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ON THE VALUES OF A ZETA FUNCTION
AT NON-POSITIVE INTEGERS

CHONG-HSIO FANG AND MINKING EIE

Let
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be the zeta function associated with the principal Delaunay-Voronoi
cone. A general theory asserts that ((s) has an analytic continua-
tion which is holomorphic in the whole complex plane except possible
poles at s =3/2, s=1 and s = 1/2. In this paper, we shall com-
pute the values of (s) at non-positive integers. It is not surprising
to see that these values are rational numbers and can be expressed
explicitly in terms of Bernoulli numbers; i.e.
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1. Introduction and the main theorem. Let

oo o0 oo

M {@O=>>YIsae+(@+&)el™, Res>3/2,

§,=1g,~=1g,=0

be the zeta function associated with the principal Delaunay-Voronoi
cone Q (see [5]) as defined by

AL+ A3 -3

(2) Q:{[ s 124_&3]%,22,1320}.

By the general theory as in [7], this zeta function is absolutely conver-
gent for Res > 3/2 and hence it defines a holomorphic function of
a complex variable s. Furthermore, ¢ (s) has an analytic continua-
tion which is holomorphic in the whole complex plane except possible
polesat s=3/2, s=1 and s=1/2.

In this paper, we shall prove the following

MAIN THEOREM. For any integer m with m > 0, {(-m) is a
rational number. More precisely,

Flom) = b (Brer\* L (Cpymer Bamaa(1 4 2272) | o
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Here Jyp,, is the Kronecker delta function and the Bernoulli num-
bers B,, (m > 1) are defined by

t o~ Bpt™
____.et_1=1+2 ”’r’l' .t <2,

By = 1.

2. The integral expression of { (s). To obtain an integral expression
for {(s)['(s)I'(s — 3)n'/2, we need the following lemma.

m=1

LEMMA 1. Let Y be the variable of 2 x 2 real symmetric matrix,
and G be a 2 x 2 positive definite symmetric matrix. Then we have,
for Res >3/2,

/ (det Y)S—3/2e (YO gy = (det G)~*n'/’T'(s)['(s — 1/2).
Y>0
Here Y > 0 means that Y is positively definite.

Proof. See p. 226 of [1].

ProprosITION 1. For Res > 3/2, we have
{sT(s)I(s = 1/2)m'/?

00 1
= 2/ uzs“‘du/ (1 —r2)s=32rdr
0 0

2n .
x / u3[(eu(l+rsm0) - 1)
0
x (eu(l—rsine) _ 1)(1 _ e——2u(1—rcost9))]-—ld0.

Proof. For Res > 3/2, by Lemma 1, we have
E(s)T($)T(s — 1/2)n'/2

oo o0 o0

=222 /Y _,(det Y) 2 exp{-yi181 - y28

8=1g,=1g,=0
~ (1 +y2-2y12)83} dy1 dyrdyyz
= / (det Y)S=3/2[(e” — 1)(e”> — 1)
Y>0

X (1 —e 420" dy dy, dyy,.
By changing of variables: u = (y; +y2)/2, v = (1 —)2)/2, w =yi12; B
the integral is transformed into

2 (u2 _ ,02 _ ,wZ)s-—3/2
2 2 2
u—v'—w>0, u>0

X [(e*t? — 1)(e* ™V — 1)(1 — e 22" dudv dw.
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Let v=up, w=uq andlet p=rsinf, g =rcosf. Then
C(s)I(s)T'(s — 1/2)7/?

= 2/ uzs“‘du/ (1 —r2)s=32rdr
0 0

x /Zn u3[(eu(l+rsin6) _ 1)(eu(l—rsin6) _ 1)
0

x (1 _e—2u(l—rcos0))]—l deé,

as asserted.
Let

2
F(u, r) ___/ nu3[(eu(l+rsin0) _ 1)(eu(1—rsin0) _ 1)
0
X (1 _ e—Zu(l—rcosH))]—l de

and

1 : 2\5-3/2
o 1/2)7«:1/2/0 (1 =r2)=32¢F(u, r)dr.

I(s, u, F) as a function of s, is holomorphic for all s # 1 since
it is a quotient of two generalized functions in s which has simple
poles at negative half integers [7].

Denote by L(¢) the contour in the complex plane consisting of the
interval [e, +o00) twice, in both directions (in and out) and the circle
|z| = & in counterclockwise direction. Then the integral expression of
Z(s)I'(s) can be transformed into a contour integral of the form

2(e*mis — 1)1 / uB4I(s, u, F)du.
L(e)

I(s,u, F)=

With the functional equation of gamma function I'($)I'(1 —s) =
2mie™s(e?™is — 1)1 we get

F(s) = 2T(1 — 5)emis (etnis _ 1)-1 / W 4(s, u, F)du.
2751 L(e)
This gives the analytic continuation of £(s).

PROPOSITION 2. Forall se C — {£1/2,+3/2, ...}, we have

IL/ u¥4I(s,u, F)du
L(e)

{(s) =20(1 = s)e™™ (e + 1) 5

where

I(s,u, F)= /(l—r y$=32rF(u, r)dr

Ts—1 /2 72
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with
2n ) ’
F(u,r) =/ u3[(eu(l+rs1n6) _ 1)(eu(l—rs1n0) -1)
0
X (1 _ e—2u(l—rcos€))]—l do.

