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BANACH ALGEBRAS ASSOCIATED WITH
SPHERICAL REPRESENTATIONS OF THE FREE GROUP

RYSZARD SZWARC

We prove that any spherical representation of the free group F
weakly contains the regular representation. Moreover C$ , the C*-
algebra associated with the spherical representation π, is a compact
extension of the reduced C* -algebra of F . We also show that the
standard projection onto radial functions admits extensions to C*
for a class of representations π of F which includes spherical rep-
resentations, as well as the regular representation and the universal
representation.

Introduction. Let F r be a free group on r generators x\, ... , xr.
Let μ\ be the finitely supported probability measure equidistributed
on {xfι, xfι, . . . , xf1}. The operator of convolution by μ\ is the
analogue of the Laplace-Beltrami operator on Riemann rank one sym-
metric spaces. By [11] the ^-spectrum of μ\ can be identified with
the ellipse E = {z = x + iy: x2 + (j^y)2 < 1). Any point z of
E corresponds in one-to-one fashion to a spherical function φz the
eigenfunction of μγ with eigenvalue z. We refer to [11], [7] for this
subject.

For real z spherical functions are positive definite and give rise
to unitary representations of ¥r. Basing our argument on a partic-
ular realisation of these representations and on the simplicity of the
reduced C*-algebra of F r [10], we prove that all spherical represen-
tations weakly contain the regular representation. Moreover the C*-
algebras associated with spherical representations are compact exten-
sions of C*ed(F r), the C*-algebra associated with the regular repre-
sentation.

Finally we consider the standard projection onto radial functions
on F r and we prove that it is bounded on any C* -algebra associated
with spherical functions.

Acknowledgment. I am grateful to Uίfe Haagerup for suggesting the
problem and for helpful discussions.

Spherical representations. Let F r be a free group on r generators
X\, X2, . . . , xr 9 r > 2. Any element x of F r may be uniquely ex-
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pressed as a reduced word in x\, ... , xr and their inverses. The
number of letters of this reduced word is called the length of x and
is denoted by \x\.

A complex function on Fr which values depend only on the length
\x\ will be called radial. They are the analogues of bi-^-invariant
functions on SL(2, R). The space l\ of absolutely summable radial
functions forms a commutative Banach algebra with respect to con-
volution operation. This is due to the fact that if χn is defined as
χn{χ) = 1 if |JC| = n and 0 otherwise, then:

( 1 ) X\Xn = Xn+\ + (2 r - \)χn-\, n>2

X\X\ =Xi + 2rχ0

(see [3], [4], [11]). In particular it means that /# is generated by the
function χ\. The Gelfand space of l\ , when identified with the Z1-
spectrum of χ\, coincides ([11], Theorem 2.1) with the closed ellipse:

Moreover multiplicative functional on /J are given by

(2) # 9 / - - <f, Φz) Σ

where φz, z e E, are bounded complex functions with properties:

(i) Φz(e) = l;
(ii) χlφz = zφz

(iii) φz is radial.

In analogy to SL(2, R) such functions are called spherical (see [3],
[7]) and the properties (i), (ii), (iii) determine φz uniquely. Explicit
formulas expressing φz can be found in [7], [11] and [13].

The theory developed in the papers [11], [7], [9] (see also [13])
gives that for any point z of the interior of E (including also two
points 2r and ( -2r) which correspond to the only characters x h-> 1
and x ι-> (-l)W on F r ) the spherical function φz occurs as the
matrix coefficient of a uniformly bounded representation of F r . The
real segment [—2r, 2r] corresponds to all unitary representations: in
particular the segment [ -2yJ2r - 1, 2y/2r - 1 ] (i.e. the /2-spectrum
of convolution operator by χ\) corresponds to the principal series
while the two remaining parts [ -2r, —2y/2r - 1) and (2\/2r - 1, 2r ]
form the complementary series.
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In the sequel we will need a realisation of spherical representa-
tions given in [13] because of its good additional features. In [13]
the spherical functions are parametrized by the annulus A = {z e
C: (2r - I ) " 1 < \z\ < 1} which can be mapped onto E by the func-
tion γ(z) = (2r- l ) z + l . Taking it into account we reformulate below
the main results of [13] with respect to the ellipse-parametrization.

