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SPECTRAL SYMMETRY OF THE DIRAC OPERATOR
FOR COMPACT AND NONCOMPACT

SYMMETRIC PAIRS

H. D. FEGAN, B. STEER, AND L. WHITEWAY

The aim of this paper is to prove a vanishing of theorem for the
Dirac operator on a symmetric pair. In fact, we prove a stronger result:
that the Dirac operator has spectral G-symmetry.

THEOREM 1.1. Let (G, K) be a symmetric pair of rank two or
greater, of compact or noncompact type and Γ c G a co-compact dis-
crete subgroup. Let p be a metric on T\G whose lift to G is G-left and
K-right invariant Then, the Dirac operator has spectral G-symmetry:
that is, for each eigenvalue λ the eigenspace Vλ is G-isomorphic to the
eigenspace V_λ.

COROLLARY 1.2. The equivariant η-function vanishes identically:

The importance of the eta invariant and questions of spectral sym-
metry has long been recognized, see [1]. If dimC? Φ 4k + 3, the
spectrum is symmetric for algebraic reasons. However, as the exam-
ple in [4] shows, this spectrum need not be symmetric if dim G = 3.
For an odd dimensional simply connected Lie group with bi-invariant
metric, the map x π r 1 is an orientation reversing isometry and
we again get spectral symmetry. However, this map may well not
descend to quotients Γ\G for example, we know the spectrum for
SO(3) = SU(2)/{±1} is not symmetric. Furthermore, if G is a non-
compact rank one group and Γ a co-compact discrete subgroup then,
with respect to certain natural metrics on Γ\G, the spectrum fails to
be symmetric, see [6]. Thus, the result does not hold in the rank one
case.

In §2 we discuss the case of a symmetric pair of compact type. This
is done in some detail. Section 3 contains the case of noncompact
type. Since this is similar to the compact type, we concentrate on
presenting the changes in the new case. We do not consider the case
of a symmetric pair of Euclidean type.
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2. Spectral symmetry for a symmetric pair of compact type. Let

(G, K) be a symmetric pair of compact type. Then the Lie algebra
of G decomposes as 9 = X ® & with bracket relations [X, X] c
X, [X, 3?\ c & and [&>, « ]̂ c ^ . With respect to the negative
of the Killing form let E\, . . . , Er be an orthonormal basis for X
and Er+\, . . . , Er+S one for ^ so r + s = dimG is odd. Throughout
this and the following section we shall use the following convention:
Latin subscripts run from 1 to r and Greek subscripts from r + 1 to
r + s. Let ί > 0 be a real parameter and set e\ = Ej/t and ea = Ea .
Let /?ί denote the left invariant metric such that e\, . . . , er+s is an
orthonormal basis of 9. Thus for t Φ 1 /^ is G left-invariant but
only K right-invariant. The effect is to scale the metric on the fibers
and leave it unchanged on the base of the fibration K —• G —• G/K.
Further set wt = eqy\, . . . , er+s where ^ = (r + s + l)(r + 5 + 2)/2 and
let ψt denote a basic spinor corresponding to the e\, . . . , er+s basis.
When t = 1 the subscript ί will be omitted. There is a canonical
isomorphism between the Clifford algebra associated to p and that
associated to pt. Under this isomorphism βι is the image of 2s, , £α

the image of Ea and ψι that of ^/. Using this isomorphism, we
notice that (with 1 < ij < r + s)

(2.1) eP e,- ψι = Ei E} ψ

for any set of basis vectors, where the Clifford product on the left-
hand side is relative to the pt but on the right-hand side is relative to
p = px. This same isomorphism is used implicitly in later expressions.

The Dirac operator is

(2.2) Pt =

where Vr is the Levi-Civita connection corresponding to pt. We
can identify the space of sections T(S) with Coo(Γ\G) ®Sf using left

translation. Then for a basic spinor ψι — 1 ® st

(2.3)
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If we define (2A: = Σ v(Ei) ® ωEi > <2/> = Σ v(Ea) ® ωEa and Qt =
A: + <2P then we see that

(2.4) Pt{f ® j ') = a (/ ® ί) + fPt( 1 ® s').

Thus it remains to calculate Pt ψ'. First we calculate V*.