REMARK. From the analytic continuation of (s) given in Propo-
sition 2, it seems that it might also have possible poles at negative
half integers. However these poles can be eliminated by the gamma
function appearing in the expression of I(s, u, F). In fact, E(s) is
analytic at negative half integers; but it is hard to see from our for-
mula.

3. The values of {(s) at non-positive integers. The analytic continu-
ation of I(s, u, F) was given in a more general context in [3]. When
s is a non-positive integer, the value {(s) depends only on the contin-
uation of I(s, u, F) when |u| < ¢, due to the fact that the contour
integral along [¢, +oo] twice in opposite direction cancel each other.
Furthermore, these values can be obtained by the theorem of residue.

PROPOSITION 3. The values of {(s) at s = 0,-1,-2,...,
—-m, ..., arerational numbers and
Irem+2
{(-m) = ——(zmn—)N(—m)
where

1 2n
N(s) = / (1-r2) =32 dr / Qomss(r, 0)df,  Res>1,
0 0

with

Q21+l(ra 0)
l
1 By(1—k)Boxk N 2-2k—1 k1
=5y [(1 + rsin @) (1 —rsin 6)

2 & (21 - 2K)1(2K)!
— (1 4 rsin 8)%-2k=1(2 — 2r cos 9)%*~!
— (1= rsin0)2~2=1(2 — 2r cos )2~

+ %511 (6;j is the Kronecker’s delta function). s

Proof. We have

¢(-m) = 2I°(1 +m)(—1)'”“—1—. / u " =41(-m, u, F)du.
2mi L(e)
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In order to compute {(—m), we must find the coefficient of u2™+3 in

the power expansion of I(-m, u, F). For |u| < m/2, we have

u B 1 _u+szn (1 + rsin §)2n—1y2n

eu(l+rsing) _ 1 1 +rsinf 2 (2n)! ’
u B 1 2\ By, (1 — rsin )2~ 1327

eu(1=rsin®) _ 1~ 1 —rsinf 2 (2n)! ’

u _ 1
1 — e—2u(1-rcos) —

_u Z By, (2 4 2rcos §)#—1y2n
l—rcosf 2 e~ (2n)!

The coefficient of #2”*3 in the power expansion of

u3[(eu(l+rsin0) _ 1)(eu(l—rsin0) 1)( —2u 1- rcosB)]—

is Qame3(r, ), which is a Q-linear combination of functions of fol-
lowing types:

Fi(r,0)=(1+rsin0)™ ~1(1 — rsin)™2(1 — rcos §)™s,
Fy(r, 0) = (1 +rsin@)™: (1 — rsin0)™2"1(1 — rcos §)"=,
F3(r, 0) = (1 +rsin0)™s(1 — rsin0)™2(1 — rcos )"~

b

where m;; (i, j=1, 2, 3) are positive integers or zero. Integrating
with respect to 6 from O to 27, we get

2n
Fi(r,0)d0 =2aPi(r*) ifmj;>1,

2nQ;(r?) .
= _\/l-]ﬁ + 27sz(r2) if m;; =0,
where P;(X), Q;(X) and R;(x) are polynomials. Thus the coeffi-
cient of u?™+3 in I(—m, u, F) is a Q-linear combination of integrals
of the forms
2n !
1 — 72)-m=3/2,p. (2
T 1/2)n1/2/0 (1-r°) rP;(r°)dr,
2n : 2\-m-2 2
T = 1/2)7:1/2/0 (1-r) rQ;(r°)dr.

The values of continuations of these integrals are rational numbers
Consequently, the value {(—m) is a rational number.
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4. On the explicit values of N(—m) and the proof of the main theo-
rem. In this section, we shall prove that almost all terms in
Qam+3(r, 6) have zero contribution to N(—m). The contributions
from remaining terms will be computed one by one. Finally, we ob-
tain the explicit expression of {(—m) as shown in Main Theorem.

PROPOSITION 4. For non-negative integers p and q, not both 0,
define
1 2n
Fp,q(s) =/ (1 —rz)s‘”zrdr/ (1+rsin0)®~'(1 - rsin6)2-146
0 0
(Res > 1).

Then F, 4(s) is a rational function with simple poles at s = §, -1,

. % —p—q(andalso at s =1 if p or q is zero) and vanishes at
s=1—p—gq unless p=q, in which case

Fp p(1-2p)=-2n(4p—-2)(4p—4)---2/(4p - 1)(4p - 3)---3.