THEOREM 1 ([12], Theorem 8 and remarks following it). Let ¥r be a
free group on r generators. There exists an analytic series of uniformly
bounded representations πZy z e E = {x + iy: ( ^ ) 2 + {JΪZΪ)2 < 1}>
on a Hilbert space %? and a unit vector ζ e %? such that

(i) (πz(x)ζ,ζ) = φz(x), x G F r ;
(ii) πz(x)* = πz(x)-{, xe¥r;

(iii) nz(x) - πz*{x) has finite rank for any z, zf e E and x G F r ;
(iv) Any representation πz leaves no nontrivial subspace invariant

and representations πz are mutually inequivalent;
(v) πz is unitary if and only if z e JR. Otherwise πz cannot be

made unitary by introducing equivalent inner product.

The series [ —2\/2r — 1, 2\/2r — 1 ] occurs in decomposition of the
regular representation (see [11], Theorem 6.2). That is why it is called
the principal series. Remaining parts of [ -2r, 2r ] are called the com-
plementary series.

The aim of the paper is to show that any representation of com-
plementary series, as well as of principal series, weakly contains the
regular representation. In some sense (see Lemma 2) we also prove it
for nonunitary spherical representations. The crucial are Theorem 1
(iii) and the Powers' theorem which states that C*e d(F r), the reduced
C*-algebra of F r , is simple i.e. contains no nontrivial two-sided ideals.

Let λ denote the left regular representation of F r . By Powers'
theorem any unitary representation weakly contained in λ is weakly
equivalent to λ.

LEMMA 1. Let (π,^) be a unitary representation of ¥r weakly
contained in the regular representation. Then for any compact operator
K on •F and any fel{(Wr) we have:

\\π(f) + K\\ > \\π{f)\\

Proof. Let C* be the C*-algebra associated with π. Then by re-
marks preceding the lemma C* is isometrically isomorphic to C*ed(F r).
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Hence by [10] it is a simple C*-algebra. Consider the homomorphism
of C* into the Calkin algebra &{&)!&{&) (where &(&) denotes
the set of all linear compact operators on %*) given on lι(¥r) as

lι(¥r) 3f^π{f)+jr(^)e^(^)/jr{^).

Because C* has no ideals then this mapping is an isometry. Thus
+ K\\ = \\π(f)\\ which proves the lemma.

LEMMA 2. Let zeE and felι(¥r). Then | | π z ( / ) | | > \\λ{f)\\. In
particular any spherical representation πz, z e E has trivial kernel in

Proof, Let us apply Lemma 1 to a representation of the principal
series e.g. πo. By Theorem 1 (iii) the operator k = πz(f) - πo(/) *s

compact whatever / from lι(¥r) is. Therefore

\\*z(f)\\ = \\πo(f) + K\\ > ||πo(/)|| = \\λ(f)\\

because πo and λ are weakly equivalent.

Lemma 2 implies immediately:

THEOREM 2. Any representation πz of the complementary series of
¥r, except two characters z = ±2r, contains weakly the regular repre-
sentation.

For any z e E let Cπ denote the completion of I1 (FΓ) with respect
to the norm | | / | |c = ||^z(/)ll Then Cπ is a Banach algebra which
becomes a C*-algebra whenever πz is unitary i.e. z e [-2r, 2r].

THEOREM 3. Let z e f E. Then the identity map f ι-> / on lι(¥r)
extends to an epimorphism from Cπ_ onto C*eά(¥r). Moreover the
kernel of this map is isomorphic to the ideal of all compact operators
on a Hubert space.

Proof. The first part follows from Lemma 2. Next observe that
Cπ is isometrically isomorphic to the norm closure of ( π z ( / ) : / e
lι(¥r)} in 3§(%?) because πo and λ are weakly equivalent. Thus we
have to determine the kernel of the homomorphism between these two
subalgebras of 3B{%?) given by:

—> *o(f), felι(¥r).
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Let 7tz(fn) be a Cauchy sequence in B(%?) such that π§{fn) —• 0.
n

Hence πz(fn) = 7ro(/«) + #« , where AΓΛ , n = 1, 2, . . . , are compact
operators (see Theorem 1 (Hi)). This yields limrt nz{fn) = l i m « ^ is
a compact operator. It means that the kernel is contained in ^(β?).
On the other hand Cπ contains 3?{&) by [13] (Remark following
Proposition 2). Moreover the image of Jfffi) under this homomor-
phism must be trivial because it is a two-sided ideal in C* .

