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OPERATORS PRESERVING DISJOINTNESS
ON REARRANGEMENT INVARIANT SPACES

YURI A. ABRAMOVICH

Let X and Y be two rearrangement invariant spaces on a measure
space (Ω, Σ, μ) with a finite, nonatomic measure μ . We show that
if there exists a non-zero order continuous disjointness preserving op-
erator T: X —• Y, then X C.Y. This result has many consequences.
For example, if T: LP(Ω, Σ, μ) -> Lq(Ω, Σ, μ) (0 < p < q < oo)
preserves disjointness, then T = 0 .

1. Notation and preliminary facts. Recall that a (linear) operator
T: X —• Y between vector lattices is said to be a disjointness preserving
operator if |JCI| Λ \x2\ = 0 in X implies \Tx{\ Λ \Tx2\ = 0 in Y. All
vector lattices are assumed to be Archimedean, and all operators on
normed or linear metric spaces are assumed to be continuous.

Let (Ω, Σ, μ) be a measure space with a finite σ-additive non-
atomic measure and S ( Ω , Σ , μ ) be the space of all (equivalence
classes of) measurable real valued functions. Throughout the work
we will use the representation of the space S as the space Coo(Q) of
all continuous extended functions on the Stone space Q of S. (See
[10] for details.) We retain the same notation μ for the corresponding
measure on Q, which is defined on the σ-algebra ΣQ consisting of
all subsets of the form (E\N) U (N\E), where E is a clopen (closed
and open) subset of Q and N is a first category subset of Q. It is
well known that μ(D) = 0 if and only if D is a nowhere dense subset
of Q. (Any extremally disconnected space Q with such a measure is
sometimes called a hyperstonian space.) A subspace X of 5(Ω, Σ, μ)
is called a rearrangement invariant (r.i.) ideal if

(i) X is an order ideal in S, and
(ii) If x G X, y E S, and x and y are equimeasurable, in symbols

x ~ y, then y e X.

If, in addition, X is equipped with a Banach norm || || such that

(iii) xι, x2 e X and |*i| <\x2\=> \\x\\\ < \\x2\\, and
(iv) x\, x2eX and xx ~ x 2 =» ll*ill = 11*2II,

then X is called a r.i. Banach function space. We refer to [7] for the

basic facts concerning r.i. ideals and Banach spaces. (Let us mention
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incidentally that up to an equivalent renorming (i), (ii), and (iii) imply
(iv). See [1] or [7, p. 115].) All necessary information about Banach
and vector lattices can be found in [4, 10].

2. The following theorem is the main result of this article.

THEOREM I. If X and Y are r.L ideals and X <£ Y, then every
order continuous disjointness preserving operator T: X —>Y is identi-
cally equal to zero, i.e., T = 0.

We precede the proof of this theorem with several immediate corol-
laries.

COROLLARY 2. Let X and Y be two r.L Banach function spaces and
X have order continuous norm. IfT:X-+Y is a nonzero disjointness
preserving operator, then X CY.

An alternative proof of this corollary can be obtained using Lemma
5.2 in [6].

COROLLARY 3. There is no nontrivial disjointness preserving opera-
tor from LP(Ω, Σ, μ) into Lq(Ω, Σ, μ) for 0 <p < q < oo.

REMARK. In a special case of Lp-spaces (1 < p < oo), when Ω
is an open subset of Rn and μ is Lebesgue measure, this result was
earlier obtained by a quite different method by M. Drahklin [5].

COROLLARY 4 (L. Potepun [9]). Order isomorphic r.L ideals coin-
cide. That is, if X and Y are order isomorphic r.L ideals, then
X=Y.

