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AN ESTIMATE OF THE VOLUME
OF A COMPACT SET IN TERMS OF

ITS INTEGRAL OF MEAN CURVATURE

Y. D. CHAI

A geometric inequality for a compact set in euclidean 3 space is
obtained. The inequality involves volume and integral of mean curva-
ture. Also some property of the compact set is studied. The method
of outer parallel bodies is used in the proof.

I. Introduction. For a planar compact set K with area A and perim-
eter L the classical isoperimetric inequality states:

L2 - 4πA > 0.

Equality in above inequality holds for regular disk. For proof of the
inequality above see Guggenheimer [10].

The volume and surface area of the compact set W in euclidean 3
space, R3, will be represented by the functionals V(W) and S(W).
The functional M{W) is the integral of the mean curvature and
IMK^Γ) is the integral of absolute mean curvature [3].

Geometric inequality involving integral of absolute mean curva-
ture IMKPF) and surface area S{W) in euclidean 3 space has been
founded by Russia mathematician I. A. Danelich.

He found the following facts:
(1) \M\(W2) < \M\(Wγ) if Wx and W2 are compact sets and W2

is a convex set contained in W\ [4].
(2) If W is a compact set with bounded integral of absolute mean

curvature, then
S(W)<2/π2\M\2 [5].

The gist both of Danelich's result (2) and the classical geometric
inequality 36π[V(W)2] < S{Wf , [12], involving volume V(W) and
surface area S(W) is contained in the following inequality:

(3) V(W) < V2/[3π3y/π]\M\\W).
In this paper we will derive a new upper bound for V( W) with com-

pact set W having somewhat restricted conditions. It will be a sharper
inequality than (3) in the previous paragraph and equality will hold
for regular balls in i? 3 . It should be noted that Danelich's inequality
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never decides when equality holds. We also improve Danelich's first
result (1). In proving our results we will actually establish a bound for
the volume of the outer parallel bodies of a given body.

II. Geometric inequality for a compact set and its properties. If the
motion is determined by the position of the moving frame (Q, e\,
eι, ej), the kinematic density has the form

dK = dPΛdσ Λ dπ

where dP is the volume element of R3 at the origin Q of the moving
frame, dπ is the area element of the unit sphere corresponding to the
end point of e$ , and dπ is the element of rotation about e$. For a
compact set W parallel body of W at the distance r is defined to be
set

Wr = {xeR3\ \x-y\<r, yeW}.

Now we state the kinematic fundamental formula in R? without
proof which is the work of Blaschke.

PROPOSITION 2.1. Let D$ and D\ be Wo domains of R3 bounded
respectively by the surface Σ o and Σi which we assume to be of class
C2. Let Vi, /,- be the volume and the euler characteristic of Di and
let Fi, Mi be the area and the integral of the mean curvature of Σ;
(z = 0, 1) respectively. Suppose Do is fixed and Dλ is moving and let
dK be the kinematic density for D\. If χ(DonDι) denotes the euler
characteristic of the intersection DQ n D\ , then

f
JD

χ(D0ΠD{) dk = Sπ2(Voχι

Proof See [1].

Federer considered sets with positive reach in his article Curvature
Measure [6]. The reach of subset A of R3 is the largest number ε
such that if point x is in R3 and the distance, δ(x)ffrom x to A is
smaller than ε, then A contains the unique point ξ(x), nearest to x.
It can be easily checked that compact set in R3 with C2 surface as its
boundary has positive reach. Assuming that reach of A, reach( A), is
positive, the Steiner's formula is established in the following form; for
each topological ball A with C2-boundary in R3 and for r, 0 < r <
reach(^), volume of the parallel body Ar of A, Ar = {x e R3 \
\x - a\<r, ae A}, is given by a polynomial of degree 3 in r:

V{Ar) = V(A) + S(A) - r + M(A) r2 + (4/3)τr r3

where V is volume, M is integral of mean curvature.
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In fact the above equality follows from Proposition 2.1 and the fact
that AnDr is contractible for all the positions of regular ball Dr of
radius r which is shown in [6]. This suggests how we get geometric
inequality involving volume and integral of mean curvature for special
kind of compact sets by the usage of the estimate of volume of parallel
bodies and the well known Minkowski inequality [11]. So we define
a concept which generalizes the definition of compact convex sets in
R\

DEFINITION 2.2. A topological 3-ball W in R3 with C2-surface
as its boundary is called an M(/)-compact set if each point in its
boundary has at most one negative principal normal curvature with
respect to the inward normal vector which is less than —\/t where
t > diameter of W.

