.3.1) and (1.4.1). Then (§4) we discuss the equalities.

Finally, in §5, we state two results on the relative volume of the
boundary of a regular domain of a Kaehler manifold which are ob-
tained in the same form as 1.3 and 1.4 and may be useful to get
isoperimetric inequalities for Kaehler manifolds.

We wish to thank F. Carreras and O. Gil-Medrano for useful com-
ments. We are specially indebted to A. Montesinos for his constructive
criticisms on earlier versions of this paper.

2. The estimates for the volume element.

2.1. For every p e P and every unit vector N e TPM orthogonal
to TPP, let γN(s) be the geodesic such that γN(0) = p9 y'N{0) = N. Let
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f(N) = inf{t > O\γN(t) is a focal point of P}. For every t e ]0,f(N)[9

there is a neighbourhood U of yjv(ί) and a neighbourhood F of p in
P such that P(t) = U Π{m e M\d(m, V) = /} is a real hypersurface
of M. Let S(t) be the Weingarten map of P(t) associated to a unit
normal vector field N* defined on P(t) as an extension of γ'N(t). Then
S(t) satisfies the differential equation (see [Grl]):

(2.1.1) S'(t) = S(t)2+R(t),

where S'(t) = VyJy(0S(ί), and R(t)U = 7?(iW)JV' for every U e
TmP(t)9 m = 7ΛK0? ^ being the curvature tensor of M.

Denote by (SWP) JVP the (unit) normal bundle of P in Λf. Let
ω be the riemannian volume element of M, and dp that of P. Let
0ΛK/?, 0 be the real function on {(/?, N91) e <9WP xR:0<t< f(N)}
defined by ω(y#(/)) = θχ{p, ήdpΛdt. Then ̂  satisfies the differential
equation (see [Grl]):

<2 '-2>

2.2. PROPOSITION. Suppose that, on M,KH > 4λ, PA > (2/2 -
(λ > 0). Denote by JfpP {SWPP) the fibre ofJVP (<9WP) at p. For
each p e P and N e SWPP, let {^/}i</<2«-i be an orthonormal basis
ofTpP such thate2n-\ = JN, and let {-E/(ί)}i<i<2/i-i be parallel vector
fields along yN(t) such that Ex-(0) = et (this implies Eln-\(t) = Jy'N(t))
Then, ifL is the Weingarten map of P at p associated with the orien-
tation given by N, and L\j — {Le^ej), we have

(2.2.1) θN(p9t) < μN(λ9p9t)9 where

(2.2.2) μN{λ,p,t)= Uos2Vλt-kJN(p)S-^^\

2n~2

x cosVλt- HJN(p):sinVλt\

Vλ J

The equality in (2.2.1) is attained if and only if La = Ljj = /?, 1 <
Uj <2n-2, and with respect to {Ei(t)}x<i<2n-\,S(t) and R(t) have
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the matrix form

(2.2.3) S{t) =

0

R(t) =

I o
(λ 0 λ

Aλ)

where

δλ(β, t) = cos{\Γλt) - -L si

f, t) = cos(2Vλt) - ϊlψ sin(2vΊί).

and' denotes the derivative with respect to t.

Proof. Consider the functions

(2.2.4) fi(t) = {S(t)Ei(t),Ei(ή).

Taking the derivative of both sides of (2.2.4), using (2.1.1) and the
Cauchy-Schwarz inequality, we get

(2.2.5) f'i = (SΈh Ei) = (S2Ei + R(t)Eh Ei) = \\SEi\\2 + (R(t)Eh Eή

> {SEhEi)2 + (R(t)EhEi) =ft + (R(t)EhEi).

But,

i=\

because, for / = 1,..., 2n - 2, the Ei are perpendicular to both γ'N and
Jγ'N, and PA > (2n - 2)λ. We have also

since KJJ > Aλ. Then, we have the differential inequalities

2n-2 2n-2

2n-2
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(2.2.7) .&-i> >&-i+4Λ;

with

(2.2.8) MO) = (Lehei) = Lih i = 1 2/i - 1.

Then ([Grl, page 211]),

2 HJNcos\/λt

,«. «, , nv f fΛ . 2Vls in 2 v Ί ί + kJN cos
(2.2.10) f2n.x(t) >

and the denominators of the right-hand sides of these inequalities are
positive from t = 0 to the first zero of each one.

