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THE ISOMETRIES OF H°°(E)

PEI-KEE LIN

Let E be a uniformly convex and uniformly smooth complex
Banach space. We prove that every onto isometry T on H°°(E)
is of the form

(TF)(z) = f(F(t(z))) (F e H°°(E), \z\ < 1),

where EΓ is an isometry from E onto E and t is a conformal map
of the unit disc onto itself.

1. Introduction. Let H°° denote the set of all bounded analytic
functions in the open unit disc with the norm ||/||oo = swp\z\<\ l/(z)l
Since H°° is a semi-simple commutative Banach algebra, the Gelfand
transform (/ —> /) is an isometry from H°° onto a subalgebra M
of C(Y) where Y is the maximal ideal space of H°° . One can show
[L-R-W]:

To every extreme point L of the unit ball (H°°)* there corresponds
a complex number a of absolute value 1 and a point y eY (indeed,
y is an element in the Choquet boundary of Y) such that

Lf = af(y) (fEH°°).

Using this result, K. deLeeuw, W. Rudin and J. Wermer ([L-R-W];
also see [N]) proved that every linear isometry T of H°° onto H°°
is of the form

(Γ/)(z) = α/(ί(z)) (/G//° ° , | z |< l ) ,

where a is a complex number of absolute value 1 and Ms a con-
formal mapping of the unit disc onto itself. If E is a complex Ba-
nach space, then H°°(E) denotes the set of all is-valued bounded
analytic functions defined on the open unit disk Δ. We will show
that there is a linear isometry from H°°(E) onto a subspace M of
C((Y, weak* topology) x(C/, norm topology)) where U is the unit
ball of E*. M. Cambern [Cl] proved that: If E is a finite dimen-
sional complex Hubert space, then

to every extreme point L of the unit ball of (H°°γ there corresponds
a point y in the Choquet boundary B c Y of H°° and a point e* in
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the unit sphere of E* such that

Z:(y) (FeH°°(E))

where Fe*(z) = (F(z), e*). Using this result, he proved that if E is
a finite dimensional Hubert space, then every isometry T of H°°(E)
onto H°°(E) is of the form

(TF)(z) = F{F(t{z))) (F e H°°(E), \z\ < 1),

where y is an isometry from E onto E, and / is a conformal map
of the unit disc onto itself. (In [C2], he also proved that if E is a
finite dimensional complex Banach space which does not split, then
the conclusion of the above result is still true.)

In §2, we study the extreme points of the unit ball of H°°(E)*. We
prove that if E is uniformly convex and uniformly smooth, then for
each point y e B and each point e* in the unit sphere of E*,

is an extreme point of the unit ball of H°°(E)*. Moreover, if {Ly e*}
converges to a nonzero element in the weak* topology, then {yd} con-
verges (in the weak* topology). In §3, we use these results to show if
T is an isometry from H°°{E) onto H°°(E), then

(i) there exist a complex number a of absolute value 1 and a
conformal mapping t of the unit disc onto itself such that for any
h e H°° a n d a n y F e H°°(E) T(h F) = a- hot T ( F ) ,

(ii) T maps the set of all constant functions onto itself.

Hence, there exists an isometry y from E onto E such that

(TF)(z) = F{F{t{z))) (F e H°°{E), \z\ < 1).

The author wishes to thank Professor J. E. Jamison for his valuable
discussions concerning these results.

2. Extreme points in H°°(E)*. Let E be a complex Banach space
and let X be the Hausdorff space

(Y, weak* topology) x (U, norm topology)

(where Y is the maximal ideal space of H°° and U is the closed unit
ball of E*). For each F e H°°(E), let F be a function on X which
is defined by

(Note: Fe* e H°° is defined by Fe*{z) = (F(z), e*).)
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LEMMA 1. For each F eHoc(E)f F is a continuous function on X.
Moreover, the mapping S: F —• F is a linear isometry from H°°(E)
into C(X).

Proof. Suppose that {(yd, e%)} converges to (y, e*). Then

< \F(yd,e*)-F(yd9e2)\ + \F(y, e*)-F(yd,e*)\

<\\e*-e*d\\ \\F\\

Since ed converges to e* in norm and yd converges to y in the weak*

topology, F(yd9 ed) converges to F(y9 e*). It is known that \\F\\ =
suPέ>*eί/II^Vll — IÎ ΊI > a n < i s o foe mapping F —> F is a linear isom-
etry. D

REMARK 1. If h is an element of H°° and F is an element of
H°°(E), t h e n h-F eH°°(E) a n d

(1) A 7 F ( J ; , O = (A i v , J>> = h{y) (/;., y)

(since y is a maximal ideal).

REMARK 2. For each (y, e*) G X , let Ly £* be a linear function on
#°°(£) which is defined by Ly^e*(F) = F(y, ^ * ) . It is known that
the weak* closed convex hull of the Choquet boundary B (for H°°)
contains Y. By the proof of Lemma V.8.6 and Lemma V.8.5 [D-S],
every extreme point in the unit ball of H°°(E) is in the weak* closure
of the set {Ly e*: y eB and e* e U} .