Proof. Let T be an order isomorphism of X onto Y. Obviously,
T and T~ι are order continuous and, hence, by Theorem 1, X C Y
and Y C X, i.e., X = Y. The original proof in [9] was much more
difficult. D

3. Three auxiliary lemmas. The space Q and measure μ below are
as defined above.

LEMMA 5. Let A be a nonvoid clopen subset of Q and let φ be a
continuous open mapping from A into Q. Put B = φ(A). Then there
exists a nonvoid clopen subset B\ of B and a constant K > 0 such
that for any measurable D c B\

K-λμ{D)<μ(φ-\D))<Kμ{D).
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Proof. The set B = φ(A) is evidently a clopen subset of Q. We in-
troduce a new measure γ on the σ-algebra ΣQ by letting γ(D) :=
μ(φ~ι(D Π B)) 9 (D G Σρ). Obviously, B is the support set of
the measure γ. Let us verify that γ is absolutely continuous with
respect to μ. Take an arbitrary measurable set D with μ(D) = 0.
Hence D is nowhere dense in Q. Since φ is open the set φ~ι(D)
(= φ~ι(D Π 5)) is also nowhere dense and thus μ(φ~1(D Π B)) = 0.
This proves that γ is absolutely continuous with respect to μ and,
consequently, by the Radon-Nikodym theorem there exists a nonneg-
ative function h G Li(Ω, Σ, μ) such that γ(D) = fDhdμ for each
measurable set D. Take a nonvoid clopen subset Bγ c B and a con-
stant K > 0 so that K~ι < h(q) < K for each q e B{. Clearly ^
and ΛΓ satisfy the desired properties. D

LEMMA 6. Let X and Y be two r.i. ideals on a {finite nonatomic
measure) space (Ω, Σ, μ). If X <£Y, then for each set D e Σ with
μ(D) > 0 there is a function x G X such that its support supp(x) c D
and x φ Y. Moreover, x can be chosen to be a step function.

The proof is straightforward and is omitted. We only mention that
for infinite measures this lemma is false and it is the only place where
the finiteness of the measure μ is essential (see 5.4 below).

LEMMA 7. Let Y be a r.i. ideal and y = ΣT=ι dnXEn £ Y be a
step function, where {En} (n = 1, 2, . . .) is a sequence of pairwise
disjoint measurable sets. Also, let {Dn} be a second sequence of pair-
wise disjoint measurable sets such that K~ι < μ(Dn)/μ(En) < K for
some K > 0. Then the step function x = Σ^Li dnXD likewise belongs
to Y.

4. Proof of Theorem 1. Let T: X -> Y be an order continuous
disjointess preserving operator from X into Y and let X $£ Y. We
must show that T = 0. The gist of the proof lies in an application of
the multiplicative representation of disjointness preserving operators
obtained in [2].

By Theorem A in [2], the operator T admits a global multiplicative
representation, i.e., there exists a clopen set £ c ( 2 , a function e e
Coo(Q) and a continuous mapping φ from E into Q, such that for
each x G X and each q e Q

(Tx)(q) = e(q)x(φ(q)), if q G E, and (Tx)(q) = 0 otherwise.
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The order continuity of T implies that the mapping φ is open
(see [2, Lemma 4.1] or [8, Prop. 8]). Without loss of generality we
may assume that T > 0. If T φ 0, then the set E is nonvoid and
Eo := {q G E : 0 < e(q) < oc} is a dense open subset of E. (It is
possible that EQ = E.) Let us fix some constant M > 0 such that the
clopen set A = cl{q G EQ : M " 1 < e(q) < M} is nonvoid.

If we restrict the mapping φ to A and let B = φ(A) > then the con-
tinuous open mapping φ: A -+ B satisfies the conditions of Lemma
5. Therefore there exists a nonvoid clopen set B\ c B and a constant
K > 0 such that AT"1 < μ(D)/μ(φ-ι(D)Γ\A) < K for each measurable
D c B\. The condition X $£ Γ implies by Lemma 6 that there exists
a step function x = Σ^Li dnχDn such that X G I , x $ Y, DncBχ,
and DΛ ΠD m = 0 (nφm). Since x G JΓ, the function j ; = Γ λ : G 7 .
Now let us express y in terms of the multiplicative representation of
Γ. We have

= e(x o φ) = e(-)x(φ(-)) =

Since y G Y, we see that yχA € Γ and hence

As we know e(q) € [Λf"1, AT] for each # e A and therefore the
function y = J^^ij dnχφ-χ{D^A belongs to Y if and only if yχA e Y.