Then, from (2.1.2)3

(2.2.11) %-tlnθN(p9t) =

Then d(ln(θN(p,ή/μN(λyp,ή))/dt < 0, and θN(p,t)/μN(λ,p,t) is a
decreasing function of ί, whose value for ί = 0 is 1, whence (2.2.1)
follows.

If we have the equality in (2.2.1), then all the inequalities in this
proof must be equalities. Equality in (2.2.6) implies yj (ί) = fj{t) =
β(t), 1 < ij <2n-2, and β(0) = β = La = LJJ. Equalities in (2.2.5)
and (2.2.9) imply that Eι{t) are eigenvectors of S(t) with eigenvalue
- W ) / $ ι G M ) for 1 < i < 2/f - 2 and -ζ'λ(kJN,ή/ζλ(kjN,t) for
ι = 2 / i - l . This fact, (2.1.1) and the equalities in (2.2.6) and (2.2.7)
give the matrix form of R(t). π

3. Proof of the inequalities (13.1) and (1.4.1).
3.1. Let R+ = {t e R: t > 0}, R+ = R+ - {0}. For i = 1,2 let

gi: R+ x R2 x R+ -• R be the functions defined by

(3.1.1) gi(λ9a9β,t) =

with ε\ = + M 2 = - l

In general, given a function q: X x R+ —• R, where X is a given space,
we denote by z(q) the function which to every x e X associates the
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first zero of the function t —• q(x, t). Then we define g: R+ x R2 x R2

Rby

2 rz(gi)

(3.1.2) g{λfal9β1,a2,β2) = Σ gi(λ,ahβht)dt,

and / : R+ x R+ x R+ -+ R by

(3.1.3) f(λ9a9β) = g(λ9a9β9a9β).

3.2. LEMMA. / is an increasing function of a and β.

Proof. Since α, β > 0, we have

z(gι(λ9a9β9ή) < π/(4y/λ) < z(g2(λ9a9β9ή).

Then from the definition of / :

(3.2.1) f{λ9a9β)= [Z{g\gι+g2)(λ,a,β,t)dt
Jo

gi)

g2(λ,a,β,t)dt.

Evidently g2 is an increasing function of a and β. For g\ + g2 we
have, denoting

a = cos 2y/λt9 b = (sin 2Vλt)/(2y/λ),

a = cos Vλt and b = (sin y/λt)/y/λ9

that

(g\ + gi){λ, α, β, t) = (a - cti

M -'-1

a = cos 2V/U > 0, for t < —•=,
4vΛ

4λ "
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Then g\ + g2 is increasing in a and β for 0 < t < z{gχ). Then
d{g\ + g2)/da > 0 and d{g\ + gi)ldβ > 0, which implies

8

Jo da Jz{gι) da g2dt>0,

and, from a similar computation, jLf{λ,a,β) > 0. Then / is an
increasing function of a and β. π

3.3. PROPOSITION, (a) IfM and P satisfy the same conditions as in
1.3 with the same bounds for KH, PA, \HJN\ arχd \kjχ\, then

(3.3.1) vol(M)< ίf(λ,\kjN(p)l\HjN(p)\)dp<f(λ,k,h)vo\(P).
Jp

(b) IfM and P satisfy the same conditions as in 1.4 with the same
bounds for KH, ρA,HJN andkjx, then

(3.3.2) vol(M)< [ g(λ9kJN(p)9HjN(p)9kjN(p)9HJN(p))dp
Jp

Proof, Let c(N) = sup{t > 0: d(P9 γN(ή) = /}, cutP = {γN(c(N)):
N e SZTP}. From the facts that

M= {γN(ή: Ne^TP.O^ t < c(ΛΓ)}UcutP,

γN is the only minimizing geodesic from P to yjv(O f° r all t e ]0, c(N)[,
c(N) < f(N) = z(θN(p, t))9 and the inequality (2.2.1), we have

f { fc(N) rc(-N) ]
vol(M) = / < / θN(p, t)dt+ I Θ-N(p, t) dt > dp

Jp yJo Jo J
r ( rz(θN(p,ή) rz(θ-N(jp,t)) "|

< / { θN{p9t)dt+ / Θ-N{p9t)dt\ dp
Jp yJo Jo J

Γ rz(μN(λ,p,ή)

, / μN(λ9p9t)dt

+ / μ-N{λ,pJ)dt\ dp,

and the first part of inequalities (3.3.1) and (3.3.2) follow from this
one, if we have in mind that the Weingarten maps of P associated to