LEMMA 2. Suppose that {(yd, e*,)} is a net in B x U. If {Lv e*}
converges to a nonzero element in the weak* topology, then {yd} con-
verges (in the weak* topology).

Proof. Since B is compact in the weak* topology, yd has a limit
point, say y. We claim that {yd} converges to y in the weak* topol-
ogy. If this is not true, then there is a weak* neighborhood V of y
such that for any do

(VxU)n{Ly^e::d>do}^0 and

«Y\V)xU)n{Ly^e::d>do}?0.

Since y eB and w*-limLv e* φ 0, there exist F eM and h e H°°
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such that

(i) limFtyj , e%) converges to a positive number,

(ϋ) l = 11*11 = h(y), and |A| < \ on Y\V.

This implies that (h F, Lv eΛ — hiy*) (F, Lv e*) does not con-
y d' d y d ' ί/

verge. We get a contradiction since {Ly e*} converges in the weak*
topology. D

Let e* be an element in U. We say e* is a w*-strongly exposed
point (in U) if there exists a unit vector e e E such that {{/* G
U: (e, /*) > α}: α > 0} is a neighborhood base for e* in C/ in the
norm topology. (We also say e is w* strongly exposed at /*.) It is
known that if E is uniformly smooth, then E* is uniformly convex
and every point in the unit sphere is a w*-strongly exposed point in
the unit ball.

LEMMA 3. If e* is a w*-strongly exposed point in U and y e B,
then Lye* is an extreme point of the unit ball of H°°(E)*.

Proof. Since e* is a w*-strongly exposed point, there exists a unit
vector e e E such that

Vε > 0 3δ > 0 (/* G U and (e, /*) > 1 - δ) => ||/* - e*\\ < ε.

Suppose that ]Cί=i ai,d — 1 > α M ^ 0? a n d wMim J ^ l j aι^Ly e*
= Ly e*. For any ε > 0 and any w*-neighborhood K of y, let 4̂£ ? K , ί/
denote the set

We claim that l im^ / G y 4 at ^ = 0. Since j ; G 5 , there is an h G

i/°° such that (A, y) = 1 = ||A|| and \h(y)\ <l-δ on Y\V.
nd

I = (e h, Lye*) =lim^^(e - h, ai^Ly e* )
i=\

( _

= lim

< limsup ( 1 -

V
So we must have

lim
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Let F be any function in H°°(E). Then for any ε > 0 there exists a
neighborhood V of y such that if y' e V then | ( i y , y)-(Fe*, yf)\ <
ε. So if ΣieB ai,d = 2 , then

77 \ 1 n ί T T _L T T \
"* 5 / ^ £ ' l+i dyl^y g* l^ly Q* "Γ l^y ρ* JUy e* )

2'*i,d'\\n

<2e\\F\\ +

This implies 2 J3/€jff ai(jLy e* converges to Ly^e* in the w* topol-
ogy. So Lye* is an extreme point of the unit ball of H°°(E)*. D

3. The isometries. Let T denote a fixed isometry of H°°(E) onto
itself. Then Γ* is an isometry on H°°(E) and T* maps the extreme
points of the unit ball of H°°(E)* onto itself.

LEMMA 4 (See Lemma 2.1 [Cl]). Suppose E* is strictly convex. Let
e\, e\ be two w* -strongly exposed points in U and x be any element
in B. Suppose that w*-limLydf* = T*(Lxe*) and w*-limLz^ ^ =
T*(Lxe*). If w*- lim zd = y1 and w*- limy^ = y, then y = y'.

Proof. If y ^ yf, then there exist two disjoint neighborhoods V\,
K2 of 3; and y ; . Since y and j ; ; are in B, for any 0 < ε < \ there
exist h\ and /z2 such that 1 = ||/zi|| = h\{y) = A2(/) = \\h2\\, |Λi| < ε
on £ \ ? i , and |Λ2| < e on Γ \ I\ . If | |^i | | = 1 (resp. | |F 2 | | = 1) and
l i m ^ O ^ , f*) > l-ε (resp. lim F2(zd, g%) > I - e), then

(i) \imhι(yd)'F(ydyf*) > l - ε and limh2(zd)'F(zd, g*) > l - ε ,

(ii) \\hι.Fι+h2 F2\\<l+e.

Since ε is arbitrary, we have

2 = \\w*-lim(LydJ: + L ^ ^ ; ) | | = \\LX^; + Lx%e;\\ = \\e\+e*2\\.

This contradicts the fact E* is strictly convex. Hence, y = / . D

REMARK 3. Clearly, the conclusion of the above lemma is still true
if E* does not contain a two dimensional l\ space. In [C2], M.
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Cambern showed that if E is a finite dimensional complex Banach
space which does not split, then the conclusion of the above lemma is
true. (Note: we say a Banach space E splits if it is the direct sum of
two nonzero subspaces E\ and £2 with sup norm.) But we do not
know whether it is still true if E is an infinite dimensional Banach
space.

Suppose that E* is strictly convex. For any y e B and any w*-
strongly exposed point e* e U if w*-limLz g* = T*(Lye*), then we
define

(2) φ(y)=w*-limzd.

