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ON THE VALUES OF A ZETA FUNCTION
AT NON-POSITIVE INTEGERS

CHONG-HSIO FANG AND MINKING EIE

Let
OO OO OO ~

be the zeta function associated with the principal Delaunay-Voronoi
cone. A general theory asserts that ζ(s) has an analytic continua-
tion which is holomorphic in the whole complex plane except possible
poles at s = 3 / 2 , 5 = 1 and s = 1/2. In this paper, we shall com-
pute the values of ζ(s) at non-positive integers. It is not surprising
to see that these values are rational numbers and can be expressed
explicitly in terms of Bernoulli numbers; i.e.

2 r> / 1 1

1. Introduction and the main theorem. Let
OO OO 0 0

(1) ζ{s)=Σ Σ Σ t a * 2 + (*i+&)ftr, Re* > 3/2,
£, = 1*2=1*3=0

be the zeta function associated with the principal Delaunay-Voronoi
cone Ω (see [5]) as defined by

2 2 7 \ \ λ ι , λ 2 , Λ 3 >
"A3 A2+Λ3J

By the general theory as in [7], this zeta function is absolutely conver-
gent for Res > 3/2 and hence it defines a holomorphic function of
a complex variable s. Furthermore, ζ(s) has an analytic continua-
tion which is holomorphic in the whole complex plane except possible
poles at s = 3/2, s = 1 and s = 1/2.

In this paper, we shall prove the following

MAIN THEOREM. For any integer m with m > 0, ζ(-m) is a
rational number. More precisely,

~ \(Bm+x\ δOm
_ _ _ _ _ _
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Here δom is the Kronecker delta function and the Bernoulli num-
bers Bm (m > 1) are defined by

# 0 = 1 .

2. The integral expression of ζ(s). To obtain an integral expression
for ζ(s)Γ(s)Γ(s - j)π1/2, we need the following lemma.

LEMMA 1. Let Y be the variable of 2 x 2 real symmetric matrix,
and G be a 2 x 2 positive definite symmetric matrix. Then we have,
for R e s > 3/2,

/ (det Y)s-*l2e-χr{YG)dY = {άtXG)'5πιl2T{s)T{s - 1/2).
JY>O

Here Y > 0 means that Y is positively definite.

Proof. See p. 226 of [1].

PROPOSITION 1. For Res > 3/2, we have

ζ(s)Γ(s)Γ(s-l/2)π1/2

/»oo r\

= 2 / u2s~4du ( 1 - r 2 ) ^
Jo Jo

rlπ
s\ I ί ί l i t """" A )

Jo
χ feu(l-rsinθ) _

Proof. For Re 5 > 3/2, by Lemma 1, we have

ζ(s)Γ(s)Γ(s-l/2)π1'2

OO OO OO p

= Y:ΈY: (detrr3/

'y>o
x (1 - e-

y-y2+2y")Γι dyx dy2dyn.

By changing of variables: M = (>Ί + > Ί ) / 2 , v = 0>i -yi)β, w = >Ί2 "
the integral is transformed into

2 / (u2-v2- w2)'-3'2

Ju2-υ2-w2>0, «>Ow2>0,

x [(eu+v - \){eu~v - 1)(1 -e-2u+2w)Γιdudvdw.
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Let v = up, w = uq and let p = r sin θ, # = r cos 0. Then

= 2 Γ uls~4du ί (l-r2y-3/2rdr
Jo Jo

r2π
X /

as asserted.
Let

F(u, r)= f π

 u

3 [ ( e u i l + r s

Jo
x ( i _

a n d

/(s " f ) = nsι/2)^0ι-r2rV2rFiu r)dr-
I{s, w, F) as a function of s, is holomorphic for all s ^ 1 since

it is a quotient of two generalized functions in s which has simple
poles at negative half integers [7].

Denote by L(e) the contour in the complex plane consisting of the
interval [ε, +oo) twice, in both directions (in and out) and the circle
\z\ = 6 in counterclockwise direction. Then the integral expression of
ζ(s)Γ(s) can be transformed into a contour integral of the form

2 ( e 4 π i s - I ) " 1 / u2s~4I(s,u,F)du.
J

With the functional equation of gamma function Γ(Λ ) Γ ( 1 - s) =
2πieπis{e2πis - I )" 1 , we get

ζ(s) = 2Γ(l-s)e-πis(e4πis - l ) " 1 ^ / u2s~4I(sy u, F)du.
2πz JL{ε)

This gives the analytic continuation of ζ(s).

