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REAL ANALYTIC REGULARITY
OF THE SZEGO PROJECTION

ON CIRCULAR DOMAINS

SO-CHIN CHEN

In this note we show that ΰ c C " , n > 2, is a smooth bounded
pseudoconvex domain with real analytic defining function r(z) such
that ΣLi zk{dr/dzk) φ 0 holds near some xoebD, then if g E
Cω(bD), we have that the Szegδ projection of g, Sg, is real analytic
near co . In particular if D is a smooth bounded complete Reinhardt
(or Reinhardt) pseudoconvex domain with real analytic boundary, then
the Szegδ projection S preserves real analyticity globally.

I. Introduction. Let D e c " , n > 2, be a smooth bounded pseu-
doconvex domain. Denote by L2(bD) the space of square-integrable
functions on the boundary and by H2(bD) the closed subspace of
L2(bD) whose Poisson integrals are holomorphic in D. Then we
define the Szego projection S to be the orthogonal projection from
L2(bD) onto H2(bD). It is represented by integration against the
Szegδ kernel function S(ω, z), i.e., for / e L2(bD), we have

Sf(ω)= f S(ω9z)f(z)dσz.
JbDIbD

The smooth regularity of the Szegό projection for a large class of
domains has been established, for instance, see [1] [2], [3], [4], [8], [9],
[10], [12]. Hence in this paper we are going to study the real analytic
regularity of the Szego projection on circular domains. The problems
can be formulated as follows.

1. (Global version): Suppose that the boundary of D is real an-
alytic, then does the Szegό projection S map analytic functions to
analytic functions, i.e., S: Cω(bD) -+ Cω(bD)Ί

2. (Local version): Suppose that the boundary of D is real analytic
near some point XQ€ bD, then does the Szegό projection *S preserve
real analyticity near XQ ?

These problems are quite open. The only results we know so far are
due to D. Tartakoff [13]. He showed the following.
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THEOREM {Tartakoff). On a real, real analytic CR-manifold of di-
mension 2n - 1 whose Levi form is non-degenerate and which satisfies
Y(q), then Πb is locally real analytic hypoelliptic on (p, q)-forms.

For global result in this case see also Tartakoff [14].
The condition Y(q) means that the Levi form has max(#+1, n-q)

eigenvalues of the same sign or min(# + 1, n - q) pairs of eigenvalues
of opposite sign at each point. Therefore if one has a smooth bounded
strictly pseudoconvex domain D in Cn, n > 3, with real analytic
boundary, then one can apply the following formula

(1.1) S = ld-dlNbdb9

where Nb is the boundary Neumann operator, to show that the Szegό
projection S preserves real analyticity locally (hence globally too).
However, we must point out here that this theorem does not apply
to the domains in C2, because condition 7(1) is violated on such
domains.

Very recently M. Derridj and D. Tartakoff [7] showed that if the
defining function near OebD can be expressed as

(1.2) Imω = A(|z|2)

with h real analytic and h(0) = 0, then again a local theorem holds
near OebD.

In this paper we prove the following main results.

THEOREM 1. Let D ccn, n > 2, be a smooth bounded pseudocon-
vex circular domain with real analytic defining function r(z). Suppose
that ΣΊ=ι zk{dr/dzk) Φ 0 holds near some x0 e bD and that f is
globally real analytic, i.e., f e Cω(bD). Then Sf is real analytic
near x$.

We remark here that (i) Theorem 1 is also true in dimension two,
(ii) it is not quite a local theorem, because we need / to be globally
real analytic. It follows from Theorem 1 that we have

COROLLARY 2. Let D c Cn, n > 2, be a smooth bounded pseudo-
convex circular domain with real analytic defining function r(z). If
Σk=\ zk(9r/dzjc) Φ 0 holds for all z ebD, then the Szegό projection
preserves real analyticity globally.
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Since the transversal condition always holds on a complete Rein-
hardt domain, see Chen [6], we have

COROLLARY 3. Let D c Cn, n > 2, be a smooth bounded complete
Reinhardt pseudoconvex domain with real analytic boundary. Then the
Szegό projection preserves real analyticity globally.