REMARK. Theorem 2 implies that Cπ are compact extensions of
the reduced C*-algebra of ¥r in the sense of [2] (see also [6]). All
these extensions are trivial (see [2] for the definition) because they
coincide with the trivial extension corresponding to a representation
of the principal series.

PROPOSITION 1. Let z e E. Then the spectrum of the operator
coincides with { z } u [ - 2 v

/ 2 r - 1, 2\/2r - 1].

Proof. By [13] (Theorem 5) the spectrum of πz(χ\) consists of {z}
and a subset of \-2\J2r - 1, 2>/2r- 1] (recall that we use another
parametrization). Thus we should prove only that the entire inter-
val enters into the spectrum. However it follows from the fact that
nz{χχ) is a finite dimensional perturbation of the selfadjoint opera-
tor 7to(x\) which spectrum coincides with the spectrum of λ(χ\) in
C*ed(Fr) (because π 0 and λ are weakly equivalent) i.e. with the in-
terval [-2y/2r - 1, 2y/2r - 1].

Conditional expectation related to radial functions. As we have seen
before the radial functions on ¥r form a commutative convolution
algebra. There is a natural projection I? from the set of all complex
function on F r onto radial functions:

The operator % satisfies (cf. [11], [5])

(i) g*/ = / if and only if / is radial;

(iii) Pf(e) = f(e).
These properties determine % uniquely. By general theorems con-

cerning weak conditional expectations I? extends to the contraction
on the von Neumann algebra VN(Fr) of ¥r (see [5]).
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Let π be a unitary representation of ¥r without kernel in lι(Fr).
There arises a question whether the operator IP can extend from
l{(¥r) to a contraction on C*(¥r).

PROPOSITION 2. Let π be a unitary representation of ¥r. Assume
that π contains weakly all spherical representations πt such that t
belongs to the spectrum of the operator π(χ\). Then % extends by
continuity to a contraction on C*(¥r).

Proof. It suffices to show that for any function / in lι(¥r) there
holds | | π ( r / ) | | < | | π ( / ) | | . Denote by sf the unital C*-algebra gen-
erated by π(χz). If t e σ(π{χλ)) then by (2), the Gelfand-Naimark
theorem and Theorem 2 (i) we have

= sup | < r / , ^ ) | = sup \(f,φt)\
teσ{π(χx)) teσ{π(χx))

= sup |<π,(/)C,ί)|

< sup \\πt(f)\\ < \\π(f)\\
teσ(π(χx))

(the second inequality holds because φt are radial while the last in-
equality follows from the assumptions).

The next theorem is already known for the regular (see [11], [5])
and the universal representation (see [8], Lemma B).

THEOREM 4. Let π be one of the representations of the free group
¥r: regular, universal or spherical unitary representation. Then the
projection % onto radial functions can be extended from lι(¥r) to the
C*-algebra C* associated with π.

Proof. It suffices to check that any of the mentioned representa-
tions satisfies the hypothesis of Proposition 2. Clearly it is valid for
the regular and universal representations. By Powers' theorem it also
holds for the principal series. Finally the case of complementary series
follows from Proposition 1 and Theorem 2.

EXAMPLE. Theorem 3 does not hold for any unitary representation
of ¥r which lifts to a faithful representation of lι(¥r). In fact, let ¥r =
gp{x\, Xι, . . . , *r} and let π be a one-dimensional representation
given by π(jci) = — 1, n(x2) = = n{xr) = 1. Put Π = π Θ λ and
let f = δXι+ SXΊ + δχ-χ + δx-χ. Thus Π(/) = 0 Θ λ(f) while
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Therefore by [1] (Theorem IV J) we have

(4(r-2) 4y/2F=Ί \ λ

= max { —— , \ —• 4, when r -> oc

and
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