PROPOSITION 2. For all s e C - {±1/2, ± 3 / 2 , . . . } , we have

ζ{s) = 2Γ(1 -s)e-*is(e2πis + l ) " 1 ^ / u2s~4I(s, u,F)du
I™ JL(e)

where
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with

9 r) = / π

 u\eu

Jo

REMARK. From the analytic continuation of ζ(s) given in Propo-
sition 2, it seems that it might also have possible poles at negative
half integers. However these poles can be eliminated by the gamma
function appearing in the expression of I(s, u, F). In fact, ζ(s) is
analytic at negative half integers; but it is hard to see from our for-
mula.

3. The values of ζ(s) at non-positive integers. The analytic continu-
ation of I(s, u, F) was given in a more general context in [3]. When
s is a non-positive integer, the value ζ(s) depends only on the contin-
uation of I(s, w, F) when \u\ < ε, due to the fact that the contour
integral along [e, +oo] twice in opposite direction cancel each other.
Furthermore, these values can be obtained by the theorem of residue.

PROPOSITION 3. The values of ζ{s) at s = 0 , - 1 , - 2 , . . . ,
- m , ... , are rational numbers and

?ί , Γ(2m + 2 ) . . / ,
£(~ m ) = ~ N { m )

where

N(s)= [\l-r2y-y2rdr [Q2m+3(r,θ)dθ, Rcs>l,
Jo J

with

Qv+ι(r,θ)

" 2-^(2/ -2ky.(2k)l[[l

- (1 + rsinθ)2'-2k-1(2 - 2rcosθ)2k~ι

-(l-rsinθ)2l-2k-ι(2-2rcosθ)2k-1]

+ τ^ii {δtj is the Kronecker's delta function).

Proof. We have

2 π ι JL(ε)
(-m, u, F)du.
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In order to compute ζ(—m), we must find the coefficient of w2m+3 in
the power expansion of I(—m, u, F). For \u\ < π/2, we have

u _ 1 a ^
~ " 2 (2Λ)I

M V ^ 5 2 Λ ( 1 -rήΆθ)2n-χuln

\-rsmθ 2
/ 2 = 1

- r̂ +1 -ΓCOSθ 2 ^ (2/1)!

The coefficient of w2m+3 in the power expansion of

is Q2m+3(̂ ? θ), which is a Q-linear combination of functions of fol-
lowing types:

Fx(r, θ) = (I + rsinθ)m"-{(l - rsinθ)mi2(l - rcosθ)m" ,
F2{r, Θ) = (l+rsinl9)m2i(l-rsinl9)m22-1(l

F3(r9 θ) = (l+rsin^)m3i(l - rsinθ)m*(\ - rcos

where m/7 ( Ϊ , j = 1, 2, 3) are positive integers or zero. Integrating
with respect to θ from 0 to 2π, we get

/ Fj(r,θ)dθ = 2πPj{r2) if mjj > I,
o

where Pj(X)9 Qj{X) and Rj(x) are polynomials. Thus the coeffi-
cient of u2m+3 in /(-m, u, F) is a β-linear combination of integrals
of the forms

2π

Γ(-m-l/2)π 1 / 2 I (1 -r2ym-y2rPj{r2)dr,
Jo

The values of continuations of these integrals are rational numbers.
Consequently, the value ζ{-m) is a rational number.
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4. On the explicit values of N(-m) and the proof of the main theo-
rem. In this section, we shall prove that almost all terms in
Q2m+3ir> θ) have zero contribution to JV(-m). The contributions
from remaining terms will be computed one by one. Finally, we ob-
tain the explicit expression of C(-ra) as shown in Main Theorem.

PROPOSITION 4. For non-negative integers p and q, not both 0,
define

[ {l-r2y-3/2 f
o

f (1 + rsmθ)2p~{(l - rsinθ) 2 q ~ ι dθ
Jo

(Res> 1).