VOLUMES OF REAL HYPERSURFACES 33

N and -N have opposite sign and, then, kjx = -kj^_N) and HJN =

The second part of the inequality (3.3.2) follows immediately from
the first, and the second of (3.3.1) follow from the first and Lemma
3.2. D

In order to prove (1.3.1) and (1.4.1) we need

3.4. LEMMA. Let Sf be the geodesic sphere of radius r in CPn(λ),p e
5 r

c and N e &WpSξ pointing toward the centre of Sf. Then there
is an orthonormal basis of TpS*r of the form {e/}i</<2«-i such that
€2n-ι = JN in which the Weingarten map ofS^r associated to N in
CPn(λ) has the matrix form

(\fλzo\\fλr 0

Vλcot\/λr
0 2y/λcot2VλrJ

Proof. An explicit expression for λ = 1 is given in [C-R]. It can also
be obtained using the methods of [C-V].

3.5. Proof o/(1.3.1). Let M = CPn(λ),P = Sf in 2.2. If we take
{*I}I</<2Λ-I

 a s the basis given in 3.4, then all the inequalities of the
proof are equalities and, then

Moreover c(N) = z{μχ(λ,p, t))9 whence

vol(CPn(λ))= ί

where du is the volume element of Sfr. Then

(3.5.1) vol(CPΛ(A)) =

If r,rk,rh have the values given in 1.3, then 2\[λo,o\2\[λr > k and
\fλco\\fλr > h, and, since / is increasing in the last two arguments,
we get (1.3.1) from (3.3.1) and (3.5.1). D

3.6. Proof of"(1.4.1). First observe that for M = CPn(λ),P = Sr

c,

PeM^P't) = gi(λ,2\ίλco\2y/λr,\/λcoiyfλr,t).
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Then, if r, ,/%.,/•£. are the quantities denned in 1.4,

(3.6.1) vol(Bf) = f ί ' gx{λ,2Vλcot2Vλruy/λ<x>\y/λrut)dtdu,
Jsc Jo

Js? Jo

(n/2Vλ)-r2

g2(λ, 2V7cot2vAr2, Vλ cot Vλr2, t) dtdu.

From the definition of the r7 and g, :

(3.6.3) gi{λ,2\fλco\2\/λrh\fλco\\fλri,t) > gi{λ,khhht).

Then we get (1.4.1) from (3.6.1,2,3) and (3.3.2). D

4. Equality discussion. First we recall some known facts about Ja-
cobi operators. We take them from [Ch].

4.1. DEFINITION. Let p e P, N e SWPP, y^(ί) as in 2.1. Let
τt be the parallel transport along 7ΛΓ(0 Then the Jacobi operator
A(t,N): {γ'xiO)}^ -> {γ'N(0)}λ is defined by

where Y(t) is the transverse Jacobi field along γ^ such that Γ(0) = e,

vA(O)ysr(θ) = - k

4.2. PROPOSITION [Ch]. A(t,N) satisfies the differential equation:

(4.2.1) A"{t, N) + &{t)A{t, N) = 0

with the initial conditions A(0,N) = I, A'(0,N) = -L, where 31 (t) =

Observe that if {Eϊ} is a basis of {y^(ί)}"1 obtained by parallel
transport of a basis {et} of {^(O)} 1, then the matrix of R(t) in the
basis {Ei} and that of 31 {fy in the basis {eft are the same.

4.3. REMARK. For every subset S of TM, denote by exρ s the
restriction to S of the exponential map on TM. Let JTP{{) = {X e

such that \X\ = t}. From Definition 4.1 it is obvious that

4.4. DEFINITION. Let m e M, γξ(t) a geodesic parametrized by its

arc length starting from m (γζ{0) = m), with y£(0) = ξ. Then the

Jacobi operator Am(t,ξ): {ζ}1 -+ {ζ}1 is defined by

(4.4.1) Am(t9ξ)e = τ7ιY(t),

where Y(t) is the jacobi field along γξ(t) such that Y(0) = 05 Γ(0) = e.
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4.5. PROPOSITION [Ch], Am(t,ζ) satisfies the differential equation

(4.5.1) An

m{t,ξ)+am{f)Am{t,ξ) = 0

with the initial conditions Am(0,ξ) = 0 , ^ ( 0 , 0 = /, where 3?m(t)
_+ {ξ}± is defined by

4.6. PROPOSITION [Ch]. Let ξ~ι be a coordinate system of the
euclidean sphere S2n~ι ofTmM. Then x(t9u) = exρw tξ(ύ) defines a
system of polar geodesic coordinates x~ι around m. In this coordinate
system the metric tensor has the expression

£
4.7. PROPOSITION [Ch]. Let φ~ι be a coordinate system ofP c M.