Proof. Changing from polar coordinate to linear coordinate, r cos 6
=x, rsinf = y; we find

Fp,q(s) = // (1 +y)2p—l(1 _y)Z(I—l(l _ x2 _y2)s—3/2 dxdy
xX+yi<i
With ¢ =x/+/1 —y? as a new variable in place of x, then
1 1
Fpg(s)= [ (1+ppr2(1=ypaay [ (1- - ds
-1 -1

1
— 22s+2p+2q—3/ us+2p—2(1 _ u)s+2q—2 du
0

1
x/ v12(1 — )32 gu (u=y——-2H,v=t2)
0

_ o2s+2p+2¢-31 (8 +2p — DI'(s + 29 — DI(s — 1/2)I(1/2)
I'(2s + 2p + 2qg — 2)I'(s) ’

This explicit evaluation holds for any complex number p and g (and
Re s sufficiently). The statements of the proposition follow easily
when p and g are non-negative integers: it is clear that the poles are
as stated and that F, 4(1 —p —¢q) =0 for p # g, since in that case
both I'(s) and I'(2p +2g + 25 —2) ; but only one of I'(2p+s—1) and
I'(2qg +s — 1), have simple poles at s = 1 —p — g, while for p = g all
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four of these gamma functions have poles and we obtain the formula
given in the proposition by comparing residues.

PROPOSITION 5. For non-negative integers p and q, not both 0,
define

Gp.q(5) /(1 )*~ 3’/Zrdr/ (1—rcos )%~ (1—rsin0)%9-1 d6

(Res > 1).
Then Gp 4(s) is a rational function with simple poles at s = %, —% ,
..,3—p—q (andalsoat s=1,0,...,2—p—q if p or q is zero)

and vanishes at s = 1—p—q unless p = q or p or q is zero, in which
case
—2?(p—-D'n/(4p - 1)(4p - 3)---(2p + 1),

if p=q,
(-1)P*n/(p+q), ifp=00rqg=0,
0, otherwise.

Gp,q(1-p—q) =

Proof. We have
Gy q4(s // (1=x)2271(1 —p)21(1 = x2 - y?)" 32 dx dy.
+y <1

Suppose that p > 1 and expand (1—x)?~! by the binomial theorem.
Then G, 4(s) is a sum of double integrals with an inner integral of

the form
a
/ x™(a* — x?)s732 dx (a =4/1 —y2> ,

—-a
which is 0 for odd m. For m = 2j, we have

/a x¥(a? — x2)=32dx = T(j+1/2)T(s — 1/2)a?/+3-2
¢ I'(s+J)

Hence

A (2p—1\T(s—1/2)T(j—1/2
G”"’“)"Z( )T

/ (1 s+2q—j—2(1 +y)s+j—1dy
il 2p - D'n I'(s —1/2)
< 2j\2p—2j — 1) T(s+q+j-1/2)

‘F(s+2q+J—1)
I's+q+))
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The second factor in the jth summand has poles at half integers
between } and 3 — ¢ —j > 3 — p —g. The third factor in the jth
summand is a polynomial (unless ¢ = 0, when it equals 1/(s+j—1))
which vanishes at s = 1—p—gq forall j if ¢ > p and for all j except
j =0 if g = p. This leads to the assertions of the proposition. When
p>q=0,thevalueof G at s=1-p — ¢q is given by

p—1
B 2p-D=n
Gpo(l=p)=3 25 j12p - 2j — 1)

Jj=0
.“4yrw~j+lﬂ)'—l
I'lp+1/2) p+j
(=1 p -1 (=1)Px
e-j) — p -

=T
j=0

The proof of the main theorem. Note that the function N(s) in
Proposition 3 is a linear combination of F, ,(s) and G, 4(s) with
p +q =m+ 1. More precisely, we have

By, By,

_! BBy 2
Y07, B ENEH ) G
50m
t35-172)

If m is a positive even integer, then p # g . Since

Fpq(-m)=F, ;(1-p—q)=0, forp#gq,
Gp,g(-m)=Gp y(1-p—-q)=0, forp#q,p#0,q9#0,

it follows

B
N(=m) = 5 =2 Gt o(=m) = Go, 1 (=m)]

_ (=D)"Bym2(2*™2 4+ )z
T 2m+2)(2m+2)!




THE VALUES OF A ZETA FUNCTION 209

If m is a positive odd integer, then it is possible that p = ¢ =
(m+1)/2. Hence

N(__ ) _ B2m+2

m[ 22m+2Gm+1,0(—m) — Go, ms1(—m)]
1/ B 2
+ 3 (Gty) e oranalm)

= 2" Gmi))2, me1)2(—m)]
(=1)"Bymi2(2*" 2 + )z
2m+2)2m + 2)!
+1< Bomi )2 {—2n(2mm!)2 N 47t(2’"m!)2}
(m + 1)! Cm+1)! | @Cm+1)

2
_ ED"Bama @2+ D 1 (Bt 22w
T 2m+2)(2m +2)! 2\m+1 m+ 1!

But B; = 0 if / is a positive odd integer greater than 1. Consequently,
we have for any positive integer m,

Nem) = D Bam2@2 2+ D 1 (B )" 22"
(2m +2)(2m + 2)! 2\m+1 2m+ 1)
Hence
: 2m+ 1)!
{(—m) = —(—zm—JrTTT)‘N(—m)
_ _L(Baner ), (=D By n(2272 + 1)
T 2\m+1 22m+1(2m + 2)2
For the case m = 0, a direct computation from Proposition 3 yields
5 1
80) = 75
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