Next if we drop the transversal condition, we can show

THEOREM 4. Let D c cn, n > 2, be a smooth bounded Reinhardt
pseudoconvex domain with real analytic boundary. Then the Szegό
projection preserves real analyticity globally.

The author would like to thank Mei-chi Shaw for bringing this prob-
lem to his attention.

II. Proof of the main results. A domain D in Cn is called circular
if (zι, ... , zn) e D implies (ewz{, . . . , eiθzn) e D for all θ G R,
and D is called Reinhardt (or multi-circular) if (z\, . . . , zn) e D
implies (eiθιz{, . . . , eiθnzn) e D for θx, . . . , θn e R. D is called
complete Reinhardt if (z\, . . . , zn) G D implies (ωi, . . . , ωn) G D
with \tύj\ < \ZJ\ for all j = 1, . . . , n.

First we recall that the Szegδ kernel function S(ω, z) can be repre-
sented as follows. Let {<Pj}JLι be an orthonormal basis for H2(bD).
Here we have identified each element / G H2(bD) with its Poisson
integral. Then we have

(2.1) S ( ω , z ) = °°

and the expression is independent of the choice of the basis.
Next we prove some basic facts on circular domains. Define an

S ^action on D as follows,

π : Sι xD->D,

(eiθ ,z)^ω = eiθ-z = (ewz{, . . . , eiθzn).

Then for each fixed θ, π# = π\ιD is a CR-diffeomorphism of bD.

LEMMA 2.2. Let D c Cn, n > 2, be a smooth bounded circular
domain. Then for each fixed θ we have nldσω = dσz, where dσ
denotes the surface element on bD.
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Proof. Let r(ω) be the defining function for Dω. Here we use
subscripts to emphasize the domain we consider. Then roπ(z) will
be a defining function for Dz. By using the *-operator (cf. [11]), we
have

κldσω = π*b

where i\ D ^->Cn is the inclusion map. Then by direct computation,
we get

1 ( n 1

\\d(roτt)\r Ijf-ί2"'1-* —K m

j Λ d ω j )

Λ

This completes the proof of the lemma.

From Lemma 2.2 and the representation of the Szegό kernel func-
tion we obtain immediately the following transformation law for the
Szego kernel on circular domains.

LEMMA 2.3. Under the hypotheses of Lemma 2.2, we have S(ω, z) =
S(π(ω)9π(z)).

Now we define the crucial vector field T on bD as follows. Let z
be a point near the boundary. Define

Az:S
ι -+D

and denote by Λz 9 * the differential mapping of Az . Then define the
vector field T at z by

d d

where X =
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The vector field T defined in this way has many nice properties.
First of all, if (dr/dzn)(x0) φθ, then

dr d dr d ,
κ dzkdzn dzndzk' ' " "

forms a local basis for Tι>°(bD). Hence by assumption Xr φ 0 near
XQ , L\, . . . , L π _i, X\, . . . , Lπ_i and Γ form a basis for complex
tangent space on bD near XQ , and it is shown in [6] that we have

(2.4) [T9Lk] = -iLk9 [T9Lk] = iTk9 f o r f c = l , . . . , / i - l .

The next lemma shows that T commutes with the Szegό projection
S on such domains.

LEMMA 2.5. Under the hypotheses of Theorem 1, we have TSu =
STu for all ueC°°φD).

Proof. Since Su e C°°(bD), one can apply T to Su. Also by the
construction of T, we get by writing z = eιt η ,

2TSu(ω) = j - ί S(eu ω9 z)u(z)dσz\t=0

IbD
1 p

= jj S(ω9 η)u(eu -η)dση\t=0

= 2STu{ω).

This completes the proof of the lemma.

Now we begin to prove Theorem 1. So we assume that / e Cω(bD).
It follows from the smooth regularity of the Szegό projection that we
have Sf e C°°(bD). Denote by L (or I ) any of the Lt 's (or Γ f 's)

with / < n - 1, and by L any of L, 's or Lz 's with / < n - 1.