Then v(t, ύ) = expφ(U) tN(u) defines a system of Fermi coordinates v~ι

around P. In this coordinate system the metric tensor has the expression

ds2 = dt2 + ]Γ L (t, N{φ{u))) ^ | M A(t, N(φ(u)))^\ du

In order to prove 1.3 and 1.4 it only remains to know what happens
when equality occurs in (1.3.1) or (1.4.1). To do it we observe the
following facts:

4.8. To prove (1.3.1) we used in 3.5 that

(4.7.1) f(λ,k,h) < f(λ,2Vλcot2Vλr,VλcotVλr)

and equality implies r = rk = rh (i.e. k = 2\/Icot2\/Ir and h =
y/λcoty/λr).

4.9. Equality in (1.3.1) implies equality in (3.3.1) and then, looking
at the proof of (3.3.1) we observe that equality implies c(N) = f(N) =
z(θN(λ,p,ή) = z(μN(λ,p,ή) = r.

4.10. Equality in (3.3.1) implies \kJN(p)\ = k, \HJN(p)\ = h, be-
cause / is an increasing function. Then, for every p e P w e can
take N € <9WpP such that, for the Weingarten map L of P associ-
ated to N, kjN = k and Hj^ = h. In particular, P is orientable,
<9WP has two connected components and the subset sf of such N is
one of them. With this choice, equality in (1.3.1) implies equality in
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(2.2.1) and, from 2.2, with respect to the basis given in 2.2, L has a
diagonal matrix with La = h = v^cotv^r for 1 < / < 2n - 2 and
L2n-i2n-ι = k = 2\/Xcot 2\/Xr, and &(t) has the matrix expression
given in (2.2.3).

4.11. Let J / be the set of the N e 5WP considered in 4.10. Then,
from 4.2 and 4.10 we have that equality in (1.3.1) implies

( δλ{±y/λ COt y/λr,t)

0 \(±Λ/Xcotv/Xr,0

ζλ(±2Vλcot2y/λr,t).

The matrices A(t,N),N e s/9 have rank 2n - 1 for 0 < t < r,
and rank 0 for / = r. Then, from 4.3, rank(exp^p(r)*rΛr) = 0 for
every N G sf. This implies that there is a point m E M such that

= {m}.

In the following assertions we always assume the equality in (1.3.1)
(and hence in (3.3.1)).

4.12. For N e sf, equality in (3.3.1) implies (as in 4.9) c{-N) =
f(-N) = z(μ-N(λ,p, t)) = (π/2Vλ)-r. Then the focal set and the cut-
focal points of P in the direction of -N are focal -(P) = cut_(P) =

4.13. As a consequence of 4.11 every point p e P can be joined
to m by a geodesic yjv(ί)> N E s/, such that 7Λr(r) = m, m is the
first focal point of P in the direction N and r = c(N). Let iV(p) be
the unique element of si Π ΓpΛί. Let S 2 "" 1 be the unit sphere in
TmM. Let us consider the continuous map Φ: P -> 5 2 " " 1 given by
ΦCP) = -yτv(P)(r) = -{d{zxvjrp tN{p))ldί){r). Since P is compact, we
have that Φ(P) is closed in S2n~ι.

Let e e R, 0 < ε < {πjly/λ) - r and F = cxp^pitN: - ε < t < r,
JV G J / } = e x p m { ^ : 0 < 5 < r + ε, <^€ Φ(-P)}. Then it follows from
4.11 and 4.12 that V is open. Let z : R+ x S2n~ι -+ TmM - {0} be
the diffeomorphism given by z(s,ξ) = sξ. Then ]0,r + ε[xφ(P) =
z-ιexpήι(v) is open, then Φ(P) is open in S2n~K Since S2n~x is
connected, we have that Φ(P) = 5 2 " " 1 and, then, P = 5m(r), the
geodesic sphere of Λf of center m and radius r.
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4.14. From 4.5 and (2.2.3) we have, for every ζ e S2n~ι c TmM,

0

/ 4= sin y/λs λ

Am(s,ξ) =
0 4? sin y/λs—fr 5111 V AS

V
Then

rank^m(s,£) = 2/i — 1 for 0 < s < πj(2\ίλ)

and
rank^m(π/(2VX),£) = 2 « - 2

which implies that co(ξ) := min{t > 0: γζ(i) is a conjugate point of
m along γξ} = πj(2\fλ). Then, the set of conjugated points of m is
conj(m) = {γζ(π/(2Vλ)),ζ e S2n~ι c TmM} and, given £ e S2n~ι c
TmM, if TV e J / is such that £ = —y#(r), then y,*(s) = y#(r — ̂ ) =

γ_N(s - r).