By Lemma 4, φ(y) is independent of the choice of the w*-strongly
exposed point in U.

LEMMA 5. φ is a continuous function.

Proof. Let e* be any w*-strongly exposed point in U. If yd con-
verges to y9 then Ly e* converges to Lye* in the weak* topology.
Since T* is continuous with respect to w* topology, T*(Ly e ) con-
verges to T*(Lye*) in the weak* topology. If φ{yd) does not con-
verge to φ(y), then there is an he H°° such that h{φ{yd)) does not
converge to h{φ{y)) = 1. Let F be any unit vector in H°°{E) such
that ( F , T*(Ly9e*)) = 1. Then

l=h(φ(y))(F9 T*{Ly^)) = (h . F, T\Lyy)) (by (2))

= lim(A iF, T*(Lyd,e*))=\imh(φ(yd))(F, T*(Ly^)).

But {(F9 T*(Ly e ))} converges to ( i 7 , T*(Lye*)) = 1, so this is
impossible. Therefore, φ is a continuous function. D

REMARK 4. Similarly, one can show that if

(i) w*-limyd = y,
(ii) {e*j} is a net of w*-strongly exposed points such that {Lv e*}

converges to a nonzero element in w*-topology,
(iii) w*-limLz r = Γ(w*-limL v _•),

then w*-limz^ = φ(y). Hence, φ is one-to-one and onto.

LEMMA 6. Suppose that E is uniformly smooth. There are a con-
formal map t of the unit disc onto itself and a complex number a
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of absolute value 1 such that for each h e H°° and F e H°°(E),

. (So T-ι(h-F) = hoΓι -Tι

Proof. Since E is uniformly smooth, E* is uniformly convex (so
every point in the unit sphere is a w*-strongly exposed point in the
unit ball). For any h e H°° and F e H°°(E),

Note. T is an onto mapping. There exists F e H°°(E) such that

for any y e B, (T(F), Lye*) = 1. This implies h o φ = h for some

h G H°°. One can easily verify that

(i) T(h'f)=Έ'T(F) and T~l(h F) = h T-{(F),
(ii) Λ —• h is a linear isometry from H°° onto /Γ°° .

By the deLeeuw-Rudin-Wermer theorem, there exist a conformal t of
the unit disc onto itself and a complex number a of absolute value 1
such that for each h e H°°

h = a h o t.

Let h be the constant 1 function, and it is easy to see that a = 1. So
T(h-F) = hot T(F). D

REMARK 5. Suppose that E* is strictly convex. The above proof
shows that if e* is a w*-strongly exposed point (in U) and y is a
point in 5 , then

(T(h F), Ly^) = h(φ(y))

If w* cl(co{e*: e* is a w*-strongly exposed in (/}) = [/, then for any
e* e U and any y G 5 ,

So the conclusion of Lemma 6 is still true if E* is strictly convex and
E* has 7ΪJVP ([B] Theorem 4.2.13).

LEMMA 7. Suppose that E* is uniformly convex and E is complex
strictly convex. If F e H°°(E) is a constant function, then T(F) is a
constant function.

Proof. For any analytic ^-valued constant function F = e 1^, let

= T(F)(0) lA + z G.
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Then

This implies

||*|| = \\T-ι(T(F)(O) lΔ)(ί(O)) + Γι(t(O)) T-ι{G)(t(O))\\

= \\T-ι(T(F)(O) •

But | |Γ(F) | | = IHI. By Maximum Modulus Theorem [T-W], T{F) is
a constant function (note: e is a complex strictly extreme point). D

THEOREM. Suppose that E is a uniformly smooth and uniformly
convex Banach space. Let T be any linear isometry of H°°{E) onto
H°°{E). Then there are an isometry <Γ from E onto E and a con-
formal map t of the unit disc onto itself such that

(TF)(z) = F{F{t{z))) (F E H°°(E), \z\ < 1).

Proof. Since T maps the set of all constant functions onto itself,
there is an isometry F from E such that T(e 1Δ) = £F{e) 1Λ .
For any unit vector e e E, let /* be a unit vector in E* such that
{Te, /*) = 1. So e is w*-strongly exposed at ^ * ( / * ) . Hence, if
v/*-limLy j * = T(Lytf), then f£ converges to <9r*(f*) in norm.
And we have

By Choquet's theorem, for each \z\ < 1 there is a probability measure
μz such that μz{B) = 1 and /(z) = fB f(y) dμz(y) for any f e H°° .
By the proof of Lemma 6,

hot(z) = h(z)= [ h(φ(y))dμz(y),
JB

and so

(T(F(z)) , Γ ) = J T

= / (F,Lφ{yh^*{Γ))dμz(y) = / F

= (<r(F(t{z))),r)

This implies that T{f(z)) =
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REMARK 6. The conclusion of the above theorem is still true if E
satisfies the following conditions:

(i) E* does not contain two dimensional complex l\ space,
(ii) the unit ball of E* is the w*-closed convex hull of its w*-

strongly exposed points,
(iii) the unit ball of E is the closed convex hull of its complex

extreme points.

It is known that if E splits, then the conclusion of the theorem does
not hold. But we do not know whether the converse is true or not.
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