Also denote by Z either L or Γ. Denote by 0^) any of the finite
collection of analytic functions that occur in commutators of L, X
and T and integration by parts. Let fly+i) = 0(i) ^( ) o r au+i) =

Za^j). Hence there exists a constant R > 0 such that for all fceN,
we have

(2.6) \a[k)\<RRkk\.
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The proof for Theorem 1 will be complete if one can show

(2.7) \\Z^-ZqSf\\L2{u)<MM^\9

for all q eN and some open neighborhood U of Xo and some M >
0 uniformly in q. We may assume that Xr Φ 0 holds on some
neighborhood of V.

Let φ be a cut-off function with φ = 1 in some neighborhood of
XQ and supp φ contained in U. Denote by φ1 any first derivative of
φ . Then by Lemma 2.5 one can estimate the pure terms quite easily,

(2.8) \\φT*Sf\\ = \\9ST*f\\ < \\T* f\\ < RfRp

fp\,

for some Rf > 0. To estimate the mixed terms we use Op(/c, #) to
(-)

denote any differential operator of order q formed out of the L and

T in all order with precisely k L 's. Thus if k = 0, by (2.8), we have

||pQp(0, q)Sf\\ = \\φT*Sf\\ < RfR}ql

Hence what remains in this note is to estimate the term Op(s, q)Sf
with s > 1. We will use underline to mean at most such terms are
being considered and c is a constant depending only on n. First we
write

(2.9) Op(*, p) = ΓL Op(s - 1, p - r - 1)

iΓ-j L Tj~ι Op{s - 1, p - r - 1)
7=1

= {L Op(s - l , p - l ) + Σ(±)iθp(s,p - 1).

7=1

Define
Ip(φ) = ||^Op(j, p)Sf\\ + \\φTOp(s - 1, p -

By (2.9) we see that
n-\

IP(φ) < 2 ΣiWφLi Op(s - Up - 1)5/|| + \\φΣi

(p - l)\\φ Op(s, p -
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We estimate the first term as follows:

\\φLOp(s-\,p-l)Sf\\2

= (φLOp(s -l,p- l)Sf, φLOp(s -l,p- 1 ) 5 / )

= \\φLOp(s-ί,p-l)Sf\\2

+ (φ Op(s -l,p- 1 ) 5 / , - φ [ L , L] Op(s -l,p- 1 ) 5 / )

+ 2(φ'Op(s -l,p- 1 ) 5 / , φLOp(s -l,p- 1 ) 5 / )

+ 2(φ'Op(s -l,p- 1 ) 5 / , φLOp(s -\,p- 1 ) 5 / )

+ (β(i)p0p(j-UP- 1)5/, φLOp(s-UP- 1)5/)

+ ( a w φ Op(s -UP- 1 ) 5 / , φLOp(s -\,p- 1 ) 5 / ) .

It shows that for C\ > 0 we have

\\φLOp(s-l,p-l)Sf\\

<\\φLOp(s-Up-l)Sf\\

+ Q(\\φθp(s -UP- 1)5/|| + 4\\φ'Op(s -l,p- 1)5/||

+ 2\\awφθp(s- l,p-l)Sf\\)

+ -±r(3\\φLOp(s -\,p- 1 ) 5 / | | + 3 | | p Γ θ p ( s - 1, p -

LEMMA 2.11. (i) [L,L] = ( 2 n - l ) α ( 1 ) Z .

(ϋ)

Γ θ p ( s - l , p - l ) = Op(s - l , p - l ) L

;(2(2n-l))

where Zj denotes any Z. Hence one may choose c = 2(2« - 1).