REMARK 2.3. (1) Every M(s)-compact set is an M(£)-compact set
if s > t.

(2) Every compact convex set with C2-surface is an Λf (oo)-compact
set.

(3) Every topological 3-ball with 2-convex surface, [14], is an M(oc)-
compact set.

(4) Every topological ball with next-to-convex surface, [9], is an
M(oc)-compact set.

LEMMA 2.4. Let W bean M(tycompact set and G be the set of all
motions in R3. Then for any g eG and r <t - diam(fF),

χ( W Π gDr) > 1 if Wπ gDr is nonempty

where Dr is a solid regular ball with radius r and gDr is the image
of Dr by the motion g.

Proof. We will prove that βt(W Π gDr) = 0 for / > 1 where βι
is the a h Betti number. For then χ(W n gDr) = βo(W n gDr) > 1
if W Π gDr is nonempty. But we will show even stronger facts that
Hi(WΠgDr) = 0 for i>2.

Consider the Mayer-Vietoris homology sequence with W and gDr

for any g E G and r < t — diam(W/) where W Π gDr is nonempty.
Then we have the following exact homology sequence:
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Since HM{W) = HM{gDr) = HtiW) = Hi(gDr) = 0 for i > 2,
HiiWngDr) = HM(Wu gDr) = 0 for i > 2.

Now suppose χ(W Π #Z>r) < 1 for some g G G and r < t -
diam(WΓ). Then r > 0 and A ( H ^ n # A ) > ° s i n c e βiiW^gDr) = 0
for / > 2. So H\{W n # A ) =̂  0. Now we consider the following
Mayer-Vietoris exact homology sequence with W and gDr:

-> H2(W) Θ H2(gDr) - , 7/ 2 (^ U

Since

= H2(gDr) = i/i(^) = #i(*/>r) = 0,

Therefore

^ 0 and so H

By the Alexander duality theorem,

H2(W U g/)Γ) = H£(R3 -W\J gDr).

So R3 - {W U gJ5r) has at least two open components. In fact R3 -
(WugDr) contains at least one bounded component whose boundary
is the union of the subset of the boundary of gDr and subset of the
boundary of W. Let A be such a bounded component and g be the
center of gDr.

Consider the smallest sphere Sg with its center at g which circum-
scribes A U gDr where A is the closure of A. Then the radius of Sg

is greater than r and less than r + diam(W). Let q be a point in
Sg Π {A U gAO Then q must be a point in the boundary of W since
Sg never intersects the boundary of gDr.

This means that all the principal normal curvatures at q with re-
spect to inward normal vector are less than — l/[r — diam(ffΓ)]. But
it is a contradiction because t is greater than r + diam( W) and W
is an Λf(ί)-compact set.

Now we use Proposition 2.1 and Lemma 2.4 to estimate the volume
of Wr = {x e R3 I pc-y | < r, y e ^ } in terms of the volume V(W)
of W, area S{W) of the boundary of W and the integral of mean
curvature M{W) defined by / b o u n d a r y o f w[(k{+k2)/2] dw , where kx

and k2 are functions of principal normal curvatures on the boundary
of W.



VOLUME OF A COMPACT SET 233

LEMMA 2.5. Let W be an M(ή-compact set in R3.
Then V{Wr) < V{W) + S(W) r + M{W) r2 + (4/3)π r3 for

r, 0<r < t-dmm(W).

Proof. Let W be fixed and Dr be moving by the motion g. So
W Π gDr is the intersection of W and Dr at position g.

After putting χ{W Π gDr) — 0 if W Π gDr is empty if we apply
Lemma 2.4, then we have for r, 0 < r < t - diam( W),

(1) / χ(WΠgDr)dk= f χ(WΠgDr)dk
J geG Jwr\gDr^0

dp Ada A dπ.

On the other hand, χ(Dr) = /(H^) = 1, V(Dr) = (4/3)π r3 and
M{Dr) = 4πr. So by Proposition 2.1 we have

(2) ί χ(WΠgDr)dk
JWΠgDr^0

= 8π2[V(W) + (4π/3)r3 + S(W) r + M{W) r 2 ] .

By (1) and (2), we have for r, 0 < r < t - d iam(^)

V{Wr)< V{W) + S(W) r + M(W) . r2 + (4π/3)r3.

COROLLARY 2.6. //" f w α« M(oo)-compact set, then

V{Wr) < V(W) + S{W) r 4- M ( ^ ) r2 + (4π/3) r3 /or r,

0 < r < oo and " = " Λo/Λ // W is a compact convex subset in R? .