PROPOSITION 2.1. (i) Ψeβj = (l/t2)VEEJt

(ii) Ψeeβ = (2/ί - ^

(iii) Ψeej

(iv) vζeβ

Proof. These follow from the following formulae:

(2.5) (i) {Ψeej,ek)t = \(VEEj,Ek),

(ii) (vieβ, ey)t = (211 - t)(VEEp, Ey),

(iii) (VteaeJ,ev)t = t{VEaEj,Ey),

(iv) (V^e^, ek)t = t(VEaEβ, Ek),

and the observation that all similar expressions with an odd number
of Greek subscripts are zero. These formulae use the notation ( , )t

for the inner product given by pt. The calculations are similar to
those of [3]. In obtaining these formulae, we use the fact that ad is,
(for 1 < i < r + s) is />rskew. For orthonormal left invariant vector
fields X, Y and Z there is the formula

(2.6) (VXY, Z) = i ( ( Z , [X, Y]) - (Y, [X, Z]> - {X, [Y, Z]».

From this, we see V# Ej = j[E,, Ej], which is also useful.
From [2] χ{X) = -\Σ,[X, E^E,•- \Σ[X, Ea]Ea. We make the

following definitions:

(2.7) χκ{X) =-X-

J2ωiEiχP(Ei),

Σ £ ωEaχ(EQ).
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Clearly χ(X) = XK{X) + XP(X) and χκ is the spin representation of
X extended to act on S. If the isotropy representation K
lifts to spin then this induces χp\3f, see Lemma 2.1 of [5].

LEMMA 2.2. M = Mκ + 3A.

Proof. Observe that

(2.8)
y i

since

γ[Eγ,Ea] = ΣEAiEyΈahEΰEi = £-£,<[£,-, Ea], Ey)E

= Σ ~[Ei, Ea]Ei = J2 EilEi, Ea\.

The result now follows.

PROPOSITION 2.3. Ptψ
ι = j-tMκψ + \{% + t)Aψ.

Proof. We calculate:

(2.9) Ptψ'= -^J2\ωE'^E

4 Σ tωEa(VEaEβ)Eβψ - - ^ tωEa(VEaEβ)Eβψ

g Σ

8 Σ to£α[-Eα , ̂ ]^y? ̂  ~ g

which is the result of the proposition.

COROLLARY 2.4.

Pt=l/tQκ + Qp +

LEMMA 2.5. The operators QK, Qp, I® MR, \®A and hence Pt

all commute with the action of 3? via the representation v ® χ.
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Proof. This is another direct calculation. For example in the case

of Qκ

Ej) ® ω(Ejχ(Ei) -

= £u{[Ej, Ei\) ® ωEj + Σv{Ej) ® ω[Ej, E(\ = 0.

PROPOSITION 2.6. The operator Pt preserves the decomposition Γ(S)

= L2(Γ\G) ®S = φVλ <g> S into isotypic components under the right
regular representation v ® 1 o/ G.

Proof. This is immediate since

Λ = Qt + (l/2/)l ® Mκ + (l/t + t/2)l ® ̂

and Q/ is a linear combination of the operators v(E).
Let ΩG = - ΣE} - E ^ α and Ω^ = - ΣE} be the Casimir ele-

ments. Set Ω.p = ΩQ - Ωjζ and let px denote half the sum of the
positive roots of K. Then define the following operators:

(2.11) (i)

(ii)

(iii)

(iv)

where XK and χp are given in (2.7). Notice that R$ is an operator
on S while the other three operate on C°°(G) <8>S. Direct calculation
now establishes the following result.

PROPOSITION 2.7. Using the notation {U, V} = UV + VU:

(i) {QK,
(ii) {Qκ,

(iii) {QK,

(iv) {QP,

(v)
(vi)

(vii) i
(viii) QP = v(ΩP)®l+2RM,
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(ix) A2 = χP(Ωκ) + 2Rs,
(x) M*=9\\pκ\\2.