Proof, (i) is trivial. For (ii) we have

[I,

Hence the conclusion follows immediately.
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Since Sf is annihilated by T, we obtain

n-\

(2.12) Ip(φ) < 2 £ { 2 ^ 1 ; Op(* - 1, p -

+ Cι(\\φOp(s-l,p-l)Sf\\

+ 4\\φ'Op(s-l,p-l)Sf\\

+ 2R2\\φOp(s-ί,p-ί)Sf\\)

+ ±-(3\\φLiOp(s-l,p-l)Sf\\
w

+ 3\\φLiOp(s-l,p- l)Sf\\

+ cR2\\φZOp(s-l,p-\)Sf\\)}

+ \\φTOp(s-l,p-l)Sf\\

+ (p-l)\\φOp(s,p-l)Sf\\.

Choose C\ = max(24, 8ncR2) then we get

(2.13) Ip(φ) < 8ΣΣ,cJ (P'
i=\ j=\ — ^ — I — L

+ 4(n-l)C1(||^Op(s- \,p-l)Sf\\

+ 4\\φ'Op(s-l,p-l)Sf\\

+ 2R2\\φ0p(s-l,p-l)Sf\\)

+ 2\\φTOp(s-l,p-l)Sf\\

+ 2(p-l)\\φOp{s,p-l)Sf\\

< 8 ( ι i - 1

()
Since the vector field L in general is defined only locally, we need

a special cut-off function which is of compact support, but behaves
like an analytic function up to certain order.

LEMMA (Ehrenpreis). Let XQ e bD and U\, U2 be two neigh-
borhoods of XQ with U\ <g U2 c U then there exists a constant
M > 0 such that for any integer k one can find φ^ € Cffify) with
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0 < ψk < 1 > Ψk = 1 o n U\ and satisfying

(2.14) \Daφk\ < M(Mk)M , for \a\ < k + 1.

Now one can replace φ by φ^, some derivative of φp of order
< b, and p by p - Z? in (2.13). Then we obtain

ίb)
2\\φίb)Op(s-l>P-b)Sf\\

There are five terms in (2.15). Inductively we will show that for
P > b > 0, we have

(2.16) Ip-b(φ(

P

b)) < Rl(R2p)b(R3P)p-bRS4,

where jRt, R2, R3 and R4 are some constants, i.e., we will show that
each term can be bounded by \R\{R2P)b{R-iP)p~bRs

A. The initial step
5 = 0 or p = b is easy to check. Hence we assume that (2.16) is true
for b > bo or s < so. Then we prove the case b = bo and s = so.

Term 1< 8(π -

S(n-l)R(cR)J

< R

provided i?3 is chosen large enough.

Term 2 < 16(n - l)Cii?i

- 5
provided R3 > 80(n -
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Term 3 < 4(n - 1)Q(1 + 2R2) • Rx{R2p)bo{R3p)p-b^ K°

provided R3 > 20{n - l ) d ( l + 2R2).

Term 4 < 2Rι(R2p)bo(R3p)p-bo • R'f1

provided R4 > 10.

Term 5 < 2{p - b0 -

<R1(R2p)

provided -R3 > 10. This completes the proof of (2.16). In particular,
we have shown that for k < p,

(2.17) \\φpOp(k,p)Sf\\ < Ip(φp) <

< MMpp\,

for some large constant M > 0 depending only on Rι, R3 and R4.
This also completes the proof of Theorem 1.

To prove Theorem 4 one can apply the above techniques almost
verbally with slight modification. The key point is that for every point
XQ G bD we have to choose a vector field like T for Theorem 1 which
is transversal to Tι<°(bD)θT°'ι(bD) locally near x0 and commutes

(-)
nicely with L and the Szegό projection. This can be done easily. By
rotational symmetry of the domain one can choose a direction, say n,
such that (zn(dr/dzn))(xo) φ 0 holds in some neighborhood of XQ.
Then define 5 ̂ action on ~D as follows.

π:Sι xD-^D

(eiθ, z)»eiθ z = (Zι, ... , z B _! , A B ) .

Such an action will generate a vector field Tn = izn(d/dzn) -
ΐzn{djd~zn) with the desired properties. So we are done. For more
details in this case see [5].
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