Proof. Since W is a compact set diam( W) is finite. Now our
corollary follows from Lemma 2.5. If W is a compact convex subset
in i? 3 , (1) holds with equality since χ(W n #£>r) = 1 if W Π ̂ £>r is
nonempty. So this fact and (2) prove the second statement.

One of our goals in this paper is to estimate the volume of M(oo)-
compact sets in terms of the integral of the mean curvature of the
boundary of the set. For this purpose we may need the following
inequality which is an estimate of the volume of the sum of sets from
below.
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PROPOSITION 2.7. Let A and B be nonempty measurable sets in
R3. Then

[V(A + £ ) ] 1 / 3 > [V(A)]{/3 + [V(B)]V3

where A + B = {a + b\aeA, beB}.

Proof. See [11].

Note that in the proposition above if B is a regular ball centered
at the origin of radius r, then A + B = Ar.

THEOREM 2.8. Let W be an M(oo)-comρact set in R3. Then

V(W)<(l/4$π2)[M(W)]3.

Proof. By Proposition 2.7 we have for r, 0 < r < oo

(3) V{Wr) > V(W) + [3 (4π/3)1/3 (V(W))2/3]r

+ (4π/3)r3.

On the other hand, if W is an M(oo)-compact set, by Corollary 2.6,
we have

(4) V(Wr) < V{W) + S(W)r + M(W)r2 + (4π/3)r3

for r, 0 < r < oo.

From (3) and (4) we have

(5) [3(4π/3)1/3(F(H^))2/3]r + [3(4π/3)2/3(F(ίF))1/3]r2

<S(W)r + M(W)r2 forr, 0 < r < oo.

In (5) if we send r to oo, then we have

(6) [3(4π/3)2/3(V(W)γ^3] < M(W).

Equivalently we have

V(W) < (l/48π2)[M(W)]3.

Inequality (6) is shaφer than Danelich's result [4] for the M(oo)-
compact sets and equality holds when W is a regular ball.

COROLLARY 2.9. If W is an M(oo)-compact set and K is a convex
subset of W, then

M{K)<M{W).
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Proof. It follows from the fact that V(Kr) < V(Wr) and Corollary
2.6 for r —• oc.

REFERENCES

[I] W. Blaschke, Vorlesungen ύber integralgeometrie, 3rd ed. Berlin, 1955.
[2] S. S. Chern, Studies in global geometry and analysis, M.A.A., 4 (1967), 16-56.
[3] I. A. Danelich, Surfaces of bounded absolute mean integral curvature and their

plane sections, Sibirsk. Matem. Zh., 3 (1963), 519-538.
[4] , An integral representation of the absolute mean integral curvature of a

polyhedral surface and consequences of this representation, Sibirsk. Matem. Zh.,
7(1966), 954-959.

[5] , An estimate for the area of a surface of bounded absolute mean integral
curvature in terms of its absolute mean integral curvature and the sum of the
boundary curve lengths, Sibirsk. Matem. Zh., 7 (1966), 1199-1203.

[6] H. Federer, Curvature measures, Trans. Amer. Math. Soc, 93 (1959), 418-491.
[7] J. H. G. Fu, Tubular neighborhoods in euclidean spaces, Duke Math. J., 52

(1985), 1025-1046.
[8] M. J. Greenberg and J. R. Harper, Algebraic Topology, a first course, Mathe-

matics Lecture Note Series, vol. 58, 1981.
[9] M. Gromov, Hyperbolic manifolds, groups and actions, Ann. of Math. Studies,

97(1981), 183-213.
[10] H. W. Guggenheimer, Differential Geometry, Me Graw-Hill, New York, 1963.
[II] H. L. Montgomery, The isoperimetric inequality and sum of sets, preprint,

(1979).
[12] G. Polya and G. Szego, Isoperimetric inequalities in mathematical physics, Ann.

of Math., 27, Princeton Univ. Press, Princeton, N.J., (1951).
[13] L. A. Santalo, Integral Geometry and Geometric Probability, Addison-Wesley

Publishing Co., 1976.
[14] J. P. Sha, p-convexRiemmanian manifolds, Invent. Math., 83 (1986), 437-447.

Received September 13, 1988. This work was partially supported by the Basic Science
Research Institute Program, Ministry of Education, Korea, 1988-89.

SUNG KYUN KWAN UNIVERSITY

300 CHUN CHUN DONG

SUWON, 440-746 KOREA