Proof. To illustrate the proof, we verify part (x):

(2.12) M2

K = YjωEiχκ{Ei)ωEjχκ{Ej) = ^

= I ΣiEiEjXKίEdxKiEj) + EjEiXK(Ej)xK(Ei)

+ Ei[Ei,Ej]Xκ(Ej))

Now

( 2 1 3 ) ΣEiEjXKίiEi, Ej]) = -

= 4Σχκ(Es)
2 =

Thus M\ = ?>χκ{Ώκ) = 9\\pκ\\2

 9 since Xκ is the sum of irreducible
representations, each taking the same value, 3||/?A:||2 , on Ω# .

The space of sections T{S) has been decomposed into a completed

sum of terms of the form Vλ®S, λ e G, under the action of the group
G. Each Vχ is finite-dimensional and we may decompose Vλ® S
under the v <g> χ action of 3£ into isotypic (rather than irreducible)
components:

(2.14) Vλ®S

Now Lemma 2.5 and Proposition 2.6 tell us that Pt leaves SQ invari-
ant. The next step is to show P} is constant on SQ and then that
trPt\Sβ = 0. To show P2\SQ is constant we show that each of the
ten operators of Proposition 2.7 is constant on Sβ . This is clearly the
same as showing RR , RP, RM and R$ are constant on SQ .

LEMMA 2.8. The operators RK , Rp, RM and Rs are constants on
SQ.

Proof. First notice that while Xκ and χp may not be irreducible
the Casimir takes the same value in each irreducible summand, see
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[5, Lemma 2.2]. The result, for all except Rs, now follows from the
following formulae:

(2.15) Rκ = $(-v

RP = £(_i/ <g> χP(QP)

For Rs consider the decomposition 9 = X ® ̂ . It gives rise to
an isomorphism Cliff(^) = Cliffy) ® Cliffy) and thence to one of
modules:

(2.16) 5 = 5^® 5 P .

With respect to this decomposition χg = XK ® 1 and #i> = 1 <8> £/> so
that

(2.17) i?s = j H f e

COROLLARY 2.9. ΓA^ operator P?\SΘ is constant

This constant depends on £ and 0. In principle it has been calcu-
lated but is omitted as the expression is unenlightening.

PROPOSITION 2.10. // rankG > 1, tτPt\Sθ = 0.

Proof. Let Up be the subspace of Cliffy) spanned as a vector
space by Ei Ei •••£'/ , i\ < iι < < ip (this time without using the
convention of Latin and Greek indices). Then for X G Up , we have

(2.18) trX = 0 for p ^ 0.

Since Mκ = ΣωEiχκ(Ei) = \ΣωEi[Ei, Ej]Ej and rankG > 1
(so d i m ^ > 3) it is clear that Mκ e i/r+j-3 Thus by equation
(2.18), since r + s > 3, trΛ/^IS = 0. Split S into eigenspaces of
MK:S = (S£®Sχ)®Sp = {S£®Sp)®(Sχ®Sp). Since M\ = a2,
a — 3||/>JC||, there are only two eigenspaces and trΛ/# = 0 gives
dim5^ = dimS% . By considering weights Sκ = 2W VPκ , n = i(/ - 1),
so that 5^ = 5^ = 2 n - 1 ^ and Sθ = S£ ® SQ with dimS^ =
dim 5^". Thus t r M ^ I ^ = 0 and with respect to the decomposition
Mκ has matrix (g _°α). If 5 is any operator with matrix (" v

y) then

= (α

0

W-2°α>;) τ h u s i f {Mκ, B} is constant on Sθ then
= -y and tr5|ιS^ = 0. Taking B = QK, Qp and A we see

fl = tτQP\Sθ = t r ^ l ^ = 0. Hence ΐrPt\Sθ = 0.
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THEOREM 2.11. Pt has spectral symmetry for all t > 0 if rankG
> 1.

THEOREM 2.12. The equivariant eta function of the operator Pt on
T\G, for rank G > 1 at t > 0 and any discrete co-compact sub-
group Γ vanishes as a K-character: ηκ(s, g) = 0 where ηκ(s, g) =

3. Spectral symmetry for a symmetric pair of noncompact type. Let

(G, K) be a symmetric pair of noncompact type. This case is similar
to that of the previous section. However, the details are different
and we shall be concerned, mainly, with pointing out the differences.
Decompose & = X Θ & and define the metric p to be the negative
of the Killing form on ̂ , the Killing form on 30 and under p let
3? be orthogonal to ^ . As before let E\, . . . , Er be an orthonormal
basis for X Er+\, . . . , Er+S be one for £P and we shall use the
convention that Latin subscripts run from 1 to r and Greek from
r + 1 to r + s. Set e\ = E\jt, ea = Ea and let pt be the metric with
e\, . . . , er+s as orthonormal basis. Let χκ , XP , QK , β p , Af* and
4̂ be defined by the formulae of the previous section.