Then FPίq(s) is a rational function with simple poles at s = \, — j ,
. . . , \ - p - q (and also at s = 1 if p or q is zero) and vanishes at
s = 1 - p - q unless p = q, in which case

Proof. Changing from polar coordinate to linear coordinate, r cos θ
= x, r sin θ = y we find

FPΛ(s) = if (1 +y)2p-\\ -y)2q-\\ -x2 -y2y-3/2dxdy.
J Jχ2+y2<\

With t = xj\J\ -y2 as a new variable in place of x, then

ί
s+2p+2q~3 ί us+2p~2(l - u)s+2q-2du

Jo

f υ-ι'2(l-υγ-3'2dυ (u = ̂ , v = A

3Γ(* + 2p - 1)Γ(5 + 2q - 1)Γ(5 -
Γ(2s + 2p + 2q- 2)T{s)

This explicit evaluation holds for any complex number p and q (and
Re s sufficiently). The statements of the proposition follow easily
when p and q are non-negative integers: it is clear that the poles are
as stated and that Fp9q(l -p - q) = 0 iox p Φ q, since in that case
both Γ(s) and Γ(2p + 2q + 2s-2); but only one of Γ(2/? + s - 1) and
Γ(2q + s - 1), have simple poles at s = 1 -p - q, while for p = q all
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four of these gamma functions have poles and we obtain the formula
given in the proposition by comparing residues.

PROPOSITION 5. For non-negative integers p and q, not both 0,
define

Gp,q{s)= f (l-r2γ-V2rdr [ * (l-rcosθ)2p-ι(l-rsinθ)2(!-1 dθ
Jo Jo

(Res> 1).

Then Gp9q(s) is a rational function with simple poles at s = \, -\,
... , \-p -q {and also ats=l,0,...,2-p-q if p or q is zero)
and vanishes at s — l-p-q unless p — q or p or q is zero, in which
case

r n , _ I if p =
P'q[ P q)~

0, otherwise.

Proof. We have

GP9g(s) = ίί (I - x)2p-\\ -y)2q-\\ - x2 -y2)8-^2dxdy.
JJχ2+y2<\

Suppose that p > 1 and expand (l-x)2p~ι by the binomial theorem.
Then Gp^q{s) is a sum of double integrals with an inner integral of
the form

Γ xm(a2 - x2)s-3'2dx (a = \fl-y2) ,

which is 0 for odd m. For m = 2j, we have

Γ χ2j(a2 _ χ2),-3/2 d χ _

La { }

Hence

7=0

(2p-l)lπ
2Vj\(2p -2j-l)\ Γ(s + g+j-\/2)

Γ(s + 2q + j - 1)
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The second factor in the jth summand has poles at half integers
between \ and \- q - j > f - p - q. The third factor in the 7th
summand is a polynomial (unless q = 0, when it equals l/(s+j—l))
which vanishes at s = 1 —p -q for all j if q > p and for all j except
j = 0 if q — p. This leads to the assertions of the proposition. When
p > q = 0, the value of G at 5 = 1 — p - q is given by

rL

The proof of the main theorem. Note that the function N(s) in
Proposition 3 is a linear combination of Fp^(s) and Gp>q(s) with
p + q = m + 1. More precisely, we have

-1/2)

If m is a positive even integer, then p φ q. Since

GP,q(-m) = (? p > ί (l - p - ί ) = 0, for/; # ήr, /> ̂  0, « ^ 0,

it follows

N ( m ) = [

(2m + 2)(2m
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If m is a positive odd integer, then it is possible that p = q =
(m+ l)/2. Hence

, 1 / B2m+ι \
+ 2\(m+l)J

-2m+ιGt

(-\ΓB2m+2(22m+2 + \)π

(2m + 2)(2m + 2)!

1 / B2m+ι \ 2 \-2π(2mm\)2 4π(2mml)2\
+ 2 V ( m + l ) ! / \ ( 2 m + 1)! + ( 2 m + l ) ! j

1

2(2w + 2)(2m + 2)! 2\m+l) ( 2 m + 1 ) ! '

But Bι = 0 if / is a positive odd integer greater than 1. Consequently,
we have for any positive integer m,

, ¥ r m,(-l)mB2m+2(22m+2+l)π l(B2m+A2

κ ' (2m + 2)(2m + 2)! 2\m+\)

Hence

, (

2 V m + 1 /

For the case m = 0, a direct computation from Proposition 3 yields

C(0) = i .
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