4.15. From 4.14, γξ(π/(2\/λ)) = γ-N(π/(2y/λ)-r). Then from 4.12
and 4.14 conj(m) = cut_(P) = cut(m), where cut(m) is the cut locus
of m. This allows us to define the map i'

(4.15.1) /': M - cut(m) -> CPn(λ) - cut(m')

in the following form: Let j : TmM —> Tm>CPn(λ) be a holomorphic
isometry, then we define

/'(expm sξ) = expm, sj(ζ), for 0 < s < π/2y/λ, ξ e S2n~ι.

Since £lm(t) is the same map for M and for CPn(λ), we have
Am(s9ζ) — Am>(s9j(ξ)). lΐξ~ι is a coordinate system in S2n~ι c T^Af
which defines polar geodesic coordinates x~ι around m as in 4.6,
ξ'~ι = (j o ξ)~ι defines polar geodesic coordinates x'~ι around m!
such that /' oχ~ι = χ'-χ. Then, from 4.6, /' is a holomorphic isome-
try.

4.16. Since the map /' in (4.15.1) is a holomorphic isometry, M —
cut(m) has constant holomorphic sectional curvature. Moreover, M -
cut(m) is dense in M9 whence by continuity, M has constant holomor-
phic sectional curvature, and, M being compact, there is a holomor-
phic isometry /: M -> CPn(λ) (cf. [K-N]). Let mf = i{m) and j = /*.
Then i\M-cnt(m) = i\ which implies (by 4.13) that i(P) = i'(Sm(r)) =
Sf. This finishes the proof of Theorem 1.3.
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To prove 1.4, observe that equality in (1.4.1) implies that (3.6.3) are
equalities, and, then, r, = rk. = r^. Also, equality in (1.4.1) implies
equalities in (3.3.2) and, then k\ = kjχ,hi = HJN, and r, = r. Then,
HJN = \fλco\{\fλr),kjN = 2y/λcot(2>/λr), and, from here, the proof
of 1.4 follows from similar arguments to those used in 1.3.

5. Inequalities on the relative volume of the boundary of a domain in
a Kaehler manifold. The proof of 1.4 also proves, with slight modifi-
cations, the following result:

5.1. THEOREM. Let M be as in 1.3. Let Ω be a compact regular
domain ofM with boundary dΩ = P. For every p E P take N e SWPP
such that N points toward Ω (i.e. γN(t) eΩfor small t>0).

(a) Let h\ > 0, k\ be real numbers such that k\ < kJN(p), hi <
HJN{P) for every p eP. Then:

vol(9Ω) v o l ( ^ )
1 ; vol(Ω) -vol(tfC)'

where r^r^rγ are defined as in 1.4. When Ω and dΩ are connected,
the equality holds if and only ifr\ = rhι = rkι and there is a holomorphic
isometry i: Ω -+ B*r such that i(dΩ) = Sr

c.
(b) Let hi, kι be real numbers such that kj^(p) < k2,Hjχ{p) < h^.

Then

where ri = m i n l r ^ , ^ } , ^ is defined as in 1.4, and r^ is defined by

h2 = v/Xcotλ/Xr/,2,0 < rhι < π/\/λ. The equality in (5.1.2) implies

r>ι2 = rk2 = r2.

5.2. COROLLARY. Let M,Ω,dΩ and N be as in 5.1 (a), but now
hi < 0. Then

vol(aΩ) ^

where r\ = min{r^, r^ }, and rkl, rhι are defined by -h\ = Vlcot Vλrhι,
-k{ = 2\[λco\2\flrkχy 0 < rhι,rkι < πj2\[λ. The equality in (5.2.1)
implies rkι = rhχ.

Proof. M - Ω, dΩ and -Λ^ satisfy the condition of 5.1 (b) with
h2 = -h\ and k2 = -k\. Then the r^2 defined in 5.1(b) is less than



VOLUMES OF REAL HYPERSURFACES 39

or equal to π/2>fλ, because hi = -h\ > 0. Then the result of 5.1(b)
holds and we get 5.2. D
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