Formally we can use the compact dual ^ * of & to obtain the
present results from the previous section. Let ̂ c be the complexifi-
cation of 9. Then there is the compact dual ^ * c 5e of & and a
correspondence

(3.1) Λ Γ ^ X f o r X e J f , X - + / X f o r X e ^ (/= V^

between & and <f *. Denote by X* the element of ̂ * corresponding
to X G 9 so e* = e/ and e* = /eQ. There is a metric />,* on ̂ * with
orthonormal basis e\, . . . , £*+ 5. Formally

(3.2) Pt(χ, y) = PWX* > iy*)

and so as elements of the Lie algebra one is led to expect

(3.3) Ptψ'^iPZψ'*.

In fact this is true as a direct, rather than formal, calculation shows.

PROPOSITION 3.1. Ptψ
ι = γtMκψ + \(] - t)Aψ.

Proof. This is essentially the same as the proof of Proposition 2.3.
The main changes are as follows. Firstly the invariance of the metric
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is now given by

(3.4)

instead of always a negative sign. Thus

£ Ey[Ey ,Ea] = -J2 Ei[Ei, EQ]

and so

(3.5) A = ~ Σ ωEΛE>' E°1E<* = \ Σ ωE«[Ea , Eβ]Eβ.

The formula VXY = 1/2[X, Y] no longer holds for all X and 7 .
Instead we have

(3.6) VEEj = ι

Ί[E,, Ej], VEEβ = \[Ei, Eβ],

VEEj = -\[Ea , Ej], VEEβ = \[Ea, Eβ].

Then equations (2.5) in the noncompact case become

(3.7) (i) (Vt

eeJ,ek), = \(VEEJ,Ek),

(ii) (Ψeeβ, ey)t = 3 (f + 0 ΦEEβ, Eγ),

(iii) {Vι

eej , ey)t = t{VEβj, Eγ),

(iv) (ψeeβ, ek)t = t(VEaEβ, Ek).

As before the other expressions analogous to these with an odd number
of Greek indices are zero. The result of Proposition 2.1 is now:

(3.8) (i) Ψeej

(ii) ψeeβ = i (f + ί) VEEβ ,

(iii) VeJ!j = tVEaEj ,

(iv) Ψeeβ = VEββ.

The proof is completed by a calculation similar to that used to prove
Proposition 2.3.

The list of relations in Proposition 2.7 takes the following form
where the operators Rκ, Rp, RM and Rs are defined by the for-
mulae (2.11).
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PROPOSITION 3.2.

(i) {Qκ,
(ii) {Qκ,

(iii) {Qκ, \®A} = -2RM,
(iv) {QP, l®MK} = 0,
(v) {QP, 1®A} = 4RP,

(vi) {MK,A} = -6RS,
(vii) (& = v(Ωκ)<8>l+2Rκ,

(viii) Qp = v{ΩP)®\-2RM,
(ix) 2

(x)

Now let Γ be any co-compact discrete subgroup of G. Then the
space of L2-sections of the spin bundle S over Y\G decomposes into

a completed sum of unitary representations of G. For λ e G let V[
be the isotypic summand of type λ so that

(3.9) L2(S) = Q)Vf®S.

The representations λ with Vj Φ 0 occurring in this sum are, in
general, not explicitly known. Each term in this sum decomposes
further into ^-types under the action v ® χ :

(3.10) Vf®S

The arguments of §2 go through word for word. So there is spectral
symmetry for Pt on each So providing rank G > 1. Consequently
we have the following theorem.

THEOREM 3.3. The equivariant eta function for the operator Pt on
Y\G vanishes as a K-character for G a real semi-simple Lie group of
rank > 1 and Γ a co-compact discrete subgroup.
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