Letting En = φ~ι(Dn) n ^ " we see that y = Σ7=\ dnXEn e Y and
K~ι < μ(Dn)/μ(En) < K. By Lemma 7 this implies that x eY, a
contradiction, and the proof is finished. D

5. Examples and comments. First, we show that the hypotheses of
Theorem 1 cannot be weakened.

5.1. The condition X <£ Y is essential, since if X c Y, then_^
the identity imbedding id: X —• Y is a nonzero order continuous "
disjointness preserving operator.

5.2. Here we show that the assumption of order continuity of
T: X -+ Y cannot be dropped. Indeed, let a r.i. space X have a
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nonzero discrete functional / . Then for each Y we can easily con-
struct a nonzero disjointness preserving operator T: X —• Y. To this
end take an arbitrary y e Y, y Φ 0 and define Tx = f(x)y. It is ev-
ident that T φ 0 and T preserves disjointness. (A similar argument
explains why we do not consider the case of atomic measure spaces.
This case is of no interest since each discrete r.i. space always has a
nonzero order continuous discrete functional.)

5.3. Recall that a norm || || on a normed lattice Z is said to be
strictly monotone if 0 < z\ < z2 implies ||zi|| < | |z 2 | | .

PROPOSITION 8. If X and Y are r.i. Banach function spaces with
strictly monotone norms and T is a positive isometry from X into Y,
then i c y (and X=YifTis also onto).

Proof. It is easy to see (and this observation is due to A. S. Veksler)
that each positive isometry preserves disjointness provided the norm
in Y is strictly monotone. Thus, Theorem 1 is applicable and hence
X C Y. If T is also onto, then, as is shown in [3, Thm. 1], T
is necessarily an order isomorphism, and now Corollary 4 yields the
desired equality X = Y. D

5.4. The case of infinite measure. Let us assume that μ(Ω) = oo.
It is a little bit surprising that Theorem 1 does not hold in this case.
A simple example is as follows. Take X = L2(R) and Y = L2(R) n
Lι(R). Clearly X and Y are r.i. Banach function spaces with order
continuous norms, X ξj£ Y but, nevertheless, there exist nonzero order
continuous disjointness preserving operators from X into Y. For
example, Txx := xχ[a^] (where a < b are arbitrary real numbers), or
T2x(t) := x(t)/(t2 +1) are such operators. Nevertheless, the following
version of Theorem 1 still holds.

COROLLARY 9. Let μ(Ω) = oo. If there exists a nonzero order con-
tinuous disjointness preserving operator T: X —• Y, where X and
Y are r.i. ideals, then for each set D of finite measure the subspace
XD = {x e X : suρρ(x) c D} belongs to Y.

Proof. Since T φ 0 and T is order continuous there is X\ e X
such that y\ = Tx\ ψ 0 and μ(E\) < oo where E\ = supp(x).
Choose a set E2 of finite measure for which y\XE2 φ 0. Now put
E = E1UE2UD and define TE by TEx = χET(xχE). Obviously, TE
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is a nonzero order continuous disjointness preserving operator from
the r.i. ideal Xβ into the r.i. ideal Y#. By Theorem 1, XE QYE - In
particular, Xp cY. D

We have treated the case of real spaces only, but the results remain
true for complex spaces as well.

In conclusion the author would like to thank Drs. E. Arenson, A.
Kitover and A. Mekler for many stimulating discussions, and the ref-
eree for his help and valuable